

 [image: _images/arcade-logo.svg]
The Python Arcade Library

 Arcade is an easy-to-learn Python library for creating 2D video games. It is
 ideal for people learning to program, or developers that want to code a 2D
 game without learning a complex framework.

 	

 [image: Start Here]
 Start Here

 What is Arcade?

What is Arcade?

Arcade is an easy-to-learn Python library for creating 2D video games. It is ideal for people learning to program, or developers that want to code a 2D game without learning a complex framework.

 Start Here

Start Here

[image: ../_images/treasure-map.svg]
Installation

Arcade can be installed like any other Python
Package. Arcade needs support for OpenGL 3.3+.
If you are familiar with Python package management you can just
“pip install” Arcade.
For more detailed instructions see Installation.

Getting Help

If you get stuck, you can always ask for help! See the page on
How to Get Help for more information.

Tutorials

If you are already familiar with basic Python programming, follow the
Simple Platformer as a quick way to get up and running.
If you are just learning how to program, see
the Learn Arcade book [https://learn.arcade.academy].

Arcade Skill Tree

[image: ../_images/tree.svg]
	Basic Drawing Commands -
See How to Draw with Your Computer [https://learn.arcade.academy/en/latest/chapters/05_drawing/drawing.html],
Drawing Primitives

	ShapeElementLists - Batch together thousands
of drawing commands into one using a
arcade.ShapeElementList. See examples in
Faster Drawing with ShapeElementLists.

	Sprites - Almost everything in Arcade is done with the arcade.Sprite class.

	Basic Sprites and Collisions [https://learn.arcade.academy/en/latest/chapters/21_sprites_and_collisions/sprites.html#basic-sprites-and-collisions]

	Individually place sprites [https://learn.arcade.academy/en/latest/chapters/25_sprites_and_walls/sprites_and_walls.html#individually-placing-walls]

	Place sprites with a loop [https://learn.arcade.academy/en/latest/chapters/25_sprites_and_walls/sprites_and_walls.html#placing-walls-with-a-loop]

	Place sprites with a list [https://learn.arcade.academy/en/latest/chapters/25_sprites_and_walls/sprites_and_walls.html#placing-walls-with-a-list]

	Moving player sprites

	Mouse - Move By Mouse

	Keyboard - Move By Keyboard

	Keyboard, slightly more complex but handles multiple key presses better:
Better Move By Keyboard

	Keyboard with acceleration, de-acceleration: Acceleration and Friction

	Keyboard, rotate and move forward/back like a space ship: Move By Turning

	Game Controller - Game Controller

	Game controller buttons - Supported, but documentation needed.

	Sprite collision detection

	Basic detection -
Learn arcade book on collisions [https://learn.arcade.academy/en/latest/chapters/21_sprites_and_collisions/sprites.html#the-update-method],
Move By Mouse

	Understanding collision detection and spatial hashing: Collision detection performance

	Sprite Hit boxes

	Detail amount - arcade.Sprite

	Changing -arcade.Sprite.hit_box

	Drawing - arcade.Sprite.draw_hit_box

	Avoid placing items on walls - Randomly Place Coins, But Away From Walls And Other Coins

	Sprite drag-and-drop - See the Solitaire.

	Drawing sprites in layers

	Sprite animation

	Change texture on sprite when hit - Change coins

	Moving non-player sprites

	Bouncing - Sprite Bouncing Coins

	Moving towards player - Sprites That Follow The Player

	Moving towards player, but with a delay - Sprites That Follow The Player 2

	Space-invaders style - Slime Invaders

	Can a sprite see the player? - Line of Sight

	A-star pathfinding - A-Star Path Finding

	Shooting

	Player shoots straight up - Shoot Bullets Upwards

	Enemy shoots every x frames - Have Enemies Periodically Shoot

	Enemy randomly shoots x frames - Have Enemies Randomly Shoot

	Player aims - Aim and Shoot Bullets

	Enemy aims - Have Enemies Aim at Player

	Physics Engines

	SimplePhysicsEngine - Platformer tutorial Step 3 - Many Sprites with SpriteList,
Learn Arcade Book Simple Physics Engine [https://learn.arcade.academy/en/latest/chapters/25_sprites_and_walls/sprites_and_walls.html#physics-engine],
Example Move with Walls

	PlatformerPhysicsEngine - From the platformer tutorial: Step 4 - Add User Control,

	Moving Platforms

	Ladders - Platformer tutorial Step 10 - Adding a Score

	Using the physics engine on multiple sprites - Supported, but documentation needed.

	Pymunk top-down - Supported, needs docs

	Pymunk physics engine for a platformer - Pymunk Platformer

	View management

	Minimal example of using views - Minimal Views Example

	Using views to add a pause screen - Using Views for a Pause Screen

	Using views to add an instruction and game over screen - Using Views for Instruction and Game Over Screens

	Window management

	Scrolling - Move with a Scrolling Screen - Centered

	Add full screen support - Full Screen Example

	Allow user to resize the window - Resizable Window

	Map Creation

	Programmatic creation

	Individually place sprites [https://learn.arcade.academy/en/latest/chapters/25_sprites_and_walls/sprites_and_walls.html#individually-placing-walls]

	Place sprites with a loop [https://learn.arcade.academy/en/latest/chapters/25_sprites_and_walls/sprites_and_walls.html#placing-walls-with-a-loop]

	Place sprites with a list [https://learn.arcade.academy/en/latest/chapters/25_sprites_and_walls/sprites_and_walls.html#placing-walls-with-a-list]

	Procedural Generation

	Creating a Depth First Maze

	Creating a Recursive Maze

	Procedural Caves - Binary Space Partitioning

	Procedural Caves - Cellular Automata

	TMX map creation - Platformer tutorial: Step 8 - Collecting Coins

	Layers - Platformer tutorial: Step 8 - Collecting Coins

	Multiple Levels - Work with levels and a tiled map

	Object Layer - Supported, but documentation needed.

	Hit-boxes - Supported, but documentation needed.

	Animated Tiles - Supported, but documentation needed.

	Sound - Learn Arcade book sound chapter [https://learn.arcade.academy/en/latest/chapters/20_sounds/sounds.html]

	Music Control Demo

	Spatial sound Sound Demo

	Particles - Particle Systems

	GUI

	Concepts - GUI Concepts

	Examples - GUI Concepts

	OpenGL

	Read more about using OpenGL in Arcade with OpenGL.

	Lights - Lighting Demo

	Writing shaders using “ShaderToy”

	Shader Toy - Glow

	Shader Toy - Particles

	Learn how to ray-cast shadows in the Ray-casting Shadows.

	Make your screen look like an 80s monitor in CRT Filter.

	Study the Asteroids Example Code [https://github.com/pythonarcade/asteroids].

	Rendering onto a sprite to create a mini-map - Mini-Map

	Bloom/glow effect - Bloom-Effect Defender

	Learn to do a compute shader in Compute Shader.

	Logging

 Installation

Installation

Arcade runs on Windows, Mac OS X, and Linux.

Arcade requires Python 3.7 or newer. It does not run on Python 2.x.

Select the instructions for your platform:

	Installation on Windows

	Installation on Mac

	Installation on Linux

	Installation From Source

	Setting Up a Virtual Environment In PyCharm

	Installation for Obsolete Python Versions

 Installation on Windows

Installation on Windows

To develop with the Arcade library, we need to install Python, then install
Arcade.

Step 1: Install Python

Install Python from the official Python website:

https://www.python.org/downloads/

Run the downloader. From there, you can just click ‘install’. If you aren’t using an IDE like
PyCharm or Visual Studio, you might want to also mark the checkbox and add Python to the path.

[image: ../../_images/setup_windows_1.png]
Once installed, you can just close the dialog. There’s no need to increase the path length, although it
doesn’t hurt anything if you do.

Step 2: Install The Arcade Library

If you install Arcade as a pre-built library, there are two options on
how to do it. The best way is to use a “virtual environment.” This is
a collection of Python libraries that only apply to your particular project.
You don’t have to worry about libraries for other projects conflicting
with your project. You also don’t need “administrator” level privileges to
install libraries. Instructions for doing this with the PyCharm IDE are below:

Install Arcade with PyCharm and a Virtual Environment

If you are using PyCharm [https://www.jetbrains.com/pycharm/],
(the community edition works great and is free)
setting
up a virtual environment is easy. Once you’ve
created your project, open up the settings:

[image: ../../_images/venv_setup_1.png]
Select project interpreter:

[image: ../../_images/venv_setup_2.png]
Create a new virtual environment. Make sure the venv is inside your
project folder.

[image: ../../_images/venv_setup_3.png]
Now you can install libraries. You can search for “Arcade” and install it.

Another way to do it is create a file called requirements.txt and just type arcade
in that file. PyCharm will automatically ask any libraries in that file. It is a common
way to list dependencies for Python projects.

[image: ../../_images/venv_setup_4.png]

Install Arcade using the command line interface

If you prefer to use the command line interface (CLI),
then you can install arcade directly using pip:

pip3 install arcade

If you happen to be using pipenv, then the appropriate command is:

python3 -m pipenv install arcade

 Installation on Mac

Installation on Mac

Go to the Python website [https://www.python.org/downloads/] and download Python.

[image: ../../_images/mac1.png]
Then install it:

[image: ../../_images/mac4.png]
Download and install PyCharm [https://www.jetbrains.com/pycharm/].
The community edition is free, and WAY better than IDLE.

Download the zip file (or use git) for the Arcade template file.

https://github.com/pythonarcade/template

[image: ../../_images/mac5.png]
After you’ve downloaded it, open up the zip file, and pull out the template folder
to your desktop or wherever you’d like to save it. Then rename it to your
project name.

Start PyCharm, and select File…Open and select the folder you just created.

When creating opening the new project, create a virtual environment like so:

[image: ../../_images/mac2.png]
If that doesn’t work, (sometimes PyCharm seems to ignore that, or maybe that
step got skipped)
go into PyCharm…settings, then “Project interpreter” on the right side,
click the easy-to-miss gear icon and “Add”

[image: ../../_images/mac6.png]
…Then set it like so:

[image: ../../_images/mac3.png]
You should get a warning at the top of the screen that ‘arcade’ is not installed.
Go ahead and install it. Then try running the starting template.

Sound Support

Support for .ogg Ogg Vorbis files and mp3 files
can be added via HomeBrew [https://brew.sh/] with:

brew install ffmpeg

 Installation on Linux

Installation on Linux

The Arcade library is Python 3.7+ only. First check your version of Python to ensure
you have 3.7 or higher:

python -V

If your version shows Python 2.X then try running with:

python3 -V

If that works and shows you Python 3.7+, then anytime you see the python command, replace it with python3.

If you do not have Python 3.7+, please lookup how to install it for your specific distro of Linux.
For Ubuntu/Debian this would be with the below command, if you did have Python 3.7, you can skip this step:

sudo apt install python3 python3-pip libjpeg-dev zlib1g-dev

Next you’ll need to setup a Virtual Environment. Arcade should always be installed with a virtual environment.
Installing outside of a virtual environment can lead to unintended consequences and bugs with your system.
You can read more about Virtual Environments at this page: https://docs.python.org/3/tutorial/venv.html

python -m venv my_venv

This creates a new folder called my_venv which contains your Python virtual environment.
You can now activate it with:

source my_venv/bin/activate

And deactivate it with:

deactivate

Once your venv is activated, you can install Arcade with:

pip install arcade

Raspberry Pi Instructions

Arcade required OpenGL graphics 3.3 or higher. Unfortunately the Raspberry Pi
does not support this, Arcade can not run on the Raspberry Pi.

 Installation From Source

Installation From Source

First step is to clone the repository:

git clone https://github.com/pythonarcade/arcade.git

Or download from:

https://github.com/pythonarcade/arcade/archive/development.zip

Next, we’ll create a linked install. This will allow you to change files in the
arcade directory, and is great
if you want to modify the Arcade library code. From the root directory of
arcade type:

pip install -e .

To install additional documentation and development requirements:

pip install -e .[dev]

 Setting Up a Virtual Environment In PyCharm

Setting Up a Virtual Environment In PyCharm

A Python virtual environment (venv) allows libraries to be installed for just a single
project, rather than shared across everyone using the computer. It also does
not require administrator privilages to install.

Assuming you already have a project, follow these steps to create a venv:

Step 1: Select File…Settings

[image: ../../_images/file_settings.png]
Step 2: Click “Project Interpreter”. Then find the gear icon in the upper right.
click on it and select “Add”

[image: ../../_images/click_gear.png]
Step 3: Select Virtualenv Environment from the left. Then create a new
environment. Usually it should be in a folder called venv in your main
project. PyCharm does not always select the correct location by default, so
carefully look at the path to make sure it is correct, then select “Ok”.

[image: ../../_images/name_venv.png]
Now a virtual environment has been set up. The standard in Python projects
is to create a file called requirements.txt and list the packages you
want in there.

PyCharm will automatically ask if you want to install those packages as
soon as you type them in. Go ahead and let it.

[image: ../../_images/requirements.png]

 Installation for Obsolete Python Versions

Installation for Obsolete Python Versions

Arcade aims to support the same Python versions
currently supported by the PSF [https://devguide.python.org/versions/#supported-versions].

You are strongly encouraged to upgrade to one of the versions listed at the
link above, with the exception of 3.11 or later. Some of arcade’s dependencies
have not yet been ported for those versions.

If you absolutely cannot upgrade to Python 3.7 or later, you can try using an
older and unsupported version of Arcade.

Please remember the following:

	Bugs will not be fixed, unless they are also present in current versions

	The features and API may be very different from current versions

	You will need use documentation for the version of Arcade you run

The pairings suggested below might not work. They are based on briefly skimming
git history. You may have to use trial and error to look for a version that
works, and it’s possible that you won’t find one! Here be dragons!

	Obsolete Python Version

	Suggested Arcade Version

	Git Commit Hash

	3.6

	2.6.7

	6e0a9af

	3.5

	1.2.2

	078f5be

You can attempt to install these versions via the command line through pip,
or by installing from source from github. Check the tags on Arcade’s
github page [https://github.com/pythonarcade/arcade] for additional commit
IDs.

 How to Get Help

How to Get Help

The best places to get help are the help channels on the
the Discord server [https://discord.gg/ZjGDqMp]. They are located
in the 3rd category from the top in the channel list:

[image: A screenshot of the Discord server's channel categories with an arrow pointing to the help channels.]

To get help, start by choosing an inactive help channel. Inactive means
that the last message was sent a day or more ago. If all the help
channels have been active in that time, choose the one in with the
earliest last message.

Once you have chosen a channel, do your best to provide the following
information:

	A very short explanation of what you’re trying to do

	The problem you’re having, with any
error output formatted properly

	Your code, with
proper formatting

	Which version of arcade you’re
using and how you installed it

Here’s an example as a series of Discord messages (click or tap to
enlarge):

[image: An example of a good series of messages requesting help, including all the point above.]

The rest of this page will explain how to format your messages like the
example above.

Sharing & Formatting Your Code

Other people need to be able to see your code to help you. There are two
preferred ways of showing it to them:

	Pasting into Discord for
small amounts of code

	Using a code hosting service
for 1 or more files

Formatting for Discord & Github Issues

It is important to format code and terminal output when posting it.
Formatting helps other people understand what you’ve pasted.

Both Discord & GitHub issues use the same 3 steps below.

Step 1 : Find your Backtick Key

The ` characters below are not single quotes or apostrophes. They’re
called backticks.

On standard US keyboards, the backtick key is the same one used to type
a tilda (~). You can find it to the left of the 1 key.

For other keyboard layouts, please
see this StackExchange answer [https://superuser.com/a/254077].

Step 2: Format & Paste

Formatting Python code is nearly identical to formatting terminal output.

Formatting Code

Once you have found your backtick key, you can format your code like
this:

```python
# paste your code between the top and bottom lines!
print("Do stuff!")
```


If you cannot type a backtick on your keyboard, you can copy the example
above to your clipboard. For convenience, clicking the icon at the top
right of the example box will copy it for you. You can paste it into
Discord’s message box as shown below:

[image: The example code block from above pasted into Discord's message entry field.]

Formatting Terminal Output

Terminal output, such as error traceback, can be formatted in almost the
exact same way. The difference is that you don’t type python after
the three backticks on the first line:

```
Traceback (most recent call last):
  File "/home/user/src/arcade/helpexample.py", line 34, in <module>
    main()
  File "/home/user/src/arcade/helpexample.py", line 29, in main
    window.setup()
  File "/home/user/src/arcade/helpexample.py", line 17, in setup
    self.player_sprite = arcade.Sprite(img, 1.0)
  File "/home/user/src/arcade/arcade/sprite.py", line 243, in __init__
    self._texture = load_texture(
  File "/home/user/src/arcade/arcade/texture.py", line 543, in load_texture
    file_name = resolve(file_name)
  File "/home/user/src/arcade/arcade/resources/__init__.py", line 40, in resolve
    raise FileNotFoundError(f"Cannot locate resource : {path}")
FileNotFoundError: Cannot locate resource : my_player_image.png
```


Step 3: Post it!

On Discord, you can now press enter to send your message like any
other formatted text.

For reporting bugs on GitHub, the same general formatting principles
apply, but with a few differences.

You will also have to click Submit new issue instead of pressing enter.
Please see the following links for more information on reporting bugs,
GitHub issues, and their supported markdown syntax:

	How to Report Bugs Effectively [https://www.chiark.greenend.org.uk/~sgtatham/bugs.html]

	GitHub issue creation documentation [https://docs.github.com/en/issues/tracking-your-work-with-issues/creating-an-issue]

	GitHub general markdown guide [https://docs.github.com/en/get-started/writing-on-github/getting-started-with-writing-and-formatting-on-github/basic-writing-and-formatting-syntax]

	GitHub’s code formatting documentation [https://docs.github.com/en/get-started/writing-on-github/working-with-advanced-formatting/creating-and-highlighting-code-blocks#syntax-highlighting]

Code Hosting

Code hosting services provide a formatted web view of your code which
you can share with a link.

To share code snippets or single files without a signup, you can use
the code pasting service [https://paste.pythondiscord.com/]
provided by the Python Discord [https://www.pythondiscord.com/].
If you’re ok with signing up for something, there are also
GitHub Gists [https://docs.github.com/en/get-started/writing-on-github/editing-and-sharing-content-with-gists/creating-gists].
Afterwards, you can paste a link in Discord or another chat application.

A more advanced way to share code is to use a git hosting service. It
takes effort to learn how to use git, but it has many benefits. Some of them
include:

	Easy backup & undo

	Easier collaboration with others

	Allow people to view your entire project’s source to help you better

Popular Git hosting options include:

	GitHub [https://github.com]

	GitLab [https://gitlab.com]

Arcade Version & Basic Environment Info

This section assumes you have
installed arcade and activated your
virtual environment.

To get basic information about your current arcade version and
environment, run this from within your development environment:

arcade

The command is cross-platform, which means it should work the same way
regardless of whether you’re on Mac, Linux, or Windows.

The output should should look something like this:

Arcade 2.7.0

vendor: Intel
renderer: Mesa Intel(R) UHD Graphics 620 (KBL GT2)
version: (4, 6)
python: 3.9.2 (default, Feb 28 2021, 17:03:44)
[GCC 10.2.1 20210110]
platform: linux

It’s ok if the output looks different from the example above. The second
half of each line may change to reflect your arcade version, hardware,
and operating system.

You can copy and paste the output into Discord or GitHub using the
markdown formatting for terminal output
described earlier.

Output like the example below means that something is wrong:

bash: arcade: command not found

You should still include the output
as part of a request for help.

If you want to try fixing the problem yourself before getting help,
the likeliest explanations for the error message above are:

	Forgetting to activate your virtual environment

	Not installing arcade successfully

 How-To Example Code

How-To Example Code

Starting Templates

[image: ../../_images/starting_template.png]

Starting Template Using Window Class

[image: ../../_images/template_platformer.png]

Platformer Template

Drawing

Drawing Primitives

[image: ../../_images/happy_face1.png]

Happy Face

[image: ../../_images/drawing_primitives1.png]

Drawing Primitives

[image: ../../_images/drawing_text1.png]

Slow but Easy Text Drawing

[image: ../../_images/drawing_text_objects1.png]

Fast Text Drawing

Animating Drawing Primitives

[image: ../../_images/bouncing_rectangle1.png]

Bouncing Rectangle

[image: ../../_images/shapes.png]

Bouncing Shapes

[image: ../../_images/radar_sweep.png]

Radar Sweep

[image: ../../_images/snow1.png]

Falling Snow

Faster Drawing with ShapeElementLists

[image: ../../_images/shape_list_demo.png]

ShapeElementList Explanation

[image: ../../_images/lines_buffered.png]

Using a Vertex Buffer Object With Lines

[image: ../../_images/shape_list_demo_skylines.png]

Shape List - Skylines

[image: ../../_images/gradients1.png]

Gradients Example

Sprites

Player Movement

[image: ../../_images/sprite_collect_coins.png]

Move By Mouse

[image: ../../_images/sprite_collect_coins.png]

Move By Keyboard

[image: ../../_images/sprite_collect_coins.png]

Better Move By Keyboard

[image: ../../_images/sprite_collect_coins.png]

Acceleration and Friction

[image: ../../_images/sprite_move_angle.png]

Move By Turning

[image: ../../_images/sprite_face_left_or_right.png]

Sprite: Face Left or Right

[image: ../../_images/sprite_collect_coins.png]

Game Controller

[image: ../../_images/dual_stick_shooter1.png]

Dual Stick Shooter

[image: ../../_images/turn_and_move.png]

Move to Mouse Click

[image: ../../_images/sprite_rotate_around_tank.png]

Move By Keyboard, Fire Towards Mouse

Non-Player Movement

[image: ../../_images/sprite_collect_coins_move_down.png]

Collect Coins Moving Down

[image: ../../_images/sprite_collect_coins_move_bouncing.png]

Collect Coins that are Bouncing

[image: ../../_images/sprite_bouncing_coins.png]

Sprite Bouncing Coins

[image: ../../_images/sprite_collect_coins_move_circle.png]

Collect Coins that are Moving in a Circle

[image: ../../_images/sprite_collect_rotating.png]

Animated Sprites

[image: ../../_images/sprite_rotate_around_point.png]

Sprite Rotation Around a Point

Easing

[image: ../../_images/easing_example_11.png]

Easing Example 1

[image: ../../_images/easing_example_21.png]

Easing Example 2

Calculating a Path

[image: ../../_images/follow_path1.png]

Sprites That Follow a Path

[image: ../../_images/sprite_follow_simple.png]

Sprites That Follow The Player

[image: ../../_images/sprite_follow_simple_2.png]

Sprites That Follow The Player 2

[image: ../../_images/line_of_sight.png]

Line of Sight

[image: ../../_images/astar_pathfinding1.png]

A-Star Path Finding

Sprite Properties

[image: ../../_images/sprite_health.png]

Hit Points and Health Bars

[image: ../../_images/sprite_properties.png]

Sprite Properties

[image: ../../_images/sprite_change_coins.png]

Change coins

Games with Levels

[image: ../../_images/sprite_collect_coins_diff_levels.gif]

Different Levels of Clearing Coins

[image: ../../_images/sprite_rooms.png]

Moving Between Different Rooms

Shooting with Sprites

[image: ../../_images/sprite_bullets.png]

Shoot Bullets Upwards

[image: ../../_images/sprite_bullets_aimed.png]

Aim and Shoot Bullets

[image: ../../_images/sprite_bullets_periodic.png]

Have Enemies Periodically Shoot

[image: ../../_images/sprite_bullets_random.png]

Have Enemies Randomly Shoot

[image: ../../_images/sprite_bullets_enemy_aims.png]

Have Enemies Aim at Player

[image: ../../_images/sprite_explosion_bitmapped.png]

Sprite Explosions Bitmapped

[image: ../../_images/sprite_explosion_particles.png]

Sprite Explosions Particles

Audio

Sound Effects

[image: ../../_images/sound_demo.png]

Sound Demo

[image: ../../_images/sound_speed_demo.png]

Sound Speed Demo

Music

[image: ../../_images/music_control_demo.png]

Music Control Demo

Display Management

Resizable Windows

[image: ../../_images/resizable_window.png]

Resizable Window

[image: ../../_images/full_screen_example1.png]

Full Screen Example

Backgrounds

[image: ../../_images/sprite_collect_coins_background.png]

Using a Background Image

[image: ../../_images/background_parallax1.png]

Parallax

Cameras

[image: ../../_images/sprite_move_scrolling.png]

Move with a Scrolling Screen - Centered

[image: ../../_images/sprite_move_scrolling_box.png]

Move with a Scrolling Screen - Margins

[image: ../../_images/sprite_move_scrolling.png]

Camera Shake

[image: ../../_images/camera_platform1.png]

Camera Use in a Platformer

View Management

Instruction and Game Over Screens

[image: ../../_images/view_screens_minimal.png]

Minimal Views Example

[image: ../../_images/view_instructions_and_game_over.png]

Using Views for Instruction and Game Over Screens

[image: ../../_images/view_pause_screen.png]

Using Views for a Pause Screen

[image: ../../_images/view_screens_minimal.png]

Fade In/Out of Views

Sectioning a View

[image: ../../_images/sections_demo_1.png]

Sections Demo 1

[image: ../../_images/sections_demo_2.png]

Sections Demo 2

[image: ../../_images/sections_demo_3.png]

Sections Demo 3

Platformers

Basic Platformers

[image: ../../_images/sprite_move_walls.png]

Move with Walls

[image: ../../_images/sprite_no_coins_on_walls.png]

Randomly Place Coins, But Away From Walls And Other Coins

[image: ../../_images/sprite_move_animation.gif]

Move with a Sprite Animation

[image: ../../_images/sprite_moving_platforms.png]

Moving Platforms

[image: ../../_images/sprite_enemies_in_platformer.png]

Platformer With Enemies

[image: ../../_images/11_animate_character.png]

Simple Platformer

Tiled Map Editor

[image: ../../_images/sprite_tiled_map.png]

Work with loading in a Tiled map file

[image: ../../_images/sprite_tiled_map_with_levels.png]

Work with levels and a tiled map

Procedural Generation

[image: ../../_images/maze_recursive.png]

Creating a Recursive Maze

[image: ../../_images/maze_depth_first.png]

Creating a Depth First Maze

[image: ../../_images/procedural_caves_cellular.png]

Procedural Caves - Cellular Automata

[image: ../../_images/procedural_caves_bsp.png]

Procedural Caves - Binary Space Partitioning

Graphical User Interface

[image: ../../_images/gui_flat_button1.png]

Flat Text Buttons

[image: ../../_images/gui_flat_button_styled.png]

Flat Text Button Styled

[image: ../../_images/gui_widgets1.png]

GUI Widgets

[image: ../../_images/gui_ok_messagebox1.png]

OK Message Box

[image: ../../_images/gui_scrollable_text1.png]

GUI Scrollable Text

[image: ../../_images/gui_slider1.png]

GUI Slider

Grid-Based Games

[image: ../../_images/array_backed_grid1.png]

Array-Backed Grid

[image: ../../_images/array_backed_grid1.png]

Array-Backed Grid Buffered

[image: ../../_images/array_backed_grid1.png]

Grid Using Sprites v1

[image: ../../_images/array_backed_grid1.png]

Grid Using Sprites v2

[image: ../../_images/tetris.png]

Tetris

[image: ../../_images/conway_alpha.png]

Conway’s Game of Life

Advanced

Using PyMunk for Physics

[image: ../../_images/pymunk_box_stacks.png]

Pymunk Physics Engine - Stacks of Boxes

[image: ../../_images/pymunk_pegboard.png]

Pymunk Physics Engine - Pegboard

[image: ../../_images/pymunk_demo_top_down.png]

Pymunk Demo - Top Down

[image: ../../_images/pymunk_joint_builder.png]

Pymunk Physics Engine - Joint Builder

[image: ../../_images/pymunk_platformer.png]

Pymunk Platformer

Frame Buffers

[image: ../../_images/minimap.png]

Mini-Map

[image: ../../_images/light_demo.png]

Lighting Demo

[image: ../../_images/transform_feedback.png]

Transform Feedback

[image: ../../_images/game_of_life_fbo1.png]

Game of Life with Frame Buffers

[image: ../../_images/perspective.png]

Perspective

OpenGL

[image: ../../_images/normal_mapping.png]

Normal Mapping

[image: ../../_images/spritelist_interaction_visualize_dist_los.png]

GPU Based Line of Sight

Concept Games

[image: ../../_images/asteroid_smasher.png]

Asteroid Smasher

[image: ../../_images/screenshot.png]
 [https://github.com/pythonarcade/asteroids]
Asteroids with Shaders [https://github.com/pythonarcade/asteroids]

[image: ../../_images/slime_invaders.png]

Slime Invaders

[image: ../../_images/community-rpg.png]
 [https://github.com/pythonarcade/community-rpg]
Community RPG [https://github.com/pythonarcade/community-rpg]

[image: ../../_images/2048.png]
 [https://github.com/pvcraven/2048]
2048 [https://github.com/pvcraven/2048]

[image: ../../_images/rogue_like.png]
 [https://github.com/pythonarcade/roguelike]
Rogue-Like [https://github.com/pythonarcade/roguelike]

Odds and Ends

[image: ../../_images/timer.png]

On-Screen Timer

[image: ../../_images/performance_statistics.png]

Performance Statistics

[image: ../../_images/text_loc_example_translated.png]

Text Localization

Particle System

[image: ../../_images/particle_fireworks.png]

Particle System - Fireworks

[image: ../../_images/particle_systems.png]

Particle Systems

Tutorials

[image: ../../_images/11_animate_character.png]

Simple Platformer

[image: ../../_images/solitaire_11.png]

Solitaire

[image: ../../_images/crt_filter.png]

CRT Filter

[image: ../../_images/raycasting_tutorial.png]

Ray-casting Shadows

[image: ../../_images/pymunk_platformer_tutorial.png]

Pymunk Platformer

[image: ../../_images/shader_toy_tutorial.png]

Shader Toy - Glow

Stress Tests

[image: ../../_images/stress_test_draw_moving.png]

Draw Moving Sprites Stress Test

[image: ../../_images/stress_test_collision.png]

Collision Stress Test

 Python Discord GameJam 2020

Python Discord GameJam 2020

[image: ../_images/game_jam_2020.png]
The Python Discord [https://pythondiscord.com/] 2020 Game Jam finished on
April 26, 2020. Participants completed a game in one week. Twenty-three teams
completed games, all of which are on the Game Jam 2020 GitHub [https://github.com/python-discord/game-jam-2020].

We played the top 10 games on the
Game Jam live-stream [https://youtu.be/KkLXMvKfEgs], which is available for
replay.

Here are the games that made it to the top 10:

[image: ../_images/Screenshot_full.png]
 [https://github.com/python-discord/game-jam-2020/tree/master/Finalists/Score_AAA]
1st Place: 3 Keys on the Run [https://github.com/python-discord/game-jam-2020/tree/master/Finalists/Score_AAA]

[image: ../_images/gamer_gang.png]
 [https://github.com/python-discord/game-jam-2020/tree/master/Finalists/gamer_gang]
2nd Place: Triple Blocks [https://github.com/python-discord/game-jam-2020/tree/master/Finalists/gamer_gang]

[image: ../_images/0740950244f0b2b1c7664499c78644700ea4d701.png]
 [https://github.com/python-discord/game-jam-2020/tree/master/Finalists/monkeys-and-frogs-on-fire]
3nd Place: Triple Vision [https://github.com/python-discord/game-jam-2020/tree/master/Finalists/monkeys-and-frogs-on-fire]

[image: ../_images/OpeningScreen.png]
 [https://github.com/python-discord/game-jam-2020/tree/master/Finalists/KTGames]
Honourable Mention: Hatchlings [https://github.com/python-discord/game-jam-2020/tree/master/Finalists/KTGames]

[image: ../_images/tutorial.gif]
 [https://github.com/python-discord/game-jam-2020/tree/master/Finalists/artemis]
Honourable Mention: Gem Matcher [https://github.com/python-discord/game-jam-2020/tree/master/Finalists/artemis]

[image: ../_images/hex_board.PNG]
 [https://github.com/python-discord/game-jam-2020/tree/master/Finalists/TriChess]
Tri-Chess [https://github.com/python-discord/game-jam-2020/tree/master/Finalists/TriChess]

[image: ../_images/screen1.png]
 [https://github.com/python-discord/game-jam-2020/tree/master/Finalists/beanoculars]
Insane Irradiated Insectz [https://github.com/python-discord/game-jam-2020/tree/master/Finalists/beanoculars]

[image: ../_images/friendly_snakes.png]
 [https://github.com/python-discord/game-jam-2020/tree/master/Finalists/the-friendly-snakes]
Flimsy Billy’s Coin Dash 3: Super Tag 3 Electric Tree [https://github.com/python-discord/game-jam-2020/tree/master/Finalists/the-friendly-snakes]

[image: ../_images/zeyoghezh.png]
 [https://github.com/python-discord/game-jam-2020/tree/master/Finalists/zeyoghezh]
ZeYoughEzh [https://github.com/python-discord/game-jam-2020/tree/master/Finalists/zeyoghezh]

[image: ../_images/atie.png]
 [https://github.com/python-discord/game-jam-2020/tree/master/Finalists/AtieP]
Coin Collector [https://github.com/python-discord/game-jam-2020/tree/master/Finalists/AtieP]

 Games Made With Arcade

Games Made With Arcade

Here are some sample games made with Arcade.
Have a game you’d like to share here? E-mail
paul@cravenfamily.com.

You also might want to check out sample Arcade games from:

	Python Discord GameJam 2020

	Concept Games

	Simple Platformer

Temporum

 Simple Platformer

Simple Platformer

[image: ../../_images/intro_screen.png]
This tutorial shows how to use Python and the Arcade library to create a 2D platformer game.
You’ll learn to work with Sprites and the Tiled Map Editor [https://www.mapeditor.org/] to create your own games.
You can add coins, ramps, moving platforms, enemies, and more.

At the end of each chapter of this tutorial you will find the full source code that chapter,
as well as a command to run that chapter directly. As long as you have Arcade installed the
commands will run the exact code for that chapter, so you can compare your game against the tutorial.

	Step 1 - Install and Open a Window

	Step 2 - Textures and Sprites

	Step 3 - Many Sprites with SpriteList

	Step 4 - Add User Control

	Step 5 - Add Gravity

	Step 6 - Resetting

	Step 7 - Adding a Camera

	Step 8 - Collecting Coins

	Step 9 - Adding Sound

	Step 10 - Adding a Score

	Step 11 - Using a Scene

	Step 12 - Loading a Map From a Map Editor

	Step 13 - More Types of Layers

	Step 14 - Multiple Levels

Currently there are a few more examples that expand beyond where the tutorial leaves off.
You can see the source code for those examples as well as every chapter in the tutorial on
the Arcade Github at https://github.com/pythonarcade/arcade/tree/development/arcade/examples/platform_tutorial

 Step 1 - Install and Open a Window

Step 1 - Install and Open a Window

Our first step is to make sure everything is installed, and that we can at least
get a window open.

Installation

	Make sure Python is installed. Download Python here [https://www.python.org/downloads/]
if you don’t already have it.

	Make sure the Arcade library [https://pypi.org/project/arcade/] is installed.

	You should first setup a virtual environment (venv) and activate it.

	Install Arcade with pip install arcade.

	Here are the longer, official Installation.

Open a Window

The example below opens up a blank window. Set up a project and get the code
below working.

Note

This is a fixed-size window. It is possible to have a
Resizable Window or a Full Screen Example, but there are more
interesting things we can do first. Therefore we’ll stick with a fixed-size
window for this tutorial.

01_open_window.py - Open a Window

 1"""
 2Platformer Game
 3
 4python -m arcade.examples.platform_tutorial.01_open_window
 5"""
 6import arcade
 7
 8# Constants
 9SCREEN_WIDTH = 800
10SCREEN_HEIGHT = 600
11SCREEN_TITLE = "Platformer"
12
13
14class MyGame(arcade.Window):
15 """
16 Main application class.
17 """
18
19 def __init__(self):
20
21 # Call the parent class to set up the window
22 super().__init__(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)
23
24 self.background_color = arcade.csscolor.CORNFLOWER_BLUE
25
26 def setup(self):
27 """Set up the game here. Call this function to restart the game."""
28 pass
29
30 def on_draw(self):
31 """Render the screen."""
32
33 # The clear method should always be called at the start of on_draw.
34 # It clears the whole screen to whatever the background color is
35 # set to. This ensures that you have a clean slate for drawing each
36 # frame of the game.
37 self.clear()
38
39 # Code to draw other things will go here
40
41
42def main():
43 """Main function"""
44 window = MyGame()
45 window.setup()
46 arcade.run()
47
48
49if __name__ == "__main__":
50 main()

You should end up with a window like this:

[image: ../../_images/step_01.png]
Once you get the code working, try figuring out how to adjust the code so you can:

	Change the screen size(or even make the Window resizable or fullscreen)

	Change the title

	Change the background color

	See the documentation for arcade.color package

	See the documentation for arcade.csscolor package

	Look through the documentation for the arcade.Window
class to get an idea of everything it can do.

Run This Chapter

python -m arcade.examples.platform_tutorial.01_open_window

 Step 2 - Textures and Sprites

Step 2 - Textures and Sprites

Our next step in this tutorial is to draw something on the Screen. In order to
do that we need to cover two topics, Textures and Sprites.

At the end of this chapter, we’ll have something that looks like this. It’s largely the
same as last chapter, but now we are drawing a character onto the screen:

[image: ../../_images/title_02.png]

Textures

Textures are largely just an object to contain image data. Whenever you load an image
file in Arcade, for example a .png or .jpeg file. It becomes a Texture.

To do this, internally Arcade uses Pyglet to load the image data, and the texture is
responsible for keeping track of this image data.

We can create a texture with a simple command, this can be done inside of our __init__
function. Go ahead and create a texture that we will use to draw a player.

self.player_texture = arcade.load_texture(":resources:images/animated_characters/female_adventurer/femaleAdventurer_idle.png")

Note

You might be wondering where this image file is coming from? And what is :resources: about?

The :resources: section of the string above is what Arcade calls a resource handle.
You can register your own resource handles to different asset directories. For example you
might want to have a :characters: and a :objects: handle.

However, you don’t have to use a resource handle here, anywhere that you can load files in Arcade will
accept resource handles, or just strings to filepaths, or Path objects from pathlib

Arcade includes the :resources: handle with a bunch of built-in assets from kenney [https://kenney.nl].

For more information checkout Built-In Resources

Sprites

If Textures are an instance of a particular image, then arcade.Sprite is an instance of that image
on the screen. Say we have a ground or wall texture. We only have one instance of the texture, but we can create
multiple instances of Sprite, because we want to have many walls. These will use the same texture, but draw it
in different positions, or even with different scaling, rotation, or colors/post-processing effects.

Creating a Sprite is simple, we can make one for our player in our __init__ function, and then set it’s position.

self.player_sprite = arcade.Sprite(self.player_texture)
self.player_sprite.center_x = 64
self.player_sprite.center_y = 128

Note

You can also skip arcade.load_texture from the previous step and pass the image file to arcade.Sprite in place of the Texture object.
A Texture will automatically be created for you. However, it may desirable in larger projects to manage your textures directly.

Now we can draw the sprite by adding this to our on_draw function:

self.player_sprite.draw()

We’re now drawing a Sprite to the screen! In the next chapter, we will introduce techniques to draw many(even hundreds of thousands) sprites at once.

Source Code

02_draw_sprites - Draw and Position Sprites

 1"""
 2Platformer Game
 3
 4python -m arcade.examples.platform_tutorial.02_draw_sprites
 5"""
 6import arcade
 7
 8# Constants
 9SCREEN_WIDTH = 800
10SCREEN_HEIGHT = 600
11SCREEN_TITLE = "Platformer"
12
13
14class MyGame(arcade.Window):
15 """
16 Main application class.
17 """
18
19 def __init__(self):
20
21 # Call the parent class and set up the window
22 super().__init__(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)
23
24 # Variable to hold our texture for our player
25 self.player_texture = arcade.load_texture(":resources:images/animated_characters/female_adventurer/femaleAdventurer_idle.png")
26
27 # Separate variable that holds the player sprite
28 self.player_sprite = arcade.Sprite(self.player_texture)
29 self.player_sprite.center_x = 64
30 self.player_sprite.center_y = 128
31
32 self.background_color = arcade.csscolor.CORNFLOWER_BLUE
33
34 def setup(self):
35 """Set up the game here. Call this function to restart the game."""
36 pass
37
38 def on_draw(self):
39 """Render the screen."""
40
41 # Clear the screen to the background color
42 self.clear()
43
44 # Draw our sprites
45 self.player_sprite.draw()
46
47
48def main():
49 """Main function"""
50 window = MyGame()
51 window.setup()
52 arcade.run()
53
54
55if __name__ == "__main__":
56 main()

Running this code should result in a character being drawn on the screen, like in
the image at the start of the chapter.

	Documentation for the arcade.Texture class

	Documentation for the arcade.Sprite class

Note

Once you have the code up and working, try adjusting the code for the following:

	Adjust the code and try putting the sprite in new positions(Try setting the positions using other attributes of Sprite)

	Use different images for the texture (see Built-In Resources for the built-in images, or try using your own images.)

	Practice placing more sprites in different ways(like placing many with a loop)

Run This Chapter

python -m arcade.examples.platform_tutorial.02_draw_sprites

 Step 3 - Many Sprites with SpriteList

Step 3 - Many Sprites with SpriteList

So far our game is coming along nicely, we have a character on the screen! Wouldn’t it be nice
if our character had a world to live in? In order to do that we’ll need to draw a lot more sprites.
In this chapter we will explore SpriteList, a class Arcade provides to draw tons of Sprites at once.

At the end, we’ll have something like this:

[image: ../../_images/title_03.png]

SpriteList

arcade.SpriteList exists to draw a collection of Sprites all at once. Let’s say for example that you have
100,000 box Sprites that you want to draw. Without SpriteList you would have to put all of your sprites into a list,
and then run a for loop over that which calls draw() on every sprite.

This approach is extremely un-performant. Instead, you can add all of your boxes to a arcade.SpriteList
and then draw the SpriteList. Doing this, you are able to draw all 100,000 sprites for approximately the exact
same cost as drawing one sprite.

Note

This is due to Arcade being a heavily GPU based library. GPUs are really good at doing things in batches.
This means we can send all the information about our sprites to the GPU, and then tell it to draw them all
at once. However if we just draw one sprite at a time, then we have to go on a round trip from our CPU to
our GPU every time.

Even if you are only drawing one Sprite, you should still create a SpriteList for it. Outside of small debugging
it is never better to draw an individual Sprite than it is to add it to a SpriteList. In fact, calling draw()
on a Sprite just creates a SpriteList internally to draw that Sprite with.

Let’s go ahead and create one for our player inside our __init__ function, and add the player to it.

self.player_list = arcade.SpriteList()
self.player_list.append(self.player_sprite)

Then in our on_draw function, we can draw the SpriteList for the character instead of drawing the Sprite directly:

self.player_list.draw()

Now let’s try and build a world for our character. To do this, we’ll create a new SpriteList for the objects we’ll draw,
we can do this in our __init__ function.

self.wall_list = arcade.SpriteList(use_spatial_hash=True)

There’s a little bit to unpack in this snippet of code. Let’s address each issue:

	Why not just use the same SpriteList we used for our player, and why is it named walls?

Eventually we will want to do collision detection between our character and these objects.
In addition to drawing, SpriteLists also serve as a utility for collision detection. You can
for example check for collisions between two SpriteLists, or pass SpriteLists into several physics
engines. We will explore these topics in later chapters.

	What is use_spatial_hash?

This is also for collision detection. Spatial Hashing is a special algorithm which will make it
much more performant, at the cost of being more expensive to move sprites. You will often see this
option enabled on SpriteLists which are not expected to move much, such as walls or a floor.

With our newly created SpriteList, let’s go ahead and add some objects to it. We can add these lines to our
__init__ function.

for x in range(0, 1250, 64):
 wall = arcade.Sprite(":resources:images/tiles/grassMid.png", TILE_SCALING)
 wall.center_x = x
 wall.center_y = 32
 self.wall_list.append(wall)

coordinate_list = [[512, 96], [256, 96], [768, 96]]
for coordinate in coordinate_list:
 wall = arcade.Sprite(
 ":resources:images/tiles/boxCrate_double.png", scale=0.5
)
 wall.position = coordinate
 self.wall_list.append(wall)

In these lines, we’re adding some grass and some crates to our SpriteList.

For the ground we’re using Python’s range function to iterate on a list of X positions, which will give us
a horizontal line of Sprites. For the boxes, we’re inserting them at specified coordinates from a list.

We’re also doing a few new things in the arcade.Sprite creation. First off we are passing the image file
directly instead of creating a texture first. This is ultimately doing the same thing, we’re just not managing the
texture ourselves, and letting Arcade handle it. We are also adding a scale to these sprites. For fun you can remove
the scale, and see how the images will be much larger.

Finally all we need to do in order to draw our new world, is draw the SpriteList for walls in on_draw:

self.wall_list.draw()

Source Code

03_more_sprites - Many Sprites with a SpriteList

 1"""
 2Platformer Game
 3
 4python -m arcade.examples.platform_tutorial.03_more_sprites
 5"""
 6import arcade
 7
 8# Constants
 9SCREEN_WIDTH = 800
10SCREEN_HEIGHT = 600
11SCREEN_TITLE = "Platformer"
12
13# Constants used to scale our sprites from their original size
14TILE_SCALING = 0.5
15
16
17class MyGame(arcade.Window):
18 """
19 Main application class.
20 """
21
22 def __init__(self):
23
24 # Call the parent class and set up the window
25 super().__init__(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)
26
27 # Variable to hold our texture for our player
28 self.player_texture = arcade.load_texture(":resources:images/animated_characters/female_adventurer/femaleAdventurer_idle.png")
29
30 # Separate variable that holds the player sprite
31 self.player_sprite = arcade.Sprite(self.player_texture)
32 self.player_sprite.center_x = 64
33 self.player_sprite.center_y = 128
34
35 # SpriteList for our player
36 self.player_list = arcade.SpriteList()
37 self.player_list.append(self.player_sprite)
38
39 # SpriteList for our boxes and ground
40 # Putting our ground and box Sprites in the same SpriteList
41 # will make it easier to perform collision detection against
42 # them later on. Setting the spatial hash to True will make
43 # collision detection much faster if the objects in this
44 # SpriteList do not move.
45 self.wall_list = arcade.SpriteList(use_spatial_hash=True)
46
47 # Create the ground
48 # This shows using a loop to place multiple sprites horizontally
49 for x in range(0, 1250, 64):
50 wall = arcade.Sprite(":resources:images/tiles/grassMid.png", scale=0.5)
51 wall.center_x = x
52 wall.center_y = 32
53 self.wall_list.append(wall)
54
55 # Put some crates on the ground
56 # This shows using a coordinate list to place sprites
57 coordinate_list = [[512, 96], [256, 96], [768, 96]]
58
59 for coordinate in coordinate_list:
60 # Add a crate on the ground
61 wall = arcade.Sprite(
62 ":resources:images/tiles/boxCrate_double.png", scale=0.5
63)
64 wall.position = coordinate
65 self.wall_list.append(wall)
66
67 self.background_color = arcade.csscolor.CORNFLOWER_BLUE
68
69 def setup(self):
70 """Set up the game here. Call this function to restart the game."""
71 pass
72
73 def on_draw(self):
74 """Render the screen."""
75
76 # Clear the screen to the background color
77 self.clear()
78
79 # Draw our sprites
80 self.player_list.draw()
81 self.wall_list.draw()
82
83
84def main():
85 """Main function"""
86 window = MyGame()
87 window.setup()
88 arcade.run()
89
90
91if __name__ == "__main__":
92 main()

	Documentation for the arcade.SpriteList class

Note

Once you have the code up and working, try-out the following:

	See if you can change the colors of all the boxes and ground using the SpriteList

	Try and make a SpriteList invisible

Run This Chapter

python -m arcade.examples.platform_tutorial.03_more_sprites

 Step 4 - Add User Control

Step 4 - Add User Control

Now we’ve got a character and a world for them to exist in, but what fun is a game if
you can’t control the character and move around? In this Chapter we’ll explore adding
keyboard input in Arcade.

First, at the top of our program, we’ll want to add a new constant that controls how
many pixels per update our character travels:

PLAYER_MOVEMENT_SPEED = 5

In order to handle the keyboard input, we need to add to add two new functions to our
Window class, on_key_press and on_key_release. These functions will automatically
be called by Arcade whenever a key on the keyboard is pressed or released. Inside these
functions, based on the key that was pressed or released, we will move our character.

def on_key_press(self, key, modifiers):
 """Called whenever a key is pressed."""

 if key == arcade.key.UP or key == arcade.key.W:
 self.player_sprite.change_y = PLAYER_MOVEMENT_SPEED
 elif key == arcade.key.DOWN or key == arcade.key.S:
 self.player_sprite.change_y = -PLAYER_MOVEMENT_SPEED
 elif key == arcade.key.LEFT or key == arcade.key.A:
 self.player_sprite.change_x = -PLAYER_MOVEMENT_SPEED
 elif key == arcade.key.RIGHT or key == arcade.key.D:
 self.player_sprite.change_x = PLAYER_MOVEMENT_SPEED

def on_key_release(self, key, modifiers):
 """Called whenever a key is released."""

 if key == arcade.key.UP or key == arcade.key.W:
 self.player_sprite.change_y = 0
 elif key == arcade.key.DOWN or key == arcade.key.S:
 self.player_sprite.change_y = 0
 elif key == arcade.key.LEFT or key == arcade.key.A:
 self.player_sprite.change_x = 0
 elif key == arcade.key.RIGHT or key == arcade.key.D:
 self.player_sprite.change_x = 0

In these boxes, we are modifying the change_x and change_y attributes on our
player Sprite. Changing these values will not actually perform the move on the Sprite.
In order to apply this change, we need to create a physics engine with our Sprite,
and update the physics engine every frame. The physics engine will then be responsible
for actually moving the sprite.

The reason we give the physics engine this responsibility instead of doing it ourselves,
is so that we can let the physics engine do collision detections, and allow/disallow a
movement based on the result. In later chapters, we’ll use more advanced physics engines
which can do things like allow jumping with gravity, or climbing on ladders for example.

Note

This method of tracking the speed to the key the player presses is simple, but
isn’t perfect. If the player hits both left and right keys at the same time,
then lets off the left one, we expect the player to move right. This method won’t
support that. If you want a slightly more complex method that does, see
Better Move By Keyboard.

Let’s create a simple physics engine in our __init__ function. We will do this by passing
it our player sprite, and the SpriteList containing our walls.

self.physics_engine = arcade.PhysicsEngineSimple(
 self.player_sprite, self.wall_list
)

Now we have a physics engine, but we still need to update it every frame. In order to do this
we will add a new function to our Window class, called on_update. This function is similar to
on_draw, it will be called by Arcade at a default of 60 times per second. It will also give
us a delta_time parameter that tells the amount of time between the last call and the current one.
This value will be used in some calculations in future chapters. Within this function, we will update
our physics engine. Which will process collision detections and move our player based on it’s change_x
and change_y values.

def on_update(self, delta_time):
 """Movement and Game Logic"""

 self.physics_engine.update()

At this point you should be able to run the game, and move the character around with the keyboard.
If the physics engine is working properly, the character should not be able to move through the ground
or the boxes.

For more information about the physics engine we are using in this tutorial,
see arcade.PhysicsEngineSimple.

Note

It is possible to have multiple physics engines, one per moving sprite. These
are very simple, but easy physics engines. See
Pymunk Platformer for a more advanced physics engine.

Note

If you want to see how the collisions are checked, try using the draw_hit_boxes() function
on the player and wall SpriteLists inside the on_draw function. This will show you what the
hitboxes that the physics engine uses look like.

Source Code

04_user_control.py - User Control

 1"""
 2Platformer Game
 3
 4python -m arcade.examples.platform_tutorial.04_user_control
 5"""
 6import arcade
 7
 8# Constants
 9SCREEN_WIDTH = 800
 10SCREEN_HEIGHT = 600
 11SCREEN_TITLE = "Platformer"
 12
 13# Constants used to scale our sprites from their original size
 14TILE_SCALING = 0.5
 15
 16# Movement speed of player, in pixels per frame
 17PLAYER_MOVEMENT_SPEED = 5
 18
 19
 20class MyGame(arcade.Window):
 21 """
 22 Main application class.
 23 """
 24
 25 def __init__(self):
 26
 27 # Call the parent class and set up the window
 28 super().__init__(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)
 29
 30 # Variable to hold our texture for our player
 31 self.player_texture = arcade.load_texture(":resources:images/animated_characters/female_adventurer/femaleAdventurer_idle.png")
 32
 33 # Separate variable that holds the player sprite
 34 self.player_sprite = arcade.Sprite(self.player_texture)
 35 self.player_sprite.center_x = 64
 36 self.player_sprite.center_y = 128
 37
 38 # SpriteList for our player
 39 self.player_list = arcade.SpriteList()
 40 self.player_list.append(self.player_sprite)
 41
 42 # SpriteList for our boxes and ground
 43 # Putting our ground and box Sprites in the same SpriteList
 44 # will make it easier to perform collision detection against
 45 # them later on. Setting the spatial hash to True will make
 46 # collision detection much faster if the objects in this
 47 # SpriteList do not move.
 48 self.wall_list = arcade.SpriteList(use_spatial_hash=True)
 49
 50 # Create the ground
 51 # This shows using a loop to place multiple sprites horizontally
 52 for x in range(0, 1250, 64):
 53 wall = arcade.Sprite(":resources:images/tiles/grassMid.png", scale=TILE_SCALING)
 54 wall.center_x = x
 55 wall.center_y = 32
 56 self.wall_list.append(wall)
 57
 58 # Put some crates on the ground
 59 # This shows using a coordinate list to place sprites
 60 coordinate_list = [[512, 96], [256, 96], [768, 96]]
 61
 62 for coordinate in coordinate_list:
 63 # Add a crate on the ground
 64 wall = arcade.Sprite(
 65 ":resources:images/tiles/boxCrate_double.png", scale=TILE_SCALING
 66)
 67 wall.position = coordinate
 68 self.wall_list.append(wall)
 69
 70 # Create a Simple Physics Engine, this will handle moving our
 71 # player as well as collisions between the player sprite and
 72 # whatever SpriteList we specify for the walls.
 73 self.physics_engine = arcade.PhysicsEngineSimple(
 74 self.player_sprite, self.wall_list
 75)
 76
 77 self.background_color = arcade.csscolor.CORNFLOWER_BLUE
 78
 79 def setup(self):
 80 """Set up the game here. Call this function to restart the game."""
 81 pass
 82
 83 def on_draw(self):
 84 """Render the screen."""
 85
 86 # Clear the screen to the background color
 87 self.clear()
 88
 89 # Draw our sprites
 90 self.player_list.draw()
 91 self.wall_list.draw()
 92
 93 def on_update(self, delta_time):
 94 """Movement and Game Logic"""
 95
 96 # Move the player using our physics engine
 97 self.physics_engine.update()
 98
 99 def on_key_press(self, key, modifiers):
100 """Called whenever a key is pressed."""
101
102 if key == arcade.key.UP or key == arcade.key.W:
103 self.player_sprite.change_y = PLAYER_MOVEMENT_SPEED
104 elif key == arcade.key.DOWN or key == arcade.key.S:
105 self.player_sprite.change_y = -PLAYER_MOVEMENT_SPEED
106 elif key == arcade.key.LEFT or key == arcade.key.A:
107 self.player_sprite.change_x = -PLAYER_MOVEMENT_SPEED
108 elif key == arcade.key.RIGHT or key == arcade.key.D:
109 self.player_sprite.change_x = PLAYER_MOVEMENT_SPEED
110
111 def on_key_release(self, key, modifiers):
112 """Called whenever a key is released."""
113
114 if key == arcade.key.UP or key == arcade.key.W:
115 self.player_sprite.change_y = 0
116 elif key == arcade.key.DOWN or key == arcade.key.S:
117 self.player_sprite.change_y = 0
118 elif key == arcade.key.LEFT or key == arcade.key.A:
119 self.player_sprite.change_x = 0
120 elif key == arcade.key.RIGHT or key == arcade.key.D:
121 self.player_sprite.change_x = 0
122
123
124def main():
125 """Main function"""
126 window = MyGame()
127 window.setup()
128 arcade.run()
129
130
131if __name__ == "__main__":
132 main()

Run This Chapter

python -m arcade.examples.platform_tutorial.04_user_control

 Step 5 - Add Gravity

Step 5 - Add Gravity

The previous example is great for top-down games, but what if it is a side view with
jumping like our platformer? We need to add gravity. First, let’s define a
constant to represent the acceleration for gravity, and one for a jump speed.

GRAVITY = 1
PLAYER_JUMP_SPEED = 20

Now, let’s change the Physics Engine we created in the __init__ function to a
arcade.PhysicsEnginePlatformer instead of a arcade.PhysicsEngineSimple.
This new physics engine will handle jumping and gravity for us, and will do even more
in later chapters.

self.physics_engine = arcade.PhysicsEnginePlatformer(
 self.player_sprite, walls=self.wall_list, gravity_constant=GRAVITY
)

This is very similar to how we created the original simple physics engine, with two exceptions.
The first being that we have sent it our gravity constant. The second being that we have explicitly
sent our wall SpriteList to the walls parameter. This is a very important step. The platformer
physics engine has two parameters for collidable objects, one named platforms and one named walls.

The difference is that objects sent to platforms are intended to be moved. They are moved in the same
way the player is, by modifying their change_x and change_y values. Objects sent to the
walls parameter will not be moved. The reason this is so important is that non-moving walls have much
faster performance than movable platforms.

Adding static sprites via the platforms parameter is roughly an O(n) operation, meaning performance will
linearly get worse as you add more sprites. If you add your static sprites via the walls parameter, then
it is nearly O(1) and there is essentially no difference between for example 100 and 50,000 non-moving sprites.

Lastly we will give our player the ability to jump. Modify the on_key_press and on_key_release functions.
We’ll remove the up/down statements we had before, and make UP jump when pressed.

if key == arcade.key.UP or key == arcade.key.W:
 if self.physics_engine.can_jump():
 self.player_sprite.change_y = PLAYER_JUMP_SPEED

The can_jump() check from our physics engine will make it so that we can only jump if we are touching the
ground. You can remove this function to allow jumping in mid-air for some interesting results. Think about how
you might implement a double-jump system using this.

Note

You can change how the user jumps by changing the gravity and jump constants.
Lower values for both will make for a more “floaty” character. Higher values make
for a faster-paced game.

Source Code

05_add_gravity.py - Add Gravity

 1"""
 2Platformer Game
 3
 4python -m arcade.examples.platform_tutorial.05_add_gravity
 5"""
 6import arcade
 7
 8# Constants
 9SCREEN_WIDTH = 800
 10SCREEN_HEIGHT = 600
 11SCREEN_TITLE = "Platformer"
 12
 13# Constants used to scale our sprites from their original size
 14TILE_SCALING = 0.5
 15
 16# Movement speed of player, in pixels per frame
 17PLAYER_MOVEMENT_SPEED = 5
 18GRAVITY = 1
 19PLAYER_JUMP_SPEED = 20
 20
 21
 22class MyGame(arcade.Window):
 23 """
 24 Main application class.
 25 """
 26
 27 def __init__(self):
 28
 29 # Call the parent class and set up the window
 30 super().__init__(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)
 31
 32 # Variable to hold our texture for our player
 33 self.player_texture = arcade.load_texture(":resources:images/animated_characters/female_adventurer/femaleAdventurer_idle.png")
 34
 35 # Separate variable that holds the player sprite
 36 self.player_sprite = arcade.Sprite(self.player_texture)
 37 self.player_sprite.center_x = 64
 38 self.player_sprite.center_y = 128
 39
 40 # SpriteList for our player
 41 self.player_list = arcade.SpriteList()
 42 self.player_list.append(self.player_sprite)
 43
 44 # SpriteList for our boxes and ground
 45 # Putting our ground and box Sprites in the same SpriteList
 46 # will make it easier to perform collision detection against
 47 # them later on. Setting the spatial hash to True will make
 48 # collision detection much faster if the objects in this
 49 # SpriteList do not move.
 50 self.wall_list = arcade.SpriteList(use_spatial_hash=True)
 51
 52 # Create the ground
 53 # This shows using a loop to place multiple sprites horizontally
 54 for x in range(0, 1250, 64):
 55 wall = arcade.Sprite(":resources:images/tiles/grassMid.png", scale=TILE_SCALING)
 56 wall.center_x = x
 57 wall.center_y = 32
 58 self.wall_list.append(wall)
 59
 60 # Put some crates on the ground
 61 # This shows using a coordinate list to place sprites
 62 coordinate_list = [[512, 96], [256, 96], [768, 96]]
 63
 64 for coordinate in coordinate_list:
 65 # Add a crate on the ground
 66 wall = arcade.Sprite(
 67 ":resources:images/tiles/boxCrate_double.png", scale=TILE_SCALING
 68)
 69 wall.position = coordinate
 70 self.wall_list.append(wall)
 71
 72 # Create a Platformer Physics Engine.
 73 # This will handle moving our player as well as collisions between
 74 # the player sprite and whatever SpriteList we specify for the walls.
 75 # It is important to supply static platforms to the walls parameter. There is a
 76 # platforms parameter that is intended for moving platforms.
 77 # If a platform is supposed to move, and is added to the walls list,
 78 # it will not be moved.
 79 self.physics_engine = arcade.PhysicsEnginePlatformer(
 80 self.player_sprite, walls=self.wall_list, gravity_constant=GRAVITY
 81)
 82
 83 self.background_color = arcade.csscolor.CORNFLOWER_BLUE
 84
 85 def setup(self):
 86 """Set up the game here. Call this function to restart the game."""
 87 pass
 88
 89 def on_draw(self):
 90 """Render the screen."""
 91
 92 # Clear the screen to the background color
 93 self.clear()
 94
 95 # Draw our sprites
 96 self.player_list.draw()
 97 self.wall_list.draw()
 98
 99 def on_update(self, delta_time):
100 """Movement and Game Logic"""
101
102 # Move the player using our physics engine
103 self.physics_engine.update()
104
105 def on_key_press(self, key, modifiers):
106 """Called whenever a key is pressed."""
107
108 if key == arcade.key.UP or key == arcade.key.W:
109 if self.physics_engine.can_jump():
110 self.player_sprite.change_y = PLAYER_JUMP_SPEED
111
112 if key == arcade.key.LEFT or key == arcade.key.A:
113 self.player_sprite.change_x = -PLAYER_MOVEMENT_SPEED
114 elif key == arcade.key.RIGHT or key == arcade.key.D:
115 self.player_sprite.change_x = PLAYER_MOVEMENT_SPEED
116
117 def on_key_release(self, key, modifiers):
118 """Called whenever a key is released."""
119
120 if key == arcade.key.LEFT or key == arcade.key.A:
121 self.player_sprite.change_x = 0
122 elif key == arcade.key.RIGHT or key == arcade.key.D:
123 self.player_sprite.change_x = 0
124
125
126def main():
127 """Main function"""
128 window = MyGame()
129 window.setup()
130 arcade.run()
131
132
133if __name__ == "__main__":
134 main()

Run This Chapter

python -m arcade.examples.platform_tutorial.05_add_gravity

 Step 6 - Resetting

Step 6 - Resetting

You might have noticed that throughout this tutorial, there has been a setup function
in our Window class. So far, we haven’t used this function at all, so what is it for?

Let’s imagine that we want a way to “reset” our game to it’s initial state. This could be
because the player lost, and we want to restart the game, or perhaps we just want to give the
player the option to restart.

With our current architecture of creating everything in our __init__ function, we would have to
duplicate all of that logic in another function in order to make that happen, or completely re-create
our Window, which will be an unpleasent experience for a player.

In this chapter, we will do a small amount of re-organizing our existing code to make use of this
setup function in a way that allows to simply call the setup function whenever we want our game
to return to it’s original state.

First off, we will change our __init__ function to look like below. We are setting values
to something like None, 0, or similar. The purpose of this step is to ensure that the attributes
are created on the class. In Python, we cannot add new attributes to a class outside of the __init__ function.

def __init__(self):

 super().__init__(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)

 self.player_texture = None
 self.player_sprite = None
 self.player_list = None

 self.wall_list = None

Next we will move the actual creation of these objects into our setup function. This looks almost identical
to our original __init__ function. Try and move these sections of code on your own, if you get stuck you can
see the setup function in the full source code listing below.

The last thing we need to do is create a way to reset the game. For now we’ll add a simple key press to do it.
Add the following in your on_key_press function to reset the game when the Escape key is pressed.

if key == arcade.key.ESCAPE:
 self.setup()

Source Code

Resetting

 1"""
 2Platformer Game
 3
 4python -m arcade.examples.platform_tutorial.06_reset
 5"""
 6import arcade
 7
 8# Constants
 9SCREEN_WIDTH = 800
 10SCREEN_HEIGHT = 600
 11SCREEN_TITLE = "Platformer"
 12
 13# Constants used to scale our sprites from their original size
 14TILE_SCALING = 0.5
 15
 16# Movement speed of player, in pixels per frame
 17PLAYER_MOVEMENT_SPEED = 5
 18GRAVITY = 1
 19PLAYER_JUMP_SPEED = 20
 20
 21
 22class MyGame(arcade.Window):
 23 """
 24 Main application class.
 25 """
 26
 27 def __init__(self):
 28
 29 # Call the parent class and set up the window
 30 super().__init__(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)
 31
 32 # Variable to hold our texture for our player
 33 self.player_texture = None
 34
 35 # Separate variable that holds the player sprite
 36 self.player_sprite = None
 37
 38 # SpriteList for our player
 39 self.player_list = None
 40
 41 # SpriteList for our boxes and ground
 42 # Putting our ground and box Sprites in the same SpriteList
 43 # will make it easier to perform collision detection against
 44 # them later on. Setting the spatial hash to True will make
 45 # collision detection much faster if the objects in this
 46 # SpriteList do not move.
 47 self.wall_list = None
 48
 49 def setup(self):
 50 """Set up the game here. Call this function to restart the game."""
 51 self.player_texture = arcade.load_texture(":resources:images/animated_characters/female_adventurer/femaleAdventurer_idle.png")
 52
 53 self.player_sprite = arcade.Sprite(self.player_texture)
 54 self.player_sprite.center_x = 64
 55 self.player_sprite.center_y = 128
 56
 57 self.player_list = arcade.SpriteList()
 58 self.player_list.append(self.player_sprite)
 59
 60 self.wall_list = arcade.SpriteList(use_spatial_hash=True)
 61
 62 # Create the ground
 63 # This shows using a loop to place multiple sprites horizontally
 64 for x in range(0, 1250, 64):
 65 wall = arcade.Sprite(":resources:images/tiles/grassMid.png", scale=TILE_SCALING)
 66 wall.center_x = x
 67 wall.center_y = 32
 68 self.wall_list.append(wall)
 69
 70 # Put some crates on the ground
 71 # This shows using a coordinate list to place sprites
 72 coordinate_list = [[512, 96], [256, 96], [768, 96]]
 73
 74 for coordinate in coordinate_list:
 75 # Add a crate on the ground
 76 wall = arcade.Sprite(
 77 ":resources:images/tiles/boxCrate_double.png", scale=TILE_SCALING
 78)
 79 wall.position = coordinate
 80 self.wall_list.append(wall)
 81
 82 # Create a Platformer Physics Engine, this will handle moving our
 83 # player as well as collisions between the player sprite and
 84 # whatever SpriteList we specify for the walls.
 85 # It is important to supply static to the walls parameter. There is a
 86 # platforms parameter that is intended for moving platforms.
 87 # If a platform is supposed to move, and is added to the walls list,
 88 # it will not be moved.
 89 self.physics_engine = arcade.PhysicsEnginePlatformer(
 90 self.player_sprite, walls=self.wall_list, gravity_constant=GRAVITY
 91)
 92
 93 self.background_color = arcade.csscolor.CORNFLOWER_BLUE
 94
 95 def on_draw(self):
 96 """Render the screen."""
 97
 98 # Clear the screen to the background color
 99 self.clear()
100
101 # Draw our sprites
102 self.player_list.draw()
103 self.wall_list.draw()
104
105 def on_update(self, delta_time):
106 """Movement and Game Logic"""
107
108 # Move the player using our physics engine
109 self.physics_engine.update()
110
111 def on_key_press(self, key, modifiers):
112 """Called whenever a key is pressed."""
113
114 if key == arcade.key.ESCAPE:
115 self.setup()
116
117 if key == arcade.key.UP or key == arcade.key.W:
118 if self.physics_engine.can_jump():
119 self.player_sprite.change_y = PLAYER_JUMP_SPEED
120
121 if key == arcade.key.LEFT or key == arcade.key.A:
122 self.player_sprite.change_x = -PLAYER_MOVEMENT_SPEED
123 elif key == arcade.key.RIGHT or key == arcade.key.D:
124 self.player_sprite.change_x = PLAYER_MOVEMENT_SPEED
125
126 def on_key_release(self, key, modifiers):
127 """Called whenever a key is released."""
128
129 if key == arcade.key.LEFT or key == arcade.key.A:
130 self.player_sprite.change_x = 0
131 elif key == arcade.key.RIGHT or key == arcade.key.D:
132 self.player_sprite.change_x = 0
133
134
135def main():
136 """Main function"""
137 window = MyGame()
138 window.setup()
139 arcade.run()
140
141
142if __name__ == "__main__":
143 main()

Run This Chapter

python -m arcade.examples.platform_tutorial.06_reset

 Step 7 - Adding a Camera

Step 7 - Adding a Camera

Now that our player can move and jump around, we need to give them a way to explore the world
beyond the original window. If you’ve ever played a platformer game, you might be familiar with the
concept of the screen scrolling to reveal more of the map as the player moves.

To achieve this, we can use a Camera, Arcade provides arcade.SimpleCamera and arcade.Camera.
They both do the same base thing, but Camera has a bit of extra functionality that SimpleCamera doesn’t.
For now, we will just use the SimpleCamera.

To start with, let’s go ahead and add a variable in our __init__ function to hold it:

self.camera = None

Next we can go to our setup function, and initialize it like so:

self.camera = arcade.SimpleCamera(viewport=(0, 0, self.width, self.height))

The viewport parameter here defines the size of the camera. In most circumstances, you will want this
to be the size of your window. So we specify the bottom and left coordinates of our camera viewport as
(0, 0), and provide it the width and height of our window.

In order to use our camera when drawing things to the screen, we only need to add one line to our on_draw
function. This line should typically come before anything you want to draw with the camera. In later chapters,
we’ll explore using multiple cameras to draw things in different positions. Go ahead and add this line before
drawing our SpriteLists

self.camera.use()

If you run the game at this point, you might notice that nothing has changed, our game is still one static un-moving
screen. This is because we are never updating the camera’s position. In our platformer game, we want the camera to follow
the player, and keep them in the center of the screen. Arcade provides a helpful function to do this with one line of code.
In other types of games or more advanced usage you may want to set the cameras position directly in order to create interesting
effects, but for now all we need is the center() function of our camera.

If we add the following line to our on_update() function and run the game, you should now see the player
stay at the center of the screen, while being able to scroll the screen around to the rest of our map. For fun, see what happens
if you fall off of the map! Later on, we’ll revisit a more advanced camera setup that will take the bounds of our world into
consideration.

self.camera.center(self.player_sprite.position)

Source Code

Adding a Camera

 1"""
 2Platformer Game
 3
 4python -m arcade.examples.platform_tutorial.07_camera
 5"""
 6import arcade
 7
 8# Constants
 9SCREEN_WIDTH = 800
 10SCREEN_HEIGHT = 600
 11SCREEN_TITLE = "Platformer"
 12
 13# Constants used to scale our sprites from their original size
 14TILE_SCALING = 0.5
 15
 16# Movement speed of player, in pixels per frame
 17PLAYER_MOVEMENT_SPEED = 5
 18GRAVITY = 1
 19PLAYER_JUMP_SPEED = 20
 20
 21
 22class MyGame(arcade.Window):
 23 """
 24 Main application class.
 25 """
 26
 27 def __init__(self):
 28
 29 # Call the parent class and set up the window
 30 super().__init__(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)
 31
 32 # Variable to hold our texture for our player
 33 self.player_texture = None
 34
 35 # Separate variable that holds the player sprite
 36 self.player_sprite = None
 37
 38 # SpriteList for our player
 39 self.player_list = None
 40
 41 # SpriteList for our boxes and ground
 42 # Putting our ground and box Sprites in the same SpriteList
 43 # will make it easier to perform collision detection against
 44 # them later on. Setting the spatial hash to True will make
 45 # collision detection much faster if the objects in this
 46 # SpriteList do not move.
 47 self.wall_list = None
 48
 49 # A variable to store our camera object
 50 self.camera = None
 51
 52 def setup(self):
 53 """Set up the game here. Call this function to restart the game."""
 54 self.player_texture = arcade.load_texture(":resources:images/animated_characters/female_adventurer/femaleAdventurer_idle.png")
 55
 56 self.player_sprite = arcade.Sprite(self.player_texture)
 57 self.player_sprite.center_x = 64
 58 self.player_sprite.center_y = 128
 59
 60 self.player_list = arcade.SpriteList()
 61 self.player_list.append(self.player_sprite)
 62
 63 self.wall_list = arcade.SpriteList(use_spatial_hash=True)
 64
 65 # Create the ground
 66 # This shows using a loop to place multiple sprites horizontally
 67 for x in range(0, 1250, 64):
 68 wall = arcade.Sprite(":resources:images/tiles/grassMid.png", scale=TILE_SCALING)
 69 wall.center_x = x
 70 wall.center_y = 32
 71 self.wall_list.append(wall)
 72
 73 # Put some crates on the ground
 74 # This shows using a coordinate list to place sprites
 75 coordinate_list = [[512, 96], [256, 96], [768, 96]]
 76
 77 for coordinate in coordinate_list:
 78 # Add a crate on the ground
 79 wall = arcade.Sprite(
 80 ":resources:images/tiles/boxCrate_double.png", scale=TILE_SCALING
 81)
 82 wall.position = coordinate
 83 self.wall_list.append(wall)
 84
 85 # Create a Platformer Physics Engine, this will handle moving our
 86 # player as well as collisions between the player sprite and
 87 # whatever SpriteList we specify for the walls.
 88 # It is important to supply static to the walls parameter. There is a
 89 # platforms parameter that is intended for moving platforms.
 90 # If a platform is supposed to move, and is added to the walls list,
 91 # it will not be moved.
 92 self.physics_engine = arcade.PhysicsEnginePlatformer(
 93 self.player_sprite, walls=self.wall_list, gravity_constant=GRAVITY
 94)
 95
 96 # Initialize our camera, setting a viewport the size of our window.
 97 self.camera = arcade.SimpleCamera(viewport=(0, 0, self.width, self.height))
 98
 99 self.background_color = arcade.csscolor.CORNFLOWER_BLUE
100
101 def on_draw(self):
102 """Render the screen."""
103
104 # Clear the screen to the background color
105 self.clear()
106
107 # Activate our camera before drawing
108 self.camera.use()
109
110 # Draw our sprites
111 self.player_list.draw()
112 self.wall_list.draw()
113
114 def on_update(self, delta_time):
115 """Movement and Game Logic"""
116
117 # Move the player using our physics engine
118 self.physics_engine.update()
119
120 # Center our camera on the player
121 self.camera.center(self.player_sprite.position)
122
123 def on_key_press(self, key, modifiers):
124 """Called whenever a key is pressed."""
125
126 if key == arcade.key.ESCAPE:
127 self.setup()
128
129 if key == arcade.key.UP or key == arcade.key.W:
130 if self.physics_engine.can_jump():
131 self.player_sprite.change_y = PLAYER_JUMP_SPEED
132
133 if key == arcade.key.LEFT or key == arcade.key.A:
134 self.player_sprite.change_x = -PLAYER_MOVEMENT_SPEED
135 elif key == arcade.key.RIGHT or key == arcade.key.D:
136 self.player_sprite.change_x = PLAYER_MOVEMENT_SPEED
137
138 def on_key_release(self, key, modifiers):
139 """Called whenever a key is released."""
140
141 if key == arcade.key.LEFT or key == arcade.key.A:
142 self.player_sprite.change_x = 0
143 elif key == arcade.key.RIGHT or key == arcade.key.D:
144 self.player_sprite.change_x = 0
145
146
147def main():
148 """Main function"""
149 window = MyGame()
150 window.setup()
151 arcade.run()
152
153
154if __name__ == "__main__":
155 main()

Run This Chapter

python -m arcade.examples.platform_tutorial.07_camera

 Step 8 - Collecting Coins

Step 8 - Collecting Coins

Now that we can fully move around our game, we need to give the player an objective. A classic
goal in video games is collecting coins, so let’s go ahead and add that.

In this chapter you will learn how to check for collisions with our player, and find out exactly
what they collided with and do something with it. For now we will just remove the coin from the
screen when they collect it, but in later chapters we will give the character a score, and add to
it when they collect a coin. We will also start playing sounds later.

First off we will create a new SpriteList to hold our coins. Exactly like our other spritelist for
walls, go ahead and add a variable to the __init__ function to store it, and then initialize it
inside the setup function. We will want to turn on spatial hashing for this list for now. If you
decided to have moving coins, you would want to turn that off.

Inside __init__
self.coin_list = None

Inside setup
self.coin_list = arcade.SpriteList(use_spatial_hash=True)

See if you can experiment with a way to add the coins to the SpriteList using what we’ve already learned.
The built-in resource for them is :resources:images/items/coinGold.png. HINT: You’ll want to scale these
just like we did with our boxes and ground. If you get stuck, you can check the full source code below to
see how we’ve placed them following the same pattern we used for the ground.

Once you have placed the coins and added them to the coin_list, don’t forget to add them to on_draw.

self.coin_list.draw()

Now that we’re drawing our coins to the screen, how do we make them interact with the player? When the player
hits one, we want to remove it from the screen. To do this we will use arcade.check_for_collision_with_list() function.
This function takes a single Sprite, in this instance our player, and a SpriteList, for us, the coins. It will return
a list containing all of the Sprites from the given SpriteList that the Sprite collided with.

We can iterate over that list with a for loop to do something with each sprite that had a collision. This means
we can detect the user hitting multiple coins at once if we had them placed close together.

In order to do this, and remove the coin sprites when the player hits them, we will add this to the on_update function.

coin_hit_list = arcade.check_for_collision_with_list(
 self.player_sprite, self.coin_list
)

for coin in coin_hit_list:
 coin.remove_from_sprite_lists()

We use this arcade.BasicSprite.remove_from_sprite_lists() function in order to ensure our Sprite is completely
removed from all SpriteLists it was a part of.

Source Code

Collecting Coins

 1"""
 2Platformer Game
 3
 4python -m arcade.examples.platform_tutorial.08_coins
 5"""
 6import arcade
 7
 8# Constants
 9SCREEN_WIDTH = 800
 10SCREEN_HEIGHT = 600
 11SCREEN_TITLE = "Platformer"
 12
 13# Constants used to scale our sprites from their original size
 14TILE_SCALING = 0.5
 15COIN_SCALING = 0.5
 16
 17# Movement speed of player, in pixels per frame
 18PLAYER_MOVEMENT_SPEED = 5
 19GRAVITY = 1
 20PLAYER_JUMP_SPEED = 20
 21
 22
 23class MyGame(arcade.Window):
 24 """
 25 Main application class.
 26 """
 27
 28 def __init__(self):
 29
 30 # Call the parent class and set up the window
 31 super().__init__(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)
 32
 33 # Variable to hold our texture for our player
 34 self.player_texture = None
 35
 36 # Separate variable that holds the player sprite
 37 self.player_sprite = None
 38
 39 # SpriteList for our player
 40 self.player_list = None
 41
 42 # SpriteList for our boxes and ground
 43 # Putting our ground and box Sprites in the same SpriteList
 44 # will make it easier to perform collision detection against
 45 # them later on. Setting the spatial hash to True will make
 46 # collision detection much faster if the objects in this
 47 # SpriteList do not move.
 48 self.wall_list = None
 49
 50 # SpriteList for coins the player can collect
 51 self.coin_list = None
 52
 53 # A variable to store our camera object
 54 self.camera = None
 55
 56 def setup(self):
 57 """Set up the game here. Call this function to restart the game."""
 58 self.player_texture = arcade.load_texture(":resources:images/animated_characters/female_adventurer/femaleAdventurer_idle.png")
 59
 60 self.player_sprite = arcade.Sprite(self.player_texture)
 61 self.player_sprite.center_x = 64
 62 self.player_sprite.center_y = 128
 63
 64 self.player_list = arcade.SpriteList()
 65 self.player_list.append(self.player_sprite)
 66
 67 self.wall_list = arcade.SpriteList(use_spatial_hash=True)
 68 self.coin_list = arcade.SpriteList(use_spatial_hash=True)
 69
 70 # Create the ground
 71 # This shows using a loop to place multiple sprites horizontally
 72 for x in range(0, 1250, 64):
 73 wall = arcade.Sprite(":resources:images/tiles/grassMid.png", scale=TILE_SCALING)
 74 wall.center_x = x
 75 wall.center_y = 32
 76 self.wall_list.append(wall)
 77
 78 # Put some crates on the ground
 79 # This shows using a coordinate list to place sprites
 80 coordinate_list = [[512, 96], [256, 96], [768, 96]]
 81
 82 for coordinate in coordinate_list:
 83 # Add a crate on the ground
 84 wall = arcade.Sprite(
 85 ":resources:images/tiles/boxCrate_double.png", scale=TILE_SCALING
 86)
 87 wall.position = coordinate
 88 self.wall_list.append(wall)
 89
 90 # Add coins to the world
 91 for x in range(128, 1250, 256):
 92 coin = arcade.Sprite(":resources:images/items/coinGold.png", scale=COIN_SCALING)
 93 coin.center_x = x
 94 coin.center_y = 96
 95 self.coin_list.append(coin)
 96
 97 # Create a Platformer Physics Engine, this will handle moving our
 98 # player as well as collisions between the player sprite and
 99 # whatever SpriteList we specify for the walls.
100 # It is important to supply static to the walls parameter. There is a
101 # platforms parameter that is intended for moving platforms.
102 # If a platform is supposed to move, and is added to the walls list,
103 # it will not be moved.
104 self.physics_engine = arcade.PhysicsEnginePlatformer(
105 self.player_sprite, walls=self.wall_list, gravity_constant=GRAVITY
106)
107
108 # Initialize our camera, setting a viewport the size of our window.
109 self.camera = arcade.SimpleCamera(viewport=(0, 0, self.width, self.height))
110
111 self.background_color = arcade.csscolor.CORNFLOWER_BLUE
112
113 def on_draw(self):
114 """Render the screen."""
115
116 # Clear the screen to the background color
117 self.clear()
118
119 # Activate our camera before drawing
120 self.camera.use()
121
122 # Draw our sprites
123 self.player_list.draw()
124 self.wall_list.draw()
125 self.coin_list.draw()
126
127 def on_update(self, delta_time):
128 """Movement and Game Logic"""
129
130 # Move the player using our physics engine
131 self.physics_engine.update()
132
133 # See if we hit any coins
134 coin_hit_list = arcade.check_for_collision_with_list(
135 self.player_sprite, self.coin_list
136)
137
138 # Loop through each coin we hit (if any) and remove it
139 for coin in coin_hit_list:
140 # Remove the coin
141 coin.remove_from_sprite_lists()
142
143 # Center our camera on the player
144 self.camera.center(self.player_sprite.position)
145
146 def on_key_press(self, key, modifiers):
147 """Called whenever a key is pressed."""
148
149 if key == arcade.key.ESCAPE:
150 self.setup()
151
152 if key == arcade.key.UP or key == arcade.key.W:
153 if self.physics_engine.can_jump():
154 self.player_sprite.change_y = PLAYER_JUMP_SPEED
155
156 if key == arcade.key.LEFT or key == arcade.key.A:
157 self.player_sprite.change_x = -PLAYER_MOVEMENT_SPEED
158 elif key == arcade.key.RIGHT or key == arcade.key.D:
159 self.player_sprite.change_x = PLAYER_MOVEMENT_SPEED
160
161 def on_key_release(self, key, modifiers):
162 """Called whenever a key is released."""
163
164 if key == arcade.key.LEFT or key == arcade.key.A:
165 self.player_sprite.change_x = 0
166 elif key == arcade.key.RIGHT or key == arcade.key.D:
167 self.player_sprite.change_x = 0
168
169
170def main():
171 """Main function"""
172 window = MyGame()
173 window.setup()
174 arcade.run()
175
176
177if __name__ == "__main__":
178 main()

Run This Chapter

python -m arcade.examples.platform_tutorial.08_coins

 Step 9 - Adding Sound

Step 9 - Adding Sound

Our game has a lot of graphics so far, but doesn’t have any sound yet. Let’s change that!
In this chapter we will add a sound when the player collects the coins, as well as when they jump.

Loading and playing sounds in Arcade is very easy. We will only need two functions for this:

	arcade.load_sound()

	arcade.play_sound()

In our __init__ function, we will add these two lines to load our coin collection and jump sounds.

self.collect_coin_sound = arcade.load_sound(":resources:sounds/coin1.wav")
self.jump_sound = arcade.load_sound(":resources:sounds/jump1.wav")

Note

Why are we not adding empty variables to __init__ and initializing them in setup like
our other objects?

This is because sounds are a static asset within our game. If we reset the game, the sounds don’t
change, so it’s not worth re-loading them.

Now we can play these sounds by simple adding the play_sound function wherever we want them to occur.
Let’s add one alongside our removal of coins in the on_update function.

Within on_update
for coin in coin_hit_list:
 coin.remove_from_sprite_lists()
 arcade.play_sound(self.collect_coin_sound)

This will play a sound whenever we collect a coin. We can add a jump sound by adding this to our UP block
for jumping in the on_key_press function:

Within on_key_press
if key == arcade.key.UP or key == arcade.key.W:
 if self.physics_engine.can_jump():
 self.player_sprite.change_y = PLAYER_JUMP_SPEED
 arcade.play_sound(self.jump_sound)

Now we will also have a sound whenever we jump.

Documentation for arcade.Sound

Source Code

Load the Map

 1"""
 2Platformer Game
 3
 4python -m arcade.examples.platform_tutorial.09_sound
 5"""
 6import arcade
 7
 8# Constants
 9SCREEN_WIDTH = 800
 10SCREEN_HEIGHT = 600
 11SCREEN_TITLE = "Platformer"
 12
 13# Constants used to scale our sprites from their original size
 14TILE_SCALING = 0.5
 15COIN_SCALING = 0.5
 16
 17# Movement speed of player, in pixels per frame
 18PLAYER_MOVEMENT_SPEED = 5
 19GRAVITY = 1
 20PLAYER_JUMP_SPEED = 20
 21
 22
 23class MyGame(arcade.Window):
 24 """
 25 Main application class.
 26 """
 27
 28 def __init__(self):
 29
 30 # Call the parent class and set up the window
 31 super().__init__(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)
 32
 33 # Variable to hold our texture for our player
 34 self.player_texture = None
 35
 36 # Separate variable that holds the player sprite
 37 self.player_sprite = None
 38
 39 # SpriteList for our player
 40 self.player_list = None
 41
 42 # SpriteList for our boxes and ground
 43 # Putting our ground and box Sprites in the same SpriteList
 44 # will make it easier to perform collision detection against
 45 # them later on. Setting the spatial hash to True will make
 46 # collision detection much faster if the objects in this
 47 # SpriteList do not move.
 48 self.wall_list = None
 49
 50 # SpriteList for coins the player can collect
 51 self.coin_list = None
 52
 53 # A variable to store our camera object
 54 self.camera = None
 55
 56 # Load sounds
 57 self.collect_coin_sound = arcade.load_sound(":resources:sounds/coin1.wav")
 58 self.jump_sound = arcade.load_sound(":resources:sounds/jump1.wav")
 59
 60 def setup(self):
 61 """Set up the game here. Call this function to restart the game."""
 62 self.player_texture = arcade.load_texture(":resources:images/animated_characters/female_adventurer/femaleAdventurer_idle.png")
 63
 64 self.player_sprite = arcade.Sprite(self.player_texture)
 65 self.player_sprite.center_x = 64
 66 self.player_sprite.center_y = 128
 67
 68 self.player_list = arcade.SpriteList()
 69 self.player_list.append(self.player_sprite)
 70
 71 self.wall_list = arcade.SpriteList(use_spatial_hash=True)
 72 self.coin_list = arcade.SpriteList(use_spatial_hash=True)
 73
 74 # Create the ground
 75 # This shows using a loop to place multiple sprites horizontally
 76 for x in range(0, 1250, 64):
 77 wall = arcade.Sprite(":resources:images/tiles/grassMid.png", scale=TILE_SCALING)
 78 wall.center_x = x
 79 wall.center_y = 32
 80 self.wall_list.append(wall)
 81
 82 # Put some crates on the ground
 83 # This shows using a coordinate list to place sprites
 84 coordinate_list = [[512, 96], [256, 96], [768, 96]]
 85
 86 for coordinate in coordinate_list:
 87 # Add a crate on the ground
 88 wall = arcade.Sprite(
 89 ":resources:images/tiles/boxCrate_double.png", scale=TILE_SCALING
 90)
 91 wall.position = coordinate
 92 self.wall_list.append(wall)
 93
 94 # Add coins to the world
 95 for x in range(128, 1250, 256):
 96 coin = arcade.Sprite(":resources:images/items/coinGold.png", scale=COIN_SCALING)
 97 coin.center_x = x
 98 coin.center_y = 96
 99 self.coin_list.append(coin)
100
101 # Create a Platformer Physics Engine, this will handle moving our
102 # player as well as collisions between the player sprite and
103 # whatever SpriteList we specify for the walls.
104 # It is important to supply static to the walls parameter. There is a
105 # platforms parameter that is intended for moving platforms.
106 # If a platform is supposed to move, and is added to the walls list,
107 # it will not be moved.
108 self.physics_engine = arcade.PhysicsEnginePlatformer(
109 self.player_sprite, walls=self.wall_list, gravity_constant=GRAVITY
110)
111
112 # Initialize our camera, setting a viewport the size of our window.
113 self.camera = arcade.SimpleCamera(viewport=(0, 0, self.width, self.height))
114
115 self.background_color = arcade.csscolor.CORNFLOWER_BLUE
116
117 def on_draw(self):
118 """Render the screen."""
119
120 # Clear the screen to the background color
121 self.clear()
122
123 # Activate our camera before drawing
124 self.camera.use()
125
126 # Draw our sprites
127 self.player_list.draw()
128 self.wall_list.draw()
129 self.coin_list.draw()
130
131 def on_update(self, delta_time):
132 """Movement and Game Logic"""
133
134 # Move the player using our physics engine
135 self.physics_engine.update()
136
137 # See if we hit any coins
138 coin_hit_list = arcade.check_for_collision_with_list(
139 self.player_sprite, self.coin_list
140)
141
142 # Loop through each coin we hit (if any) and remove it
143 for coin in coin_hit_list:
144 # Remove the coin
145 coin.remove_from_sprite_lists()
146 arcade.play_sound(self.collect_coin_sound)
147
148 # Center our camera on the player
149 self.camera.center(self.player_sprite.position)
150
151 def on_key_press(self, key, modifiers):
152 """Called whenever a key is pressed."""
153
154 if key == arcade.key.ESCAPE:
155 self.setup()
156
157 if key == arcade.key.UP or key == arcade.key.W:
158 if self.physics_engine.can_jump():
159 self.player_sprite.change_y = PLAYER_JUMP_SPEED
160 arcade.play_sound(self.jump_sound)
161
162 if key == arcade.key.LEFT or key == arcade.key.A:
163 self.player_sprite.change_x = -PLAYER_MOVEMENT_SPEED
164 elif key == arcade.key.RIGHT or key == arcade.key.D:
165 self.player_sprite.change_x = PLAYER_MOVEMENT_SPEED
166
167 def on_key_release(self, key, modifiers):
168 """Called whenever a key is released."""
169
170 if key == arcade.key.LEFT or key == arcade.key.A:
171 self.player_sprite.change_x = 0
172 elif key == arcade.key.RIGHT or key == arcade.key.D:
173 self.player_sprite.change_x = 0
174
175
176def main():
177 """Main function"""
178 window = MyGame()
179 window.setup()
180 arcade.run()
181
182
183if __name__ == "__main__":
184 main()

Run This Chapter

python -m arcade.examples.platform_tutorial.09_sound

 Step 10 - Adding a Score

Step 10 - Adding a Score

Our game is starting to take shape, but we still need to give the player a reward for their hard work
collecting coins. To do this we will add a score which will be increased everytime they collect a coin,
and display that on the screen.

In this chapter we will cover using arcade.Text objects, as well as a technique for using two cameras
to draw objects in “screen space” and objects in “world space”.

Note

What is screen space and world space? Think about other games you may have played, and let’s compare it to
our game. A player moves around in the world, and we scroll a camera around based on that position. This is
an example of “world space” coordinates. They can expand beyond our window and need to be positioned within
the window accordingly.

An example of “screen space” coordinates is our score indicator. We will draw this on our screen, but we don’t
want it to move around the screen when the camera scrolls around. To achieve this we will use two different cameras,
and move the world space camera, but not move the screen space camera.

In our code, we will call this screen space camera, gui_camera

Let’s go ahead and add a variable for our new camera and initialize it in setup. We will also add a variable for
our score. This will just be an integer initially set to 0. We will set this in both __init__ and setup.

Within __init__
self.gui_camera = None
self.score = 0

Within setup
self.gui_camera = arcade.SimpleCamera(viewport=(0, 0, width, height))
self.score = 0

Now we can go into our on_update function, and when the player collects a coin, we can increment our score variable.
For now we will give the player 75 points for collecting a coin. You can change this, or as an exercise try adding different
types of coins with different point values. In later chapters we’ll explore dynamically providing point values for coins from
a map editor.

Within on_update
for coin in coin_hit_list:
 coin.remove_from_sprite_lists()
 arcade.play_sound(self.collect_coin_sound)
 self.score += 75

Now that we’re incrementing our score, how do we draw it onto the screen? Well we will be using our GUI camera, but so far we haven’t
talked about drawing Text in Arcade. There are a couple of ways we can do this in Arcade, the first way is using the
arcade.draw_text() function. This is a simple function that you can put directly in on_draw to draw a string of text.

This function however, is not very performant, and there is a better way. We will instead use arcade.Text objects. These have many
advantages, like not needing to re-calculate the text everytime it’s drawn, and also can be batch drawn much like how we do with Sprite and SpriteList.
We will explore batch drawing Text later.

For now, let’s create an arcade.Text object to hold our score text. First create the empty variable in __init__ and initialize in setup.

Within __init__
self.score_text = None

Within setup
self.score_text = arcade.Text(f"Score: {self.score}", start_x = 0, start_y = 5)

The first parameter we send to arcade.Text is a String containing the text we want to draw. In our example we provide an f-string which
adds our value from self.score into the text. The other parameters are defining the bottom left point that our text will be drawn at.

I’ve set it to draw in the bottom left of our screen here. You can try moving it around.

Now we need to add this to our on_draw function in order to get it to display on the screen.

Within on_draw
self.gui_camera.use()
self.score_text.draw()

This will now draw our text in the bottom left of the screen. However, we stil have one problem left, we’re not updating the text when our user
gets a new score. In order to do this we will go back to our on_update function, where we incremented the score when the user collects a coin,
and add one more line to it:

for coin in coin_hit_list:
 coin.remove_from_sprite_lists()
 arcade.play_sound(self.collect_coin_sound)
 self.score += 75
 self.score_text.text = f"Score: {self.score}"

In this new line we’re udpating the actual text of our Text object to contain the new score value.

Source Code

Multiple Levels

 1"""
 2Platformer Game
 3
 4python -m arcade.examples.platform_tutorial.10_score
 5"""
 6import arcade
 7
 8# Constants
 9SCREEN_WIDTH = 800
 10SCREEN_HEIGHT = 600
 11SCREEN_TITLE = "Platformer"
 12
 13# Constants used to scale our sprites from their original size
 14TILE_SCALING = 0.5
 15COIN_SCALING = 0.5
 16
 17# Movement speed of player, in pixels per frame
 18PLAYER_MOVEMENT_SPEED = 5
 19GRAVITY = 1
 20PLAYER_JUMP_SPEED = 20
 21
 22
 23class MyGame(arcade.Window):
 24 """
 25 Main application class.
 26 """
 27
 28 def __init__(self):
 29
 30 # Call the parent class and set up the window
 31 super().__init__(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)
 32
 33 # Variable to hold our texture for our player
 34 self.player_texture = None
 35
 36 # Separate variable that holds the player sprite
 37 self.player_sprite = None
 38
 39 # SpriteList for our player
 40 self.player_list = None
 41
 42 # SpriteList for our boxes and ground
 43 # Putting our ground and box Sprites in the same SpriteList
 44 # will make it easier to perform collision detection against
 45 # them later on. Setting the spatial hash to True will make
 46 # collision detection much faster if the objects in this
 47 # SpriteList do not move.
 48 self.wall_list = None
 49
 50 # SpriteList for coins the player can collect
 51 self.coin_list = None
 52
 53 # A variable to store our camera object
 54 self.camera = None
 55
 56 # A variable to store our gui camera object
 57 self.gui_camera = None
 58
 59 # This variable will store our score as an integer.
 60 self.score = 0
 61
 62 # This variable will store the text for score that we will draw to the screen.
 63 self.score_text = None
 64
 65 # Load sounds
 66 self.collect_coin_sound = arcade.load_sound(":resources:sounds/coin1.wav")
 67 self.jump_sound = arcade.load_sound(":resources:sounds/jump1.wav")
 68
 69 def setup(self):
 70 """Set up the game here. Call this function to restart the game."""
 71 self.player_texture = arcade.load_texture(":resources:images/animated_characters/female_adventurer/femaleAdventurer_idle.png")
 72
 73 self.player_sprite = arcade.Sprite(self.player_texture)
 74 self.player_sprite.center_x = 64
 75 self.player_sprite.center_y = 128
 76
 77 self.player_list = arcade.SpriteList()
 78 self.player_list.append(self.player_sprite)
 79
 80 self.wall_list = arcade.SpriteList(use_spatial_hash=True)
 81 self.coin_list = arcade.SpriteList(use_spatial_hash=True)
 82
 83 # Create the ground
 84 # This shows using a loop to place multiple sprites horizontally
 85 for x in range(0, 1250, 64):
 86 wall = arcade.Sprite(":resources:images/tiles/grassMid.png", scale=TILE_SCALING)
 87 wall.center_x = x
 88 wall.center_y = 32
 89 self.wall_list.append(wall)
 90
 91 # Put some crates on the ground
 92 # This shows using a coordinate list to place sprites
 93 coordinate_list = [[512, 96], [256, 96], [768, 96]]
 94
 95 for coordinate in coordinate_list:
 96 # Add a crate on the ground
 97 wall = arcade.Sprite(
 98 ":resources:images/tiles/boxCrate_double.png", scale=TILE_SCALING
 99)
100 wall.position = coordinate
101 self.wall_list.append(wall)
102
103 # Add coins to the world
104 for x in range(128, 1250, 256):
105 coin = arcade.Sprite(":resources:images/items/coinGold.png", scale=COIN_SCALING)
106 coin.center_x = x
107 coin.center_y = 96
108 self.coin_list.append(coin)
109
110 # Create a Platformer Physics Engine, this will handle moving our
111 # player as well as collisions between the player sprite and
112 # whatever SpriteList we specify for the walls.
113 # It is important to supply static to the walls parameter. There is a
114 # platforms parameter that is intended for moving platforms.
115 # If a platform is supposed to move, and is added to the walls list,
116 # it will not be moved.
117 self.physics_engine = arcade.PhysicsEnginePlatformer(
118 self.player_sprite, walls=self.wall_list, gravity_constant=GRAVITY
119)
120
121 # Initialize our camera, setting a viewport the size of our window.
122 self.camera = arcade.SimpleCamera(viewport=(0, 0, self.width, self.height))
123
124 # Initialize our gui camera, initial settings are the same as our world camera.
125 self.gui_camera = arcade.SimpleCamera(viewport=(0, 0, self.width, self.height))
126
127 # Reset our score to 0
128 self.score = 0
129
130 # Initialize our arcade.Text object for score
131 self.score_text = arcade.Text(f"Score: {self.score}", start_x = 0, start_y = 5)
132
133 self.background_color = arcade.csscolor.CORNFLOWER_BLUE
134
135 def on_draw(self):
136 """Render the screen."""
137
138 # Clear the screen to the background color
139 self.clear()
140
141 # Activate our camera before drawing
142 self.camera.use()
143
144 # Draw our sprites
145 self.player_list.draw()
146 self.wall_list.draw()
147 self.coin_list.draw()
148
149 # Activate our GUI camera
150 self.gui_camera.use()
151
152 # Draw our Score
153 self.score_text.draw()
154
155 def on_update(self, delta_time):
156 """Movement and Game Logic"""
157
158 # Move the player using our physics engine
159 self.physics_engine.update()
160
161 # See if we hit any coins
162 coin_hit_list = arcade.check_for_collision_with_list(
163 self.player_sprite, self.coin_list
164)
165
166 # Loop through each coin we hit (if any) and remove it
167 for coin in coin_hit_list:
168 # Remove the coin
169 coin.remove_from_sprite_lists()
170 arcade.play_sound(self.collect_coin_sound)
171 self.score += 75
172 self.score_text.text = f"Score: {self.score}"
173
174 # Center our camera on the player
175 self.camera.center(self.player_sprite.position)
176
177 def on_key_press(self, key, modifiers):
178 """Called whenever a key is pressed."""
179
180 if key == arcade.key.ESCAPE:
181 self.setup()
182
183 if key == arcade.key.UP or key == arcade.key.W:
184 if self.physics_engine.can_jump():
185 self.player_sprite.change_y = PLAYER_JUMP_SPEED
186 arcade.play_sound(self.jump_sound)
187
188 if key == arcade.key.LEFT or key == arcade.key.A:
189 self.player_sprite.change_x = -PLAYER_MOVEMENT_SPEED
190 elif key == arcade.key.RIGHT or key == arcade.key.D:
191 self.player_sprite.change_x = PLAYER_MOVEMENT_SPEED
192
193 def on_key_release(self, key, modifiers):
194 """Called whenever a key is released."""
195
196 if key == arcade.key.LEFT or key == arcade.key.A:
197 self.player_sprite.change_x = 0
198 elif key == arcade.key.RIGHT or key == arcade.key.D:
199 self.player_sprite.change_x = 0
200
201
202def main():
203 """Main function"""
204 window = MyGame()
205 window.setup()
206 arcade.run()
207
208
209if __name__ == "__main__":
210 main()

Run This Chapter

python -m arcade.examples.platform_tutorial.10_score

 Step 11 - Using a Scene

Step 11 - Using a Scene

So far in our game, we have three SpriteLists. One for our player, one for our walls(ground and boxes),
and one for our coins. This is still manageable, but whatabout as our game grows? You can probably imagine
a game could end up with hundreds of SpriteLists. Using just our current approach, we would have to keep track
of variables for each one, and ensure we’re drawing them in the proper order.

Arcade provides a better way to handle this, with the arcade.Scene class. This class will hold all of
our spritelists for us, allow us to create new ones, change around the order they get drawn in, and more. In
later chapters we will we use a special function to load a map from a map editor tool, and automatically create
a Scene based on the map.

At the end of this chapter, you will have the same result as before, but the code will be a bit different to use
the Scene object.

First-off, we can remove all of our SpriteList variables from __init__ and replace them with on variable to hold
the scene object:

self.scene = None

Now at the very top of our setup function we can initialize the scene by doing:

self.scene = arcade.Scene()

Next, we will remove the line in setup that initializes our Player spritelist, that line looked like this:

self.player_list = arcade.SpriteList()

Then, instead of adding our player to the SpriteList using self.player_sprite.append(). We will add the player
to the Scene directly:

self.player_sprite = arcade.Sprite(self.player_texture)
self.player_sprite.center_x = 64
self.player_sprite.center_y = 128
self.scene.add_sprite("Player", self.player_sprite)

Let’s analyze what happens when we do arcade.Scene.add_sprite(). The first parameter to it is a String,
this defines the layer name that we want to add a Sprite to. This can be an already existing layer or a new one.
If the layer already exists, the Sprite will be added to it, and if it doesn’t, Scene will automatically create it.
Under the hood, a layer is just a SpriteList with a name. So when we specify Player as our Layer. Scene is creating
a new SpriteList, giving it that name, and then adding our Player Sprite to it.

Next we will replace our initialization of the wall and coin SpriteLists with these functions:

self.scene.add_sprite_list("Walls", use_spatial_hash=True)
self.scene.add_sprite_list("Coins", use_spatial_hash=True)

Here we are taking a little bit different approach than we did for our Player layer. For our player, we just added
a Sprite directly. Here we are initialization new empty layers, named Walls and Coins. The advantage to this approach
is that we can specify that this layer should use spatial hashing, like we specified for those SpriteLists before.

Now when we use the add_sprite function on these lists later, those Sprites will be added into these existing layers.

In order to add Sprites to these, let’s modify the self.wall_list.append() functions within the for loops for placing our
walls and coins in the setup function. The only part we’re actually changing of these loops is the last line where we
were adding it to the SpriteList, but I’ve included the loops so you can see where all it should be changed.

Create the ground
for x in range(0, 1250, 64):
 wall = arcade.Sprite(":resources:images/tiles/grassMid.png", scale=TILE_SCALING)
 wall.center_x = x
 wall.center_y = 32
 self.scene.add_sprite("Walls", wall)

Putting Crates on the Ground
coordinate_list = [[512, 96], [256, 96], [768, 96]]

for coordinate in coordinate_li
 wall = arcade.Sprite(
 ":resources:images/tiles/boxCrate_double.png", scale=TILE_SCALING
)
 wall.position = coordinate
 self.scene.add_sprite("Walls", wall)

Add coins to the world
for x in range(128, 1250, 256):
 coin = arcade.Sprite(":resources:images/items/coinGold.png", scale=COIN_SCALING)
 coin.center_x = x
 coin.center_y = 96
 self.scene.add_sprite("Coins", coin)

The next thing we need to do is fix our Physics Engine. If you remember back in Chapter 4, we added
a physics engine and sent our Wall spritelist to in the walls parameter.

We’ll need to modify that our PhysicsEnginePlatformer initialization to this:

self.physics_engine = arcade.PhysicsEnginePlatformer(
 self.player_sprite, walls=self.scene["Walls"], gravity_constant=GRAVITY
)

This is mostly the same as before, but we are pulling the Walls SpriteList from our Scene. If you
are familiar with Python dictionaries, the arcade.Scene class can be interacted with in
a very similar way. You can get any specific SpriteList within the scene by passing the name in
brackets to the scene.

We need to also change our arcade.check_for_collision_with_list() function in on_update that
we are using to get the coins we hit to use this new syntax.

coin_hit_list = arcade.check_for_collision_with_list(
 self.player_sprite, self.scene["Coins"]
)

The last thing that we need to do is update our on_draw function. In here we will remove all our
SpriteLists draws, and replace them with one line drawing our Scene.

self.scene.draw()

Note

Make sure to keep this after our world camera is activated and before our GUI camera is activated.
If you draw the scene while the GUI camera is activated, the centering on the player and scrolling
will not work.

Source Code

Using a Scene

 1"""
 2Platformer Game
 3
 4python -m arcade.examples.platform_tutorial.11_scene
 5"""
 6import arcade
 7
 8# Constants
 9SCREEN_WIDTH = 800
 10SCREEN_HEIGHT = 600
 11SCREEN_TITLE = "Platformer"
 12
 13# Constants used to scale our sprites from their original size
 14TILE_SCALING = 0.5
 15COIN_SCALING = 0.5
 16
 17# Movement speed of player, in pixels per frame
 18PLAYER_MOVEMENT_SPEED = 5
 19GRAVITY = 1
 20PLAYER_JUMP_SPEED = 20
 21
 22
 23class MyGame(arcade.Window):
 24 """
 25 Main application class.
 26 """
 27
 28 def __init__(self):
 29
 30 # Call the parent class and set up the window
 31 super().__init__(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)
 32
 33 # Variable to hold our texture for our player
 34 self.player_texture = None
 35
 36 # Separate variable that holds the player sprite
 37 self.player_sprite = None
 38
 39 # Replacing all of our SpriteLists with a Scene variable
 40 self.scene = None
 41
 42 # A variable to store our camera object
 43 self.camera = None
 44
 45 # A variable to store our gui camera object
 46 self.gui_camera = None
 47
 48 # This variable will store our score as an integer.
 49 self.score = 0
 50
 51 # This variable will store the text for score that we will draw to the screen.
 52 self.score_text = None
 53
 54 # Load sounds
 55 self.collect_coin_sound = arcade.load_sound(":resources:sounds/coin1.wav")
 56 self.jump_sound = arcade.load_sound(":resources:sounds/jump1.wav")
 57
 58 def setup(self):
 59 """Set up the game here. Call this function to restart the game."""
 60 self.scene = arcade.Scene()
 61
 62 self.player_texture = arcade.load_texture(":resources:images/animated_characters/female_adventurer/femaleAdventurer_idle.png")
 63
 64 self.player_sprite = arcade.Sprite(self.player_texture)
 65 self.player_sprite.center_x = 64
 66 self.player_sprite.center_y = 128
 67 self.scene.add_sprite("Player", self.player_sprite)
 68
 69 self.scene.add_sprite_list("Walls", use_spatial_hash=True)
 70 self.scene.add_sprite_list("Coins", use_spatial_hash=True)
 71
 72 # Create the ground
 73 # This shows using a loop to place multiple sprites horizontally
 74 for x in range(0, 1250, 64):
 75 wall = arcade.Sprite(":resources:images/tiles/grassMid.png", scale=TILE_SCALING)
 76 wall.center_x = x
 77 wall.center_y = 32
 78 self.scene.add_sprite("Walls", wall)
 79
 80 # Put some crates on the ground
 81 # This shows using a coordinate list to place sprites
 82 coordinate_list = [[512, 96], [256, 96], [768, 96]]
 83
 84 for coordinate in coordinate_list:
 85 # Add a crate on the ground
 86 wall = arcade.Sprite(
 87 ":resources:images/tiles/boxCrate_double.png", scale=TILE_SCALING
 88)
 89 wall.position = coordinate
 90 self.scene.add_sprite("Walls", wall)
 91
 92 # Add coins to the world
 93 for x in range(128, 1250, 256):
 94 coin = arcade.Sprite(":resources:images/items/coinGold.png", scale=COIN_SCALING)
 95 coin.center_x = x
 96 coin.center_y = 96
 97 self.scene.add_sprite("Coins", coin)
 98
 99 # Create a Platformer Physics Engine, this will handle moving our
100 # player as well as collisions between the player sprite and
101 # whatever SpriteList we specify for the walls.
102 # It is important to supply static to the walls parameter. There is a
103 # platforms parameter that is intended for moving platforms.
104 # If a platform is supposed to move, and is added to the walls list,
105 # it will not be moved.
106 self.physics_engine = arcade.PhysicsEnginePlatformer(
107 self.player_sprite, walls=self.scene["Walls"], gravity_constant=GRAVITY
108)
109
110 # Initialize our camera, setting a viewport the size of our window.
111 self.camera = arcade.SimpleCamera(viewport=(0, 0, self.width, self.height))
112
113 # Initialize our gui camera, initial settings are the same as our world camera.
114 self.gui_camera = arcade.SimpleCamera(viewport=(0, 0, self.width, self.height))
115
116 # Reset our score to 0
117 self.score = 0
118
119 # Initialize our arcade.Text object for score
120 self.score_text = arcade.Text(f"Score: {self.score}", start_x = 0, start_y = 5)
121
122 self.background_color = arcade.csscolor.CORNFLOWER_BLUE
123
124 def on_draw(self):
125 """Render the screen."""
126
127 # Clear the screen to the background color
128 self.clear()
129
130 # Activate our camera before drawing
131 self.camera.use()
132
133 # Draw our Scene
134 self.scene.draw()
135
136 # Activate our GUI camera
137 self.gui_camera.use()
138
139 # Draw our Score
140 self.score_text.draw()
141
142 def on_update(self, delta_time):
143 """Movement and Game Logic"""
144
145 # Move the player using our physics engine
146 self.physics_engine.update()
147
148 # See if we hit any coins
149 coin_hit_list = arcade.check_for_collision_with_list(
150 self.player_sprite, self.scene["Coins"]
151)
152
153 # Loop through each coin we hit (if any) and remove it
154 for coin in coin_hit_list:
155 # Remove the coin
156 coin.remove_from_sprite_lists()
157 arcade.play_sound(self.collect_coin_sound)
158 self.score += 75
159 self.score_text.text = f"Score: {self.score}"
160
161 # Center our camera on the player
162 self.camera.center(self.player_sprite.position)
163
164 def on_key_press(self, key, modifiers):
165 """Called whenever a key is pressed."""
166
167 if key == arcade.key.ESCAPE:
168 self.setup()
169
170 if key == arcade.key.UP or key == arcade.key.W:
171 if self.physics_engine.can_jump():
172 self.player_sprite.change_y = PLAYER_JUMP_SPEED
173 arcade.play_sound(self.jump_sound)
174
175 if key == arcade.key.LEFT or key == arcade.key.A:
176 self.player_sprite.change_x = -PLAYER_MOVEMENT_SPEED
177 elif key == arcade.key.RIGHT or key == arcade.key.D:
178 self.player_sprite.change_x = PLAYER_MOVEMENT_SPEED
179
180 def on_key_release(self, key, modifiers):
181 """Called whenever a key is released."""
182
183 if key == arcade.key.LEFT or key == arcade.key.A:
184 self.player_sprite.change_x = 0
185 elif key == arcade.key.RIGHT or key == arcade.key.D:
186 self.player_sprite.change_x = 0
187
188
189def main():
190 """Main function"""
191 window = MyGame()
192 window.setup()
193 arcade.run()
194
195
196if __name__ == "__main__":
197 main()

Run This Chapter

python -m arcade.examples.platform_tutorial.11_scene

 Step 12 - Loading a Map From a Map Editor

Step 12 - Loading a Map From a Map Editor

In this chapter we will start using a map editor called Tiled [https://www.mapeditor.org/].
Tiled is a popular 2D map editor, it can be used with any game engine, but Arcade has specific integrations
for working with Tiled.

We’ll explore how to load maps from Tiled in this tutorial using Arcade’s built-in arcade.TileMap class
using some maps from the built-in resources that Arcade comes with. We won’t cover actually building a map
in Tiled this tutorial, but if you want to learn more about Tiled check out the resources below:

	Download Tiled: https://www.mapeditor.org/

	Tiled’s Documentation: https://doc.mapeditor.org/en/stable/

You won’t actually need Tiled to continue following this tutorial. We will be using all pre-built maps included
with Arcade. However if you want to experiment with your own maps or changing things, I recommend getting Tiled
and getting familiar with it, it is a really useful tool for 2D Game Development.

To start off with, we’re going to remove a bunch of code. Namely we’ll remove the creation of our ground, boxes,
and coin sprites(We’ll leave the player one). Go ahead and remove the following blocks of code from the setup function.

self.scene.add_sprite_list("Walls", use_spatial_hash=True)
self.scene.add_sprite_list("Coins", use_spatial_hash=True)

for x in range(0, 1250, 64):
 wall = arcade.Sprite(":resources:images/tiles/grassMid.png", scale=TILE_SCALING)
 wall.center_x = x
 wall.center_y = 32
 self.scene.add_sprite("Walls", wall)

coordinate_list = [[512, 96], [256, 96], [768, 96]]

for coordinate in coordinate_list:
 wall = arcade.Sprite(
 ":resources:images/tiles/boxCrate_double.png", scale=TILE_SCALING
)
 wall.position = coordinate
 self.scene.add_sprite("Walls", wall)

for x in range(128, 1250, 256):
 coin = arcade.Sprite(":resources:images/items/coinGold.png", scale=COIN_SCALING)
 coin.center_x = x
 coin.center_y = 96
 self.scene.add_sprite("Coins", coin)

These things will now be handled by our map file automatically once we start loading it.

In order to load our map, we will first create a variable for it in __init__:

self.tile_map = None

Next we will load our map in our setup function, and then create a Scene from it using
a built-in function Arcade provides. This will give us a drawable scene completely based off
of the map file automatically. This code will all go at the top of the setup function.

Make sure to replace the line that sets self.scene with the new one below.

layer_options = {
 "Platforms": {
 "use_spatial_hash": True
 }
}

self.tile_map = arcade.load_tilemap(
 ":resources:tiled_maps/map.json",
 scaling=TILE_SCALING,
 layer_options=layer_options
)

self.scene = arcade.Scene.from_tilemap(self.tile_map)

This code will load in our built-in Tiled Map and automatically build a Scene from it. The Scene
at this stage is ready for drawing and we don’t need to do anything else to it(other than add our player).

Note

What is layer_options and where are those values in it coming from?

layer_options is a special dictionary that can be provided to the load_tilemap function. This will
send special options for each layer into the map loader. In this example our map has a layer called
Platforms, and we want to enable spatial hashing on it. Much like we did for our wall SpriteList
before. For more info on the layer options dictionary and the available keys, check out :class`arcade.TileMap`

At this point we only have one piece of code left to change. In switching to our new map, you may have noticed by
the layer_options dictionary that we now have a layer named Platforms. Previously in our Scene we were calling
this layer Walls. We’ll need to go update that reference when we create our Physics Engine.

In the setup function update the Physics Engine creation to use the the new Platforms layer:

self.physics_engine = arcade.PhysicsEnginePlatformer(
 self.player_sprite, walls=self.scene["Platforms"], gravity_constant=GRAVITY
)

Source Code

Loading a Map From a Map Editor

 1"""
 2Platformer Game
 3
 4python -m arcade.examples.platform_tutorial.12_tiled
 5"""
 6import arcade
 7
 8# Constants
 9SCREEN_WIDTH = 800
 10SCREEN_HEIGHT = 600
 11SCREEN_TITLE = "Platformer"
 12
 13# Constants used to scale our sprites from their original size
 14TILE_SCALING = 0.5
 15COIN_SCALING = 0.5
 16
 17# Movement speed of player, in pixels per frame
 18PLAYER_MOVEMENT_SPEED = 5
 19GRAVITY = 1
 20PLAYER_JUMP_SPEED = 20
 21
 22
 23class MyGame(arcade.Window):
 24 """
 25 Main application class.
 26 """
 27
 28 def __init__(self):
 29
 30 # Call the parent class and set up the window
 31 super().__init__(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)
 32
 33 # Variable to hold our texture for our player
 34 self.player_texture = None
 35
 36 # Separate variable that holds the player sprite
 37 self.player_sprite = None
 38
 39 # Variable to hold our Tiled Map
 40 self.tile_map = None
 41
 42 # Replacing all of our SpriteLists with a Scene variable
 43 self.scene = None
 44
 45 # A variable to store our camera object
 46 self.camera = None
 47
 48 # A variable to store our gui camera object
 49 self.gui_camera = None
 50
 51 # This variable will store our score as an integer.
 52 self.score = 0
 53
 54 # This variable will store the text for score that we will draw to the screen.
 55 self.score_text = None
 56
 57 # Load sounds
 58 self.collect_coin_sound = arcade.load_sound(":resources:sounds/coin1.wav")
 59 self.jump_sound = arcade.load_sound(":resources:sounds/jump1.wav")
 60
 61 def setup(self):
 62 """Set up the game here. Call this function to restart the game."""
 63 layer_options = {
 64 "Platforms": {
 65 "use_spatial_hash": True
 66 }
 67 }
 68
 69 # Load our TileMap
 70 self.tile_map = arcade.load_tilemap(":resources:tiled_maps/map.json", scaling=TILE_SCALING, layer_options=layer_options)
 71
 72 # Create our Scene Based on the TileMap
 73 self.scene = arcade.Scene.from_tilemap(self.tile_map)
 74
 75 self.player_texture = arcade.load_texture(":resources:images/animated_characters/female_adventurer/femaleAdventurer_idle.png")
 76
 77 self.player_sprite = arcade.Sprite(self.player_texture)
 78 self.player_sprite.center_x = 128
 79 self.player_sprite.center_y = 128
 80 self.scene.add_sprite("Player", self.player_sprite)
 81
 82 # Create a Platformer Physics Engine, this will handle moving our
 83 # player as well as collisions between the player sprite and
 84 # whatever SpriteList we specify for the walls.
 85 # It is important to supply static to the walls parameter. There is a
 86 # platforms parameter that is intended for moving platforms.
 87 # If a platform is supposed to move, and is added to the walls list,
 88 # it will not be moved.
 89 self.physics_engine = arcade.PhysicsEnginePlatformer(
 90 self.player_sprite, walls=self.scene["Platforms"], gravity_constant=GRAVITY
 91)
 92
 93 # Initialize our camera, setting a viewport the size of our window.
 94 self.camera = arcade.SimpleCamera(viewport=(0, 0, self.width, self.height))
 95
 96 # Initialize our gui camera, initial settings are the same as our world camera.
 97 self.gui_camera = arcade.SimpleCamera(viewport=(0, 0, self.width, self.height))
 98
 99 # Reset our score to 0
100 self.score = 0
101
102 # Initialize our arcade.Text object for score
103 self.score_text = arcade.Text(f"Score: {self.score}", start_x = 0, start_y = 5)
104
105 self.background_color = arcade.csscolor.CORNFLOWER_BLUE
106
107 def on_draw(self):
108 """Render the screen."""
109
110 # Clear the screen to the background color
111 self.clear()
112
113 # Activate our camera before drawing
114 self.camera.use()
115
116 # Draw our Scene
117 self.scene.draw()
118
119 # Activate our GUI camera
120 self.gui_camera.use()
121
122 # Draw our Score
123 self.score_text.draw()
124
125 def on_update(self, delta_time):
126 """Movement and Game Logic"""
127
128 # Move the player using our physics engine
129 self.physics_engine.update()
130
131 # See if we hit any coins
132 coin_hit_list = arcade.check_for_collision_with_list(
133 self.player_sprite, self.scene["Coins"]
134)
135
136 # Loop through each coin we hit (if any) and remove it
137 for coin in coin_hit_list:
138 # Remove the coin
139 coin.remove_from_sprite_lists()
140 arcade.play_sound(self.collect_coin_sound)
141 self.score += 75
142 self.score_text.text = f"Score: {self.score}"
143
144 # Center our camera on the player
145 self.camera.center(self.player_sprite.position)
146
147 def on_key_press(self, key, modifiers):
148 """Called whenever a key is pressed."""
149
150 if key == arcade.key.ESCAPE:
151 self.setup()
152
153 if key == arcade.key.UP or key == arcade.key.W:
154 if self.physics_engine.can_jump():
155 self.player_sprite.change_y = PLAYER_JUMP_SPEED
156 arcade.play_sound(self.jump_sound)
157
158 if key == arcade.key.LEFT or key == arcade.key.A:
159 self.player_sprite.change_x = -PLAYER_MOVEMENT_SPEED
160 elif key == arcade.key.RIGHT or key == arcade.key.D:
161 self.player_sprite.change_x = PLAYER_MOVEMENT_SPEED
162
163 def on_key_release(self, key, modifiers):
164 """Called whenever a key is released."""
165
166 if key == arcade.key.LEFT or key == arcade.key.A:
167 self.player_sprite.change_x = 0
168 elif key == arcade.key.RIGHT or key == arcade.key.D:
169 self.player_sprite.change_x = 0
170
171
172def main():
173 """Main function"""
174 window = MyGame()
175 window.setup()
176 arcade.run()
177
178
179if __name__ == "__main__":
180 main()

 Step 13 - More Types of Layers

Step 13 - More Types of Layers

For this example, we’ll switch to a different built-in map that has more layers we can do things with.

In our setup function, load this map instead of the one from Chapter 12:

self.tile_map = arcade.load_tilemap(":resources:tiled_maps/map2_level_1.json", scaling=TILE_SCALING, layer_options=layer_options)

You can run this and check out the map we will be working with this chapter. You’ll notice in addition
to the normal platforms and coins we’ve had. We now have some extra signs and decoration objects, as well
as a pit of lava.

Back in chapter 6 we made use of our setup function to reset the game. Let’s go ahead and use that
system here to reset the game when the player touches the lava pit. You can remove the section for resetting
when the Escape key is pressed if you want, or you can leave it in place. We can also play a game over sound
when this happens.

Let’s first add a new sound to our __init__ function for this:

self.gameover_sound = arcade.load_sound(":resources:sounds/gameover1.wav")

In order to do this, we’ll add this code in our on_update function:

if arcade.check_for_collision_with_list(
 self.player_sprite, self.scene["Don't Touch"]
):
 arcade.play_sound(self.gameover_sound)
 self.setup()

The map we are using here has some extra layers in it we haven’t used yet. In the code above we made use of
the Don't Touch to reset the game when the player touches it. In this section we will make use of two
other layers in our new map, Background and Foreground.

We will use these layers as a way to separate objects that should be drawn in front of our player, and objects
that should be drawn behind the player. In our setup function, before we create the player sprite, add this code.

self.scene.add_sprite_list_after("Player", "Foreground")

This code will cause our player spritelist to be inserted at a specific point in the Scene. Causing spritelists
which are in front of it to be drawn before it, and ones behind it to be drawn after. By doing this we can make
objects appear to be in front of or behind our player like the images below:

[image: ../../_images/13_foreground.png]
[image: ../../_images/13_background.png]

Source Code

More Layers

 1"""
 2Platformer Game
 3
 4python -m arcade.examples.platform_tutorial.13_more_layers
 5"""
 6import arcade
 7
 8# Constants
 9SCREEN_WIDTH = 800
 10SCREEN_HEIGHT = 600
 11SCREEN_TITLE = "Platformer"
 12
 13# Constants used to scale our sprites from their original size
 14TILE_SCALING = 0.5
 15COIN_SCALING = 0.5
 16
 17# Movement speed of player, in pixels per frame
 18PLAYER_MOVEMENT_SPEED = 5
 19GRAVITY = 1
 20PLAYER_JUMP_SPEED = 20
 21
 22
 23class MyGame(arcade.Window):
 24 """
 25 Main application class.
 26 """
 27
 28 def __init__(self):
 29
 30 # Call the parent class and set up the window
 31 super().__init__(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)
 32
 33 # Variable to hold our texture for our player
 34 self.player_texture = None
 35
 36 # Separate variable that holds the player sprite
 37 self.player_sprite = None
 38
 39 # Variable to hold our Tiled Map
 40 self.tile_map = None
 41
 42 # Replacing all of our SpriteLists with a Scene variable
 43 self.scene = None
 44
 45 # A variable to store our camera object
 46 self.camera = None
 47
 48 # A variable to store our gui camera object
 49 self.gui_camera = None
 50
 51 # This variable will store our score as an integer.
 52 self.score = 0
 53
 54 # This variable will store the text for score that we will draw to the screen.
 55 self.score_text = None
 56
 57 # Load sounds
 58 self.collect_coin_sound = arcade.load_sound(":resources:sounds/coin1.wav")
 59 self.jump_sound = arcade.load_sound(":resources:sounds/jump1.wav")
 60 self.gameover_sound = arcade.load_sound(":resources:sounds/gameover1.wav")
 61
 62 def setup(self):
 63 """Set up the game here. Call this function to restart the game."""
 64 layer_options = {
 65 "Platforms": {
 66 "use_spatial_hash": True
 67 }
 68 }
 69
 70 # Load our TileMap
 71 self.tile_map = arcade.load_tilemap(":resources:tiled_maps/map2_level_1.json", scaling=TILE_SCALING, layer_options=layer_options)
 72
 73 # Create our Scene Based on the TileMap
 74 self.scene = arcade.Scene.from_tilemap(self.tile_map)
 75
 76 self.player_texture = arcade.load_texture(":resources:images/animated_characters/female_adventurer/femaleAdventurer_idle.png")
 77
 78 # Add Player Spritelist before "Foreground" layer. This will make the foreground
 79 # be drawn after the player, making it appear to be in front of the Player.
 80 # Setting before using scene.add_sprite allows us to define where the SpriteList
 81 # will be in the draw order. If we just use add_sprite, it will be appended to the
 82 # end of the order.
 83 self.scene.add_sprite_list_after("Player", "Foreground")
 84
 85 self.player_sprite = arcade.Sprite(self.player_texture)
 86 self.player_sprite.center_x = 128
 87 self.player_sprite.center_y = 128
 88 self.scene.add_sprite("Player", self.player_sprite)
 89
 90 # Create a Platformer Physics Engine, this will handle moving our
 91 # player as well as collisions between the player sprite and
 92 # whatever SpriteList we specify for the walls.
 93 # It is important to supply static to the walls parameter. There is a
 94 # platforms parameter that is intended for moving platforms.
 95 # If a platform is supposed to move, and is added to the walls list,
 96 # it will not be moved.
 97 self.physics_engine = arcade.PhysicsEnginePlatformer(
 98 self.player_sprite, walls=self.scene["Platforms"], gravity_constant=GRAVITY
 99)
100
101 # Initialize our camera, setting a viewport the size of our window.
102 self.camera = arcade.SimpleCamera(viewport=(0, 0, self.width, self.height))
103
104 # Initialize our gui camera, initial settings are the same as our world camera.
105 self.gui_camera = arcade.SimpleCamera(viewport=(0, 0, self.width, self.height))
106
107 # Reset our score to 0
108 self.score = 0
109
110 # Initialize our arcade.Text object for score
111 self.score_text = arcade.Text(f"Score: {self.score}", start_x = 0, start_y = 5)
112
113 self.background_color = arcade.csscolor.CORNFLOWER_BLUE
114
115 def on_draw(self):
116 """Render the screen."""
117
118 # Clear the screen to the background color
119 self.clear()
120
121 # Activate our camera before drawing
122 self.camera.use()
123
124 # Draw our Scene
125 self.scene.draw()
126
127 # Activate our GUI camera
128 self.gui_camera.use()
129
130 # Draw our Score
131 self.score_text.draw()
132
133 def on_update(self, delta_time):
134 """Movement and Game Logic"""
135
136 # Move the player using our physics engine
137 self.physics_engine.update()
138
139 # See if we hit any coins
140 coin_hit_list = arcade.check_for_collision_with_list(
141 self.player_sprite, self.scene["Coins"]
142)
143
144 # Loop through each coin we hit (if any) and remove it
145 for coin in coin_hit_list:
146 # Remove the coin
147 coin.remove_from_sprite_lists()
148 arcade.play_sound(self.collect_coin_sound)
149 self.score += 75
150 self.score_text.text = f"Score: {self.score}"
151
152 if arcade.check_for_collision_with_list(
153 self.player_sprite, self.scene["Don't Touch"]
154):
155 arcade.play_sound(self.gameover_sound)
156 self.setup()
157
158 # Center our camera on the player
159 self.camera.center(self.player_sprite.position)
160
161 def on_key_press(self, key, modifiers):
162 """Called whenever a key is pressed."""
163
164 if key == arcade.key.ESCAPE:
165 self.setup()
166
167 if key == arcade.key.UP or key == arcade.key.W:
168 if self.physics_engine.can_jump():
169 self.player_sprite.change_y = PLAYER_JUMP_SPEED
170 arcade.play_sound(self.jump_sound)
171
172 if key == arcade.key.LEFT or key == arcade.key.A:
173 self.player_sprite.change_x = -PLAYER_MOVEMENT_SPEED
174 elif key == arcade.key.RIGHT or key == arcade.key.D:
175 self.player_sprite.change_x = PLAYER_MOVEMENT_SPEED
176
177 def on_key_release(self, key, modifiers):
178 """Called whenever a key is released."""
179
180 if key == arcade.key.LEFT or key == arcade.key.A:
181 self.player_sprite.change_x = 0
182 elif key == arcade.key.RIGHT or key == arcade.key.D:
183 self.player_sprite.change_x = 0
184
185
186def main():
187 """Main function"""
188 window = MyGame()
189 window.setup()
190 arcade.run()
191
192
193if __name__ == "__main__":
194 main()

 Step 14 - Multiple Levels

Step 14 - Multiple Levels

Now we will make it so that our game has multiple levels. For now we will just have two levels,
but this technique can be easily expanded to include more.

To start off, create two new variables in the __init__ function to represent the position that marks
the end of the map, and what level we should be loading.

Where is the right edge of the map?
self.end_of_map = 0

Level number to load
self.level = 1

Next in the setup function we will change the map loading call to use an f-string to load a map file
depending on the level variable we created.

Load our TileMap
self.tile_map = arcade.load_tilemap(f":resources:tiled_maps/map2_level_{self.level}.json", scaling=TILE_SCALING, layer_options=layer_options)

Again in the setup function, we will calculate where the edge of the currently loaded map is, in pixels. To do this
we get the width of the map, which is represented in number of tiles, and multiply it by the tile width. We also need to consider
the scaling of the tiles, because we are measuring this in pixels.

Calculate the right edge of the map in pixels
self.end_of_map = (self.tile_map.width * self.tile_map.tile_width) * self.tile_map.scaling

Now in the on_update function, we will add a block to check the player position against the end of the map value.
We will do this right before the center_camera_to_player function call at the end. This will increment our current level,
and leverage the setup function in order to re-load the game with the new level.

Check if the player got to the end of the level
if self.player_sprite.center_x >= self.end_of_map:
 # Advance to the next level
 self.level += 1

 # Reload game with new level
 self.setup()

If you run the game at this point, you will be able to reach the end of the first level and have the next level load and play through it.
We have two problems at this point, did you notice them? The first problem is that the player’s score resets in between levels, maybe you
want this to happen in your game, but we will fix it here so that when switching levels we don’t reset the score.

To do this, first add a new variable to the __init__ function which will serve as a trigger to know if the score should be reset or not.
We want to be able to reset it when the player loses, so this trigger will help us only reset the score when we want to.

Should we reset the score?
self.reset_score = True

Now in the setup function we can replace the score reset with this block of code. We change the reset_score variable back to True
after resetting the score, because the default in our game should be to reset it, and we only turn off the reset when we want it off.

Reset the score if we should
if self.reset_score:
 self.score = 0
self.reset_score = True

Finally, in the section of on_update that we advance the level, we can add this line to turn off the score reset

Turn off score reset when advancing level
self.reset_score = False

Now the player’s score will persist between levels, but we still have one more problem. If you reach the end of the second level, the game crashes!
This is because we only actually have two levels available, but we are still trying to advance the level to 3 when we hit the end of level 2.

There’s a few ways this can be handled, one way is to simply make more levels. Eventually you have to have a final level though, so this probably isn’t
the best solution. As an exercise, see if you can find a way to gracefully handle the final level. You could display an end screen, or restart the game
from the beginning, or anything you want.

Source Code

Moving the enemies

 1"""
 2Platformer Game
 3
 4python -m arcade.examples.platform_tutorial.14_multiple_levels
 5"""
 6import arcade
 7
 8# Constants
 9SCREEN_WIDTH = 800
 10SCREEN_HEIGHT = 600
 11SCREEN_TITLE = "Platformer"
 12
 13# Constants used to scale our sprites from their original size
 14TILE_SCALING = 0.5
 15COIN_SCALING = 0.5
 16
 17# Movement speed of player, in pixels per frame
 18PLAYER_MOVEMENT_SPEED = 5
 19GRAVITY = 1
 20PLAYER_JUMP_SPEED = 20
 21
 22
 23class MyGame(arcade.Window):
 24 """
 25 Main application class.
 26 """
 27
 28 def __init__(self):
 29
 30 # Call the parent class and set up the window
 31 super().__init__(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)
 32
 33 # Variable to hold our texture for our player
 34 self.player_texture = None
 35
 36 # Separate variable that holds the player sprite
 37 self.player_sprite = None
 38
 39 # Variable to hold our Tiled Map
 40 self.tile_map = None
 41
 42 # Replacing all of our SpriteLists with a Scene variable
 43 self.scene = None
 44
 45 # A variable to store our camera object
 46 self.camera = None
 47
 48 # A variable to store our gui camera object
 49 self.gui_camera = None
 50
 51 # This variable will store our score as an integer.
 52 self.score = 0
 53
 54 # This variable will store the text for score that we will draw to the screen.
 55 self.score_text = None
 56
 57 # Where is the right edge of the map?
 58 self.end_of_map = 0
 59
 60 # Level number to load
 61 self.level = 1
 62
 63 # Should we reset the score?
 64 self.reset_score = True
 65
 66 # Load sounds
 67 self.collect_coin_sound = arcade.load_sound(":resources:sounds/coin1.wav")
 68 self.jump_sound = arcade.load_sound(":resources:sounds/jump1.wav")
 69 self.gameover_sound = arcade.load_sound(":resources:sounds/gameover1.wav")
 70
 71 def setup(self):
 72 """Set up the game here. Call this function to restart the game."""
 73 layer_options = {
 74 "Platforms": {
 75 "use_spatial_hash": True
 76 }
 77 }
 78
 79 # Load our TileMap
 80 self.tile_map = arcade.load_tilemap(f":resources:tiled_maps/map2_level_{self.level}.json", scaling=TILE_SCALING, layer_options=layer_options)
 81
 82 # Create our Scene Based on the TileMap
 83 self.scene = arcade.Scene.from_tilemap(self.tile_map)
 84
 85 self.player_texture = arcade.load_texture(":resources:images/animated_characters/female_adventurer/femaleAdventurer_idle.png")
 86
 87 # Add Player Spritelist before "Foreground" layer. This will make the foreground
 88 # be drawn after the player, making it appear to be in front of the Player.
 89 # Setting before using scene.add_sprite allows us to define where the SpriteList
 90 # will be in the draw order. If we just use add_sprite, it will be appended to the
 91 # end of the order.
 92 self.scene.add_sprite_list_after("Player", "Foreground")
 93
 94 self.player_sprite = arcade.Sprite(self.player_texture)
 95 self.player_sprite.center_x = 128
 96 self.player_sprite.center_y = 128
 97 self.scene.add_sprite("Player", self.player_sprite)
 98
 99 # Create a Platformer Physics Engine, this will handle moving our
100 # player as well as collisions between the player sprite and
101 # whatever SpriteList we specify for the walls.
102 # It is important to supply static to the walls parameter. There is a
103 # platforms parameter that is intended for moving platforms.
104 # If a platform is supposed to move, and is added to the walls list,
105 # it will not be moved.
106 self.physics_engine = arcade.PhysicsEnginePlatformer(
107 self.player_sprite, walls=self.scene["Platforms"], gravity_constant=GRAVITY
108)
109
110 # Initialize our camera, setting a viewport the size of our window.
111 self.camera = arcade.SimpleCamera(viewport=(0, 0, self.width, self.height))
112
113 # Initialize our gui camera, initial settings are the same as our world camera.
114 self.gui_camera = arcade.SimpleCamera(viewport=(0, 0, self.width, self.height))
115
116 # Reset the score if we should
117 if self.reset_score:
118 self.score = 0
119 self.reset_score = True
120
121 # Initialize our arcade.Text object for score
122 self.score_text = arcade.Text(f"Score: {self.score}", start_x = 0, start_y = 5)
123
124 self.background_color = arcade.csscolor.CORNFLOWER_BLUE
125
126 # Calculate the right edge of the map in pixels
127 self.end_of_map = (self.tile_map.width * self.tile_map.tile_width) * self.tile_map.scaling
128 print(self.end_of_map)
129
130 def on_draw(self):
131 """Render the screen."""
132
133 # Clear the screen to the background color
134 self.clear()
135
136 # Activate our camera before drawing
137 self.camera.use()
138
139 # Draw our Scene
140 self.scene.draw()
141
142 # Activate our GUI camera
143 self.gui_camera.use()
144
145 # Draw our Score
146 self.score_text.draw()
147
148 def on_update(self, delta_time):
149 """Movement and Game Logic"""
150
151 # Move the player using our physics engine
152 self.physics_engine.update()
153
154 # See if we hit any coins
155 coin_hit_list = arcade.check_for_collision_with_list(
156 self.player_sprite, self.scene["Coins"]
157)
158
159 # Loop through each coin we hit (if any) and remove it
160 for coin in coin_hit_list:
161 # Remove the coin
162 coin.remove_from_sprite_lists()
163 arcade.play_sound(self.collect_coin_sound)
164 self.score += 75
165 self.score_text.text = f"Score: {self.score}"
166
167 if arcade.check_for_collision_with_list(
168 self.player_sprite, self.scene["Don't Touch"]
169):
170 arcade.play_sound(self.gameover_sound)
171 self.setup()
172
173 # Check if the player got to the end of the level
174 if self.player_sprite.center_x >= self.end_of_map:
175 # Advance to the next level
176 self.level += 1
177
178 # Turn off score reset when advancing level
179 self.reset_score = False
180
181 # Reload game with new level
182 self.setup()
183
184 # Center our camera on the player
185 self.camera.center(self.player_sprite.position)
186
187 def on_key_press(self, key, modifiers):
188 """Called whenever a key is pressed."""
189
190 if key == arcade.key.ESCAPE:
191 self.setup()
192
193 if key == arcade.key.UP or key == arcade.key.W:
194 if self.physics_engine.can_jump():
195 self.player_sprite.change_y = PLAYER_JUMP_SPEED
196 arcade.play_sound(self.jump_sound)
197
198 if key == arcade.key.LEFT or key == arcade.key.A:
199 self.player_sprite.change_x = -PLAYER_MOVEMENT_SPEED
200 elif key == arcade.key.RIGHT or key == arcade.key.D:
201 self.player_sprite.change_x = PLAYER_MOVEMENT_SPEED
202
203 def on_key_release(self, key, modifiers):
204 """Called whenever a key is released."""
205
206 if key == arcade.key.LEFT or key == arcade.key.A:
207 self.player_sprite.change_x = 0
208 elif key == arcade.key.RIGHT or key == arcade.key.D:
209 self.player_sprite.change_x = 0
210
211
212def main():
213 """Main function"""
214 window = MyGame()
215 window.setup()
216 arcade.run()
217
218
219if __name__ == "__main__":
220 main()

 Pymunk Platformer

Pymunk Platformer

[image: ../../_images/title_animated_gif.gif]
This tutorial covers how to write a platformer using Arcade and its Pymunk API.
This tutorial assumes the you are somewhat familiar with Python, Arcade, and
the Tiled Map Editor [https://www.mapeditor.org/].

	If you aren’t familiar with programming in Python, check out https://learn.arcade.academy

	If you aren’t familiar with the Arcade library, work through the Simple Platformer.

	If you aren’t familiar with the Tiled Map Editor, the Simple Platformer
also introduces how to create a map with the Tiled Map Editor.

Common Issues

There are a few items with the Pymunk physics engine that should be pointed out
before you get started:

	Object overlap - A fast moving object is allowed to overlap with the object it
collides with, and Pymunk will push them apart later. See
collision bias [http://www.pymunk.org/en/latest/pymunk.html#pymunk.Space.collision_bias]
for more information.

	Pass-through - A fast moving object can pass through another object if its
speed is so quick it never overlaps the other object between frames. See
object tunneling [http://www.pymunk.org/en/latest/overview.html#object-tunneling].

	When stepping the physics engine forward in time, the default is to move forward
1/60th of a second. Whatever increment is picked, increments should always be
kept the same. Don’t use the variable delta_time from the update method as
a unit, or results will be unstable and unpredictable. For a more accurate
simulation, you can step forward 1/120th of a second twice per frame. This increases
the time required, but takes more time to calculate.

	A sprite moving across a floor made up of many rectangles can get “caught”
on the edges. The corner of the player sprite can get caught the corner of the
floor sprite. To get around this, make sure the hit box for the bottom of the
player sprite is rounded. Also, look into the possibility of merging horizontal
rows of sprites.

Open a Window

To begin with, let’s start with a program that will use Arcade to open a blank
window. It also has stubs for methods we’ll fill in later. Try this code and make
sure you can run it. It should pop open a black window.

Starting Program

 1"""
 2Example of Pymunk Physics Engine Platformer
 3"""
 4import arcade
 5
 6SCREEN_TITLE = "PyMunk Platformer"
 7
 8# Size of screen to show, in pixels
 9SCREEN_WIDTH = 800
10SCREEN_HEIGHT = 600
11
12
13class GameWindow(arcade.Window):
14 """ Main Window """
15
16 def __init__(self, width, height, title):
17 """ Create the variables """
18
19 # Init the parent class
20 super().__init__(width, height, title)
21
22 def setup(self):
23 """ Set up everything with the game """
24 pass
25
26 def on_key_press(self, key, modifiers):
27 """Called whenever a key is pressed. """
28 pass
29
30 def on_key_release(self, key, modifiers):
31 """Called when the user releases a key. """
32 pass
33
34 def on_update(self, delta_time):
35 """ Movement and game logic """
36 pass
37
38 def on_draw(self):
39 """ Draw everything """
40 self.clear()
41
42
43def main():
44 """ Main function """
45 window = GameWindow(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)
46 window.setup()
47 arcade.run()
48
49
50if __name__ == "__main__":
51 main()

Create Constants

Now let’s set up the import statements, and define the constants we are going
to use. In this case, we’ve got sprite tiles that are 128x128 pixels. They are
scaled down to 50% of the width and 50% of the height (scale of 0.5). The screen
size is set to 25x15 grid.

To keep things simple, this example will not scroll the screen with the player.
See Simple Platformer or Move with a Scrolling Screen - Centered.

When you run this program, the screen should be larger.

Adding some constants

 1"""
 2Example of Pymunk Physics Engine Platformer
 3"""
 4import math
 5from typing import Optional
 6import arcade
 7
 8SCREEN_TITLE = "PyMunk Platformer"
 9
10# How big are our image tiles?
11SPRITE_IMAGE_SIZE = 128
12
13# Scale sprites up or down
14SPRITE_SCALING_PLAYER = 0.5
15SPRITE_SCALING_TILES = 0.5
16
17# Scaled sprite size for tiles
18SPRITE_SIZE = int(SPRITE_IMAGE_SIZE * SPRITE_SCALING_PLAYER)
19
20# Size of grid to show on screen, in number of tiles
21SCREEN_GRID_WIDTH = 25
22SCREEN_GRID_HEIGHT = 15
23
24# Size of screen to show, in pixels
25SCREEN_WIDTH = SPRITE_SIZE * SCREEN_GRID_WIDTH
26SCREEN_HEIGHT = SPRITE_SIZE * SCREEN_GRID_HEIGHT
27
28
29class GameWindow(arcade.Window):

	pymunk_demo_platformer_02.py Full Listing

	pymunk_demo_platformer_02.py Diff

Create Instance Variables

Next, let’s create instance variables we are going to use, and set a background
color that’s green: arcade.color.AMAZON

If you aren’t familiar with type-casting on Python, you might not be familiar with
lines of code like this:

self.player_list: Optional[arcade.SpriteList] = None

This means the player_list attribute is going to be an instance of
SpriteList or None. If you don’t want to mess with typing, then
this code also works just as well:

self.player_list = None

Running this program should show the same window, but with a green background.

Create instance variables

 1class GameWindow(arcade.Window):
 2 """ Main Window """
 3
 4 def __init__(self, width, height, title):
 5 """ Create the variables """
 6
 7 # Init the parent class
 8 super().__init__(width, height, title)
 9
10 # Player sprite
11 self.player_sprite: Optional[arcade.Sprite] = None
12
13 # Sprite lists we need
14 self.player_list: Optional[arcade.SpriteList] = None
15 self.wall_list: Optional[arcade.SpriteList] = None
16 self.bullet_list: Optional[arcade.SpriteList] = None
17 self.item_list: Optional[arcade.SpriteList] = None
18
19 # Track the current state of what key is pressed
20 self.left_pressed: bool = False
21 self.right_pressed: bool = False
22
23 # Set background color
24 self.background_color = arcade.color.AMAZON

	pymunk_demo_platformer_03.py Full Listing

	pymunk_demo_platformer_03.py Diff

Load and Display Map

To get started, create a map with the Tiled Map Editor. Place items that
you don’t want to move, and to act as platforms in a layer named “Platforms”.
Place items you want to push around in a layer called “Dynamic Items”. Name the
file “pymunk_test_map.tmx” and place in the exact same directory as your code.

[image: ../../_images/tiled_map.png]
If you aren’t sure how to use the Tiled Map Editor, see Step 8 - Collecting Coins.

Now, in the setup function, we are going add code to:

	Create instances of SpriteList for each group of sprites we are doing
to work with.

	Create the player sprite.

	Read in the tiled map.

	Make sprites from the layers in the tiled map.

Note

When making sprites from the tiled map layer, the name of the layer you
load must match exactly with the layer created in the tiled map editor.
It is case-sensitive.

Creating our sprites

 1 def setup(self):
 2 """ Set up everything with the game """
 3
 4 # Create the sprite lists
 5 self.player_list = arcade.SpriteList()
 6 self.bullet_list = arcade.SpriteList()
 7
 8 # Map name
 9 map_name = ":resources:/tiled_maps/pymunk_test_map.json"
10
11 # Load in TileMap
12 tile_map = arcade.load_tilemap(map_name, SPRITE_SCALING_TILES)
13
14 # Pull the sprite layers out of the tile map
15 self.wall_list = tile_map.sprite_lists["Platforms"]
16 self.item_list = tile_map.sprite_lists["Dynamic Items"]
17
18 # Create player sprite
19 self.player_sprite = arcade.Sprite(":resources:images/animated_characters/female_person/femalePerson_idle.png",
20 SPRITE_SCALING_PLAYER)
21 # Set player location
22 grid_x = 1
23 grid_y = 1
24 self.player_sprite.center_x = SPRITE_SIZE * grid_x + SPRITE_SIZE / 2
25 self.player_sprite.center_y = SPRITE_SIZE * grid_y + SPRITE_SIZE / 2
26 # Add to player sprite list
27 self.player_list.append(self.player_sprite)

There’s no point in having sprites if we don’t draw them, so in the on_draw
method, let’s draw out sprite lists.

Drawing our sprites

1 def on_draw(self):
2 """ Draw everything """
3 self.clear()
4 self.wall_list.draw()
5 self.bullet_list.draw()
6 self.item_list.draw()
7 self.player_list.draw()

With the additions in the program below, running your program should show the
tiled map you created:

[image: ../../_images/pymunk_demo_platformer_04.png]

	pymunk_demo_platformer_04.py Full Listing

	pymunk_demo_platformer_04.py Diff

Add Physics Engine

The next step is to add in the physics engine.

First, add some constants for our physics. Here we are setting:

	A constant for the force of gravity.

	Values for “damping”. A damping of 1.0 will cause an item to lose all it’s
velocity once a force no longer applies to it. A damping of 0.5 causes 50% of
speed to be lost in 1 second. A value of 0 is free-fall.

	Values for friction. 0.0 is ice, 1.0 is like rubber.

	Mass. Item default to 1. We make the player 2, so she can push items around
easier.

	Limits are the players horizontal and vertical speed. It is easier to play if
the player is limited to a constant speed. And more realistic, because they
aren’t on wheels.

Add Constants for Physics

 1# --- Physics forces. Higher number, faster accelerating.
 2
 3# Gravity
 4GRAVITY = 1500
 5
 6# Damping - Amount of speed lost per second
 7DEFAULT_DAMPING = 1.0
 8PLAYER_DAMPING = 0.4
 9
10# Friction between objects
11PLAYER_FRICTION = 1.0
12WALL_FRICTION = 0.7
13DYNAMIC_ITEM_FRICTION = 0.6
14
15# Mass (defaults to 1)
16PLAYER_MASS = 2.0
17
18# Keep player from going too fast
19PLAYER_MAX_HORIZONTAL_SPEED = 450
20PLAYER_MAX_VERTICAL_SPEED = 1600

Second, add the following attributer in the __init__ method to hold our
physics engine:

Add Physics Engine Attribute

1 # Physics engine
2 self.physics_engine = Optional[arcade.PymunkPhysicsEngine]

Third, in the setup method we create the physics engine and add the sprites.
The player, walls, and dynamic items all have different properties so they are
added individually.

Add Sprites to Physics Engine in ‘setup’ Method

 1 # Add to player sprite list
 2 self.player_list.append(self.player_sprite)
 3
 4 # --- Pymunk Physics Engine Setup ---
 5
 6 # The default damping for every object controls the percent of velocity
 7 # the object will keep each second. A value of 1.0 is no speed loss,
 8 # 0.9 is 10% per second, 0.1 is 90% per second.
 9 # For top-down games, this is basically the friction for moving objects.
10 # For platformers with gravity, this should probably be set to 1.0.
11 # Default value is 1.0 if not specified.
12 damping = DEFAULT_DAMPING
13
14 # Set the gravity. (0, 0) is good for outer space and top-down.
15 gravity = (0, -GRAVITY)
16
17 # Create the physics engine
18 self.physics_engine = arcade.PymunkPhysicsEngine(damping=damping,
19 gravity=gravity)
20
21 # Add the player.
22 # For the player, we set the damping to a lower value, which increases
23 # the damping rate. This prevents the character from traveling too far
24 # after the player lets off the movement keys.
25 # Setting the moment of inertia to PymunkPhysicsEngine.MOMENT_INF prevents it from
26 # rotating.
27 # Friction normally goes between 0 (no friction) and 1.0 (high friction)
28 # Friction is between two objects in contact. It is important to remember
29 # in top-down games that friction moving along the 'floor' is controlled
30 # by damping.
31 self.physics_engine.add_sprite(self.player_sprite,
32 friction=PLAYER_FRICTION,
33 mass=PLAYER_MASS,
34 moment_of_inertia=arcade.PymunkPhysicsEngine.MOMENT_INF,
35 collision_type="player",
36 max_horizontal_velocity=PLAYER_MAX_HORIZONTAL_SPEED,
37 max_vertical_velocity=PLAYER_MAX_VERTICAL_SPEED)
38
39 # Create the walls.
40 # By setting the body type to PymunkPhysicsEngine.STATIC the walls can't
41 # move.
42 # Movable objects that respond to forces are PymunkPhysicsEngine.DYNAMIC
43 # PymunkPhysicsEngine.KINEMATIC objects will move, but are assumed to be
44 # repositioned by code and don't respond to physics forces.
45 # Dynamic is default.
46 self.physics_engine.add_sprite_list(self.wall_list,
47 friction=WALL_FRICTION,
48 collision_type="wall",
49 body_type=arcade.PymunkPhysicsEngine.STATIC)
50
51 # Create the items

Fourth, in the on_update method we call the physics engine’s step method.

Add Sprites to Physics Engine in ‘setup’ Method

1 def on_update(self, delta_time):
2 """ Movement and game logic """
3 self.physics_engine.step()

If you run the program, and you have dynamic items that are up in the air, you
should see them fall when the game starts.

	pymunk_demo_platformer_05.py Full Listing

	pymunk_demo_platformer_05.py Diff

Add Player Movement

Next step is to get the player moving. In this section we’ll cover how
to move left and right. In the next section we’ll show how to jump.

The force that we will move the player is defined as PLAYER_MOVE_FORCE_ON_GROUND.
We’ll apply a different force later, if the player happens to be airborne.

Add Player Movement - Constants and Attributes

 1# Force applied while on the ground
 2PLAYER_MOVE_FORCE_ON_GROUND = 8000
 3
 4class GameWindow(arcade.Window):
 5 """ Main Window """
 6
 7 def __init__(self, width, height, title):
 8 """ Create the variables """
 9
10 # Init the parent class
11 super().__init__(width, height, title)
12
13 # Player sprite
14 self.player_sprite: Optional[arcade.Sprite] = None
15
16 # Sprite lists we need
17 self.player_list: Optional[arcade.SpriteList] = None
18 self.wall_list: Optional[arcade.SpriteList] = None
19 self.bullet_list: Optional[arcade.SpriteList] = None
20 self.item_list: Optional[arcade.SpriteList] = None
21
22 # Track the current state of what key is pressed
23 self.left_pressed: bool = False
24 self.right_pressed: bool = False

We need to track if the left/right keys are held down. To do this we define
instance variables left_pressed and right_pressed. These are set to
appropriate values in the key press and release handlers.

Handle Key Up and Down Events

 1 def on_key_press(self, key, modifiers):
 2 """Called whenever a key is pressed. """
 3
 4 if key == arcade.key.LEFT:
 5 self.left_pressed = True
 6 elif key == arcade.key.RIGHT:
 7 self.right_pressed = True
 8
 9 def on_key_release(self, key, modifiers):
10 """Called when the user releases a key. """
11
12 if key == arcade.key.LEFT:
13 self.left_pressed = False
14 elif key == arcade.key.RIGHT:
15 self.right_pressed = False

Finally, we need to apply the correct force in on_update. Force is specified
in a tuple with horizontal force first, and vertical force second.

We also set the friction when we are moving to zero, and when we are not moving to
1. This is important to get realistic movement.

Apply Force to Move Player

 1 def on_update(self, delta_time):
 2 """ Movement and game logic """
 3
 4 # Update player forces based on keys pressed
 5 if self.left_pressed and not self.right_pressed:
 6 # Create a force to the left. Apply it.
 7 force = (-PLAYER_MOVE_FORCE_ON_GROUND, 0)
 8 self.physics_engine.apply_force(self.player_sprite, force)
 9 # Set friction to zero for the player while moving
10 self.physics_engine.set_friction(self.player_sprite, 0)
11 elif self.right_pressed and not self.left_pressed:
12 # Create a force to the right. Apply it.
13 force = (PLAYER_MOVE_FORCE_ON_GROUND, 0)
14 self.physics_engine.apply_force(self.player_sprite, force)
15 # Set friction to zero for the player while moving
16 self.physics_engine.set_friction(self.player_sprite, 0)
17 else:
18 # Player's feet are not moving. Therefore up the friction so we stop.
19 self.physics_engine.set_friction(self.player_sprite, 1.0)
20
21 # Move items in the physics engine
22 self.physics_engine.step()

	pymunk_demo_platformer_06.py Full Listing

	pymunk_demo_platformer_06.py Diff

Add Player Jumping

To get the player to jump we need to:

	Make sure the player is on the ground.

	Apply an impulse force to the player upward.

	Change the left/right force to the player while they are in the air.

We can see if a sprite has a sprite below it with the is_on_ground function.
Otherwise we’ll be able to jump while we are in the air.
(Double-jumps would allow this once.)

If we don’t allow the player to move left-right while in the air, they player
will be very hard to control. If we allow them to move left/right with the same
force as on the ground, that’s typically too much. So we’ve got a different
left/right force depending if we are in the air or not.

For the code changes, first we’ll define some constants:

Add Player Jumping - Constants

1# Force applied when moving left/right in the air
2PLAYER_MOVE_FORCE_IN_AIR = 900
3
4# Strength of a jump
5PLAYER_JUMP_IMPULSE = 1800

We’ll add logic that will apply the impulse force when we jump:

Add Player Jumping - Jump Force

 1 def on_key_press(self, key, modifiers):
 2 """Called whenever a key is pressed. """
 3
 4 if key == arcade.key.LEFT:
 5 self.left_pressed = True
 6 elif key == arcade.key.RIGHT:
 7 self.right_pressed = True
 8 elif key == arcade.key.UP:
 9 # find out if player is standing on ground
10 if self.physics_engine.is_on_ground(self.player_sprite):
11 # She is! Go ahead and jump
12 impulse = (0, PLAYER_JUMP_IMPULSE)
13 self.physics_engine.apply_impulse(self.player_sprite, impulse)

Then we will adjust the left/right force depending on if we are grounded or not:

Add Player Jumping - Left/Right Force Selection

 1 def on_update(self, delta_time):
 2 """ Movement and game logic """
 3
 4 is_on_ground = self.physics_engine.is_on_ground(self.player_sprite)
 5 # Update player forces based on keys pressed
 6 if self.left_pressed and not self.right_pressed:
 7 # Create a force to the left. Apply it.
 8 if is_on_ground:
 9 force = (-PLAYER_MOVE_FORCE_ON_GROUND, 0)
10 else:
11 force = (-PLAYER_MOVE_FORCE_IN_AIR, 0)
12 self.physics_engine.apply_force(self.player_sprite, force)
13 # Set friction to zero for the player while moving
14 self.physics_engine.set_friction(self.player_sprite, 0)
15 elif self.right_pressed and not self.left_pressed:
16 # Create a force to the right. Apply it.
17 if is_on_ground:
18 force = (PLAYER_MOVE_FORCE_ON_GROUND, 0)
19 else:
20 force = (PLAYER_MOVE_FORCE_IN_AIR, 0)
21 self.physics_engine.apply_force(self.player_sprite, force)
22 # Set friction to zero for the player while moving
23 self.physics_engine.set_friction(self.player_sprite, 0)
24 else:
25 # Player's feet are not moving. Therefore up the friction so we stop.
26 self.physics_engine.set_friction(self.player_sprite, 1.0)
27

	pymunk_demo_platformer_07.py Full Listing

	pymunk_demo_platformer_07.py Diff

Add Player Animation

To create a player animation, we make a custom child class of Sprite.
We load each frame of animation that we need, including a mirror image of it.

We will flip the player to face left or right. If the player is in the air, we’ll
also change between a jump up and a falling graphics.

Because the physics engine works with small floating point numbers, it often
flips above and below zero by small amounts.
It is a good idea not to change the animation as the x and y float around zero.
For that reason, in this code we have a “dead zone.”
We don’t change the animation until it gets outside of that zone.

We also need to control how far the player moves before we change the walking
animation, so that the feet appear in-sync with the ground.

Add Player Animation - Constants

1DEAD_ZONE = 0.1
2
3# Constants used to track if the player is facing left or right
4RIGHT_FACING = 0
5LEFT_FACING = 1
6
7# How many pixels to move before we change the texture in the walking animation
8DISTANCE_TO_CHANGE_TEXTURE = 20
9

Next, we create a Player class that is a child to arcade.Sprite. This
class will update the player animation.

The __init__ method loads all of the textures. Here we use Kenney.nl’s
Toon Characters 1 [https://www.kenney.nl/assets/toon-characters-1] pack.
It has six different characters you can choose from with the same layout, so
it makes changing as simple as changing which line is enabled. There are
eight textures for walking, and textures for idle, jumping, and falling.

As the character can face left or right, we use arcade.load_texture_pair
which will load both a regular image, and one that’s mirrored.

For the multi-frame walking animation, we use an “odometer.” We need to move
a certain number of pixels before changing the animation. If this value is too
small our character moves her legs like Fred Flintstone, too large and it looks
like you are ice skating. We keep track of the index of our current texture,
0-7 since there are eight of them.

Any sprite moved by the Pymunk engine will have its pymunk_moved method
called. This can be used to update the animation.

Add Player Animation - Player Class

 1class PlayerSprite(arcade.Sprite):
 2 """ Player Sprite """
 3 def __init__(self):
 4 """ Init """
 5 # Let parent initialize
 6 super().__init__()
 7
 8 # Set our scale
 9 self.scale = SPRITE_SCALING_PLAYER
10
11 # Images from Kenney.nl's Character pack
12 # main_path = ":resources:images/animated_characters/female_adventurer/femaleAdventurer"
13 main_path = ":resources:images/animated_characters/female_person/femalePerson"
14 # main_path = ":resources:images/animated_characters/male_person/malePerson"
15 # main_path = ":resources:images/animated_characters/male_adventurer/maleAdventurer"
16 # main_path = ":resources:images/animated_characters/zombie/zombie"
17 # main_path = ":resources:images/animated_characters/robot/robot"
18
19 # Load textures for idle standing
20 self.idle_texture_pair = arcade.load_texture_pair(f"{main_path}_idle.png")
21 self.jump_texture_pair = arcade.load_texture_pair(f"{main_path}_jump.png")
22 self.fall_texture_pair = arcade.load_texture_pair(f"{main_path}_fall.png")
23
24 # Load textures for walking
25 self.walk_textures = []
26 for i in range(8):
27 texture = arcade.load_texture_pair(f"{main_path}_walk{i}.png")
28 self.walk_textures.append(texture)
29
30 # Set the initial texture
31 self.texture = self.idle_texture_pair[0]
32
33 # Default to face-right
34 self.character_face_direction = RIGHT_FACING
35
36 # Index of our current texture
37 self.cur_texture = 0
38
39 # How far have we traveled horizontally since changing the texture
40 self.x_odometer = 0
41
42 def pymunk_moved(self, physics_engine, dx, dy, d_angle):
43 """ Handle being moved by the pymunk engine """
44 # Figure out if we need to face left or right
45 if dx < -DEAD_ZONE and self.character_face_direction == RIGHT_FACING:
46 self.character_face_direction = LEFT_FACING
47 elif dx > DEAD_ZONE and self.character_face_direction == LEFT_FACING:
48 self.character_face_direction = RIGHT_FACING
49
50 # Are we on the ground?
51 is_on_ground = physics_engine.is_on_ground(self)
52
53 # Add to the odometer how far we've moved
54 self.x_odometer += dx
55
56 # Jumping animation
57 if not is_on_ground:
58 if dy > DEAD_ZONE:
59 self.texture = self.jump_texture_pair[self.character_face_direction]
60 return
61 elif dy < -DEAD_ZONE:
62 self.texture = self.fall_texture_pair[self.character_face_direction]
63 return
64
65 # Idle animation
66 if abs(dx) <= DEAD_ZONE:
67 self.texture = self.idle_texture_pair[self.character_face_direction]
68 return
69
70 # Have we moved far enough to change the texture?
71 if abs(self.x_odometer) > DISTANCE_TO_CHANGE_TEXTURE:
72
73 # Reset the odometer
74 self.x_odometer = 0
75
76 # Advance the walking animation
77 self.cur_texture += 1
78 if self.cur_texture > 7:
79 self.cur_texture = 0
80 self.texture = self.walk_textures[self.cur_texture][self.character_face_direction]

Important! At this point, we are still creating an instance of arcade.Sprite
and not PlayerSprite. We need to go back to the setup method and
replace the line that creates the player instance with:

Add Player Animation - Creating the Player Class

 # Create player sprite
 self.player_sprite = PlayerSprite()

A really common mistake I’ve seen programmers make (and made myself) is to forget
that last part. Then you can spend a lot of time looking at the player class when
the error is in the setup.

We also need to go back and change the data type for the player sprite attribute
in our __init__ method:

Add Player Animation - Creating the Player Class

 # Player sprite
 self.player_sprite: Optional[PlayerSprite] = None

	pymunk_demo_platformer_08.py Full Listing

	pymunk_demo_platformer_08.py Diff

Shoot Bullets

Getting the player to shoot something can add a lot to our game. To begin
with we’ll define a few constants to use. How much force to shoot the bullet
with, the bullet’s mass, and the gravity to use for the bullet.

If we use the same gravity for the bullet as everything else, it tends to drop
too fast. We could set this to zero if we wanted it to not drop at all.

Shoot Bullets - Constants

1# How much force to put on the bullet
2BULLET_MOVE_FORCE = 4500
3
4# Mass of the bullet
5BULLET_MASS = 0.1
6
7# Make bullet less affected by gravity
8BULLET_GRAVITY = 300

Next, we’ll put in a mouse press handler to put in the bullet shooting code.

We need to:

	Create the bullet sprite

	We need to calculate the angle from the player to the mouse click

	Create the bullet away from the player in the proper direction, as spawning it
inside the player will confuse the physics engine

	Add the bullet to the physics engine

	Apply the force to the bullet to make if move. Note that as we angled the bullet
we don’t need to angle the force.

Warning

Does your platformer scroll?

If your window scrolls, you need to add in the coordinate off-set or else
the angle calculation will be incorrect.

Warning

Bullets don’t disappear yet!

If the bullet flies off-screen, it doesn’t go away and the physics engine
still has to track it.

Shoot Bullets - Mouse Press

 1 def on_mouse_press(self, x, y, button, modifiers):
 2 """ Called whenever the mouse button is clicked. """
 3
 4 bullet = arcade.SpriteSolidColor(width=20, height=5, color=arcade.color.DARK_YELLOW)
 5 self.bullet_list.append(bullet)
 6
 7 # Position the bullet at the player's current location
 8 start_x = self.player_sprite.center_x
 9 start_y = self.player_sprite.center_y
10 bullet.position = self.player_sprite.position
11
12 # Get from the mouse the destination location for the bullet
13 # IMPORTANT! If you have a scrolling screen, you will also need
14 # to add in self.view_bottom and self.view_left.
15 dest_x = x
16 dest_y = y
17
18 # Do math to calculate how to get the bullet to the destination.
19 # Calculation the angle in radians between the start points
20 # and end points. This is the angle the bullet will travel.
21 x_diff = dest_x - start_x
22 y_diff = dest_y - start_y
23 angle = math.atan2(y_diff, x_diff)
24
25 # What is the 1/2 size of this sprite, so we can figure out how far
26 # away to spawn the bullet
27 size = max(self.player_sprite.width, self.player_sprite.height) / 2
28
29 # Use angle to to spawn bullet away from player in proper direction
30 bullet.center_x += size * math.cos(angle)
31 bullet.center_y += size * math.sin(angle)
32
33 # Set angle of bullet
34 bullet.angle = math.degrees(angle)
35
36 # Gravity to use for the bullet
37 # If we don't use custom gravity, bullet drops too fast, or we have
38 # to make it go too fast.
39 # Force is in relation to bullet's angle.
40 bullet_gravity = (0, -BULLET_GRAVITY)
41
42 # Add the sprite. This needs to be done AFTER setting the fields above.
43 self.physics_engine.add_sprite(bullet,
44 mass=BULLET_MASS,
45 damping=1.0,
46 friction=0.6,
47 collision_type="bullet",
48 gravity=bullet_gravity,
49 elasticity=0.9)
50
51 # Add force to bullet
52 force = (BULLET_MOVE_FORCE, 0)
53 self.physics_engine.apply_force(bullet, force)

	pymunk_demo_platformer_09.py Full Listing

	pymunk_demo_platformer_09.py Diff

Destroy Bullets and Items

This section has two goals:

	Get rid of the bullet if it flies off-screen

	Handle collisions of the bullet and other items

Destroy Bullet If It Goes Off-Screen

First, we’ll create a custom bullet class. This class will define the
pymunk_moved method, and check our location each time the bullet moves.
If our y value is too low, we’ll remove the bullet.

Destroy Bullets - Bullet Sprite

1class BulletSprite(arcade.SpriteSolidColor):
2 """ Bullet Sprite """
3 def pymunk_moved(self, physics_engine, dx, dy, d_angle):
4 """ Handle when the sprite is moved by the physics engine. """
5 # If the bullet falls below the screen, remove it
6 if self.center_y < -100:
7 self.remove_from_sprite_lists()

And, of course, once we create the bullet we have to update our code to use
it instead of the plain arcade.Sprite class.

Destroy Bullets - Bullet Sprite

1 bullet = BulletSprite(width=20, height=5, color=arcade.color.DARK_YELLOW)
2 self.bullet_list.append(bullet)
3
4 # Position the bullet at the player's current location
5 start_x = self.player_sprite.center_x
6 start_y = self.player_sprite.center_y

Handle Collisions

To handle collisions, we can add custom collision handler call-backs. If you’ll
remember when we added items to the physics engine, we gave each item a collision
type, such as “wall” or “bullet” or “item”. We can write a function and register
it to handle all bullet/wall collisions.

In this case, bullets that hit a wall go away. Bullets that hit items cause
both the item and the bullet to go away. We could also add code to track damage
to a sprite, only removing it after so much damage was applied. Even changing
the texture depending on its health.

Destroy Bullets - Collision Handlers

 1 def wall_hit_handler(bullet_sprite, _wall_sprite, _arbiter, _space, _data):
 2 """ Called for bullet/wall collision """
 3 bullet_sprite.remove_from_sprite_lists()
 4
 5 self.physics_engine.add_collision_handler("bullet", "wall", post_handler=wall_hit_handler)
 6
 7 def item_hit_handler(bullet_sprite, item_sprite, _arbiter, _space, _data):
 8 """ Called for bullet/wall collision """
 9 bullet_sprite.remove_from_sprite_lists()
10 item_sprite.remove_from_sprite_lists()
11
12 self.physics_engine.add_collision_handler("bullet", "item", post_handler=item_hit_handler)

	pymunk_demo_platformer_10.py Full Listing

	pymunk_demo_platformer_10.py Diff

Add Moving Platforms

We can add support for moving platforms. Platforms can be added in an object
layer. An object layer allows platforms to be placed anywhere, and not just on
exact grid locations. Object layers also allow us to add custom properties for
each tile we place.

[image: ../../_images/add_object_layer.png]

Adding an object layer.

Once we have the tile placed, we can add custom properties for it. Click the
‘+’ icon and add properties for all or some of:

	change_x

	change_y

	left_boundary

	right_boundary

	top_boundary

	bottom_boundary

If these are named exact matches, they’ll automatically copy their values into
the sprite attributes of the same name.

[image: ../../_images/add_custom_properties.png]

Adding custom properties.

Now we need to update our code. In GameWindow.__init__ add a line to create
an attribute for moving_sprites_list:

Moving Platforms - Adding the sprite list

 self.moving_sprites_list: Optional[arcade.SpriteList] = None

In the setup method, load in the sprite list from the tmx layer.

Moving Platforms - Adding the sprite list

 self.moving_sprites_list = tile_map.sprite_lists['Moving Platforms']

Also in the setup method, we need to add these sprites to the physics engine.
In this case we’ll add the sprites as KINEMATIC. Static sprites don’t move.
Dynamic sprites move, and can have forces applied to them by other objects.
Kinematic sprites do move, but aren’t affected by other objects.

Moving Platforms - Loading the sprites

 # Add kinematic sprites
 self.physics_engine.add_sprite_list(self.moving_sprites_list,
 body_type=arcade.PymunkPhysicsEngine.KINEMATIC)

We need to draw the moving platform sprites. After adding this line, you should
be able to run the program and see the sprites from this layer, even if they don’t
move yet.

Moving Platforms - Draw the sprites

1 def on_draw(self):
2 """ Draw everything """
3 self.clear()
4 self.wall_list.draw()
5 self.moving_sprites_list.draw()
6 self.bullet_list.draw()
7 self.item_list.draw()
8 self.player_list.draw()

Next up, we need to get the sprites moving. First, we’ll check to see if there
are any boundaries set, and if we need to reverse our direction.

After that we’ll create a velocity vector. Velocity is in pixels per second. In this
case, I’m assuming the user set the velocity in pixels per frame in Tiled instead,
so we’ll convert.

Warning

Changing center_x and center_y will not move the sprite. If you want to change
a sprite’s position, use the physics engine’s set_position method.

Also, setting an item’s position “teleports” it there. The physics engine
will happily move the object right into another object. Setting the item’s
velocity instead will cause the physics engine to move the item, pushing
any dynamic items out of the way.

Moving Platforms - Moving the sprites

 # For each moving sprite, see if we've reached a boundary and need to
 # reverse course.
 for moving_sprite in self.moving_sprites_list:
 if moving_sprite.boundary_right and \
 moving_sprite.change_x > 0 and \
 moving_sprite.right > moving_sprite.boundary_right:
 moving_sprite.change_x *= -1
 elif moving_sprite.boundary_left and \
 moving_sprite.change_x < 0 and \
 moving_sprite.left > moving_sprite.boundary_left:
 moving_sprite.change_x *= -1
 if moving_sprite.boundary_top and \
 moving_sprite.change_y > 0 and \
 moving_sprite.top > moving_sprite.boundary_top:
 moving_sprite.change_y *= -1
 elif moving_sprite.boundary_bottom and \
 moving_sprite.change_y < 0 and \
 moving_sprite.bottom < moving_sprite.boundary_bottom:
 moving_sprite.change_y *= -1

 # Figure out and set our moving platform velocity.
 # Pymunk uses velocity is in pixels per second. If we instead have
 # pixels per frame, we need to convert.
 velocity = (moving_sprite.change_x * 1 / delta_time, moving_sprite.change_y * 1 / delta_time)
 self.physics_engine.set_velocity(moving_sprite, velocity)

	pymunk_demo_platformer_11.py Full Listing

	pymunk_demo_platformer_11.py Diff

Add Ladders

The first step to adding ladders to our platformer is modify the __init__
to track some more items:

	Have a reference to a list of ladder sprites

	Add textures for a climbing animation

	Keep track of our movement in the y direction

	Add a boolean to track if we are on/off a ladder

Add Ladders - PlayerSprite class

 1 def __init__(self,
 2 ladder_list: arcade.SpriteList,
 3 hit_box_algorithm: arcade.hitbox.HitBoxAlgorithm):
 4 """ Init """
 5 # Let parent initialize
 6 super().__init__()
 7
 8 # Set our scale
 9 self.scale = SPRITE_SCALING_PLAYER
10
11 # Images from Kenney.nl's Character pack
12 # main_path = ":resources:images/animated_characters/female_adventurer/femaleAdventurer"
13 main_path = ":resources:images/animated_characters/female_person/femalePerson"
14 # main_path = ":resources:images/animated_characters/male_person/malePerson"
15 # main_path = ":resources:images/animated_characters/male_adventurer/maleAdventurer"
16 # main_path = ":resources:images/animated_characters/zombie/zombie"
17 # main_path = ":resources:images/animated_characters/robot/robot"
18
19 # Load textures for idle standing
20 self.idle_texture_pair = arcade.load_texture_pair(f"{main_path}_idle.png",
21 hit_box_algorithm=hit_box_algorithm)
22 self.jump_texture_pair = arcade.load_texture_pair(f"{main_path}_jump.png")
23 self.fall_texture_pair = arcade.load_texture_pair(f"{main_path}_fall.png")
24
25 # Load textures for walking
26 self.walk_textures = []
27 for i in range(8):
28 texture = arcade.load_texture_pair(f"{main_path}_walk{i}.png")
29 self.walk_textures.append(texture)
30
31 # Load textures for climbing
32 self.climbing_textures = []
33 texture = arcade.load_texture(f"{main_path}_climb0.png")
34 self.climbing_textures.append(texture)
35 texture = arcade.load_texture(f"{main_path}_climb1.png")
36 self.climbing_textures.append(texture)
37
38 # Set the initial texture
39 self.texture = self.idle_texture_pair[0]
40
41 # Default to face-right
42 self.character_face_direction = RIGHT_FACING
43
44 # Index of our current texture
45 self.cur_texture = 0
46
47 # How far have we traveled horizontally since changing the texture
48 self.x_odometer = 0
49 self.y_odometer = 0
50
51 self.ladder_list = ladder_list
52 self.is_on_ladder = False

Next, in our pymunk_moved method we need to change physics when we are
on a ladder, and to update our player texture.

When we are on a ladder, we’ll turn off gravity, turn up damping, and turn down
our max vertical velocity. If we are off the ladder, reset those attributes.

When we are on a ladder, but not on the ground, we’ll alternate between a couple
climbing textures.

Add Ladders - PlayerSprite class

 1 def pymunk_moved(self, physics_engine, dx, dy, d_angle):
 2 """ Handle being moved by the pymunk engine """
 3 # Figure out if we need to face left or right
 4 if dx < -DEAD_ZONE and self.character_face_direction == RIGHT_FACING:
 5 self.character_face_direction = LEFT_FACING
 6 elif dx > DEAD_ZONE and self.character_face_direction == LEFT_FACING:
 7 self.character_face_direction = RIGHT_FACING
 8
 9 # Are we on the ground?
10 is_on_ground = physics_engine.is_on_ground(self)
11
12 # Are we on a ladder?
13 if len(arcade.check_for_collision_with_list(self, self.ladder_list)) > 0:
14 if not self.is_on_ladder:
15 self.is_on_ladder = True
16 self.pymunk.gravity = (0, 0)
17 self.pymunk.damping = 0.0001
18 self.pymunk.max_vertical_velocity = PLAYER_MAX_HORIZONTAL_SPEED
19 else:
20 if self.is_on_ladder:
21 self.pymunk.damping = 1.0
22 self.pymunk.max_vertical_velocity = PLAYER_MAX_VERTICAL_SPEED
23 self.is_on_ladder = False
24 self.pymunk.gravity = None
25
26 # Add to the odometer how far we've moved
27 self.x_odometer += dx
28 self.y_odometer += dy
29
30 if self.is_on_ladder and not is_on_ground:
31 # Have we moved far enough to change the texture?
32 if abs(self.y_odometer) > DISTANCE_TO_CHANGE_TEXTURE:
33
34 # Reset the odometer
35 self.y_odometer = 0
36
37 # Advance the walking animation
38 self.cur_texture += 1
39
40 if self.cur_texture > 1:
41 self.cur_texture = 0
42 self.texture = self.climbing_textures[self.cur_texture]
43 return
44
45 # Jumping animation
46 if not is_on_ground:
47 if dy > DEAD_ZONE:
48 self.texture = self.jump_texture_pair[self.character_face_direction]
49 return
50 elif dy < -DEAD_ZONE:
51 self.texture = self.fall_texture_pair[self.character_face_direction]
52 return
53
54 # Idle animation
55 if abs(dx) <= DEAD_ZONE:
56 self.texture = self.idle_texture_pair[self.character_face_direction]
57 return
58
59 # Have we moved far enough to change the texture?
60 if abs(self.x_odometer) > DISTANCE_TO_CHANGE_TEXTURE:
61
62 # Reset the odometer
63 self.x_odometer = 0
64
65 # Advance the walking animation
66 self.cur_texture += 1
67 if self.cur_texture > 7:
68 self.cur_texture = 0
69 self.texture = self.walk_textures[self.cur_texture][self.character_face_direction]

Then we just need to add a few variables to the __init__ to track ladders:

Add Ladders - Game Window Init

 1 def __init__(self, width, height, title):
 2 """ Create the variables """
 3
 4 # Init the parent class
 5 super().__init__(width, height, title)
 6
 7 # Player sprite
 8 self.player_sprite: Optional[PlayerSprite] = None
 9
10 # Sprite lists we need
11 self.player_list: Optional[arcade.SpriteList] = None
12 self.wall_list: Optional[arcade.SpriteList] = None
13 self.bullet_list: Optional[arcade.SpriteList] = None
14 self.item_list: Optional[arcade.SpriteList] = None
15 self.moving_sprites_list: Optional[arcade.SpriteList] = None
16 self.ladder_list: Optional[arcade.SpriteList] = None
17
18 # Track the current state of what key is pressed
19 self.left_pressed: bool = False
20 self.right_pressed: bool = False
21 self.up_pressed: bool = False
22 self.down_pressed: bool = False
23
24 # Physics engine
25 self.physics_engine: Optional[arcade.PymunkPhysicsEngine] = None
26
27 # Set background color
28 self.background_color = arcade.color.AMAZON

Then load the ladder layer in setup:

Add Ladders - Game Window Setup

 # Pull the sprite layers out of the tile map
 self.wall_list = tile_map.sprite_lists["Platforms"]
 self.item_list = tile_map.sprite_lists["Dynamic Items"]
 self.ladder_list = tile_map.sprite_lists["Ladders"]
 self.moving_sprites_list = tile_map.sprite_lists['Moving Platforms']

Also, pass the ladder list to the player class:

Add Ladders - Game Window Setup

 # Create player sprite
 self.player_sprite = PlayerSprite(self.ladder_list, hit_box_algorithm=arcade.hitbox.algo_detailed)

Then change the jump button so that we don’t jump if we are on a ladder. Also,
we want to track if the up key, or down key are pressed.

Add Ladders - Game Window Key Down

 1 def on_key_press(self, key, modifiers):
 2 """Called whenever a key is pressed. """
 3
 4 if key == arcade.key.LEFT:
 5 self.left_pressed = True
 6 elif key == arcade.key.RIGHT:
 7 self.right_pressed = True
 8 elif key == arcade.key.UP:
 9 self.up_pressed = True
10 # find out if player is standing on ground, and not on a ladder
11 if self.physics_engine.is_on_ground(self.player_sprite) \
12 and not self.player_sprite.is_on_ladder:
13 # She is! Go ahead and jump
14 impulse = (0, PLAYER_JUMP_IMPULSE)
15 self.physics_engine.apply_impulse(self.player_sprite, impulse)
16 elif key == arcade.key.DOWN:
17 self.down_pressed = True

Add to the key up handler tracking for which key is pressed.

Add Ladders - Game Window Key Up

 1 def on_key_release(self, key, modifiers):
 2 """Called when the user releases a key. """
 3
 4 if key == arcade.key.LEFT:
 5 self.left_pressed = False
 6 elif key == arcade.key.RIGHT:
 7 self.right_pressed = False
 8 elif key == arcade.key.UP:
 9 self.up_pressed = False
10 elif key == arcade.key.DOWN:
11 self.down_pressed = False

Next, change our update with new updates for the ladder.

Add Ladders - Game Window On Update

 1 def on_update(self, delta_time):
 2 """ Movement and game logic """
 3
 4 is_on_ground = self.physics_engine.is_on_ground(self.player_sprite)
 5 # Update player forces based on keys pressed
 6 if self.left_pressed and not self.right_pressed:
 7 # Create a force to the left. Apply it.
 8 if is_on_ground or self.player_sprite.is_on_ladder:
 9 force = (-PLAYER_MOVE_FORCE_ON_GROUND, 0)
10 else:
11 force = (-PLAYER_MOVE_FORCE_IN_AIR, 0)
12 self.physics_engine.apply_force(self.player_sprite, force)
13 # Set friction to zero for the player while moving
14 self.physics_engine.set_friction(self.player_sprite, 0)
15 elif self.right_pressed and not self.left_pressed:
16 # Create a force to the right. Apply it.
17 if is_on_ground or self.player_sprite.is_on_ladder:
18 force = (PLAYER_MOVE_FORCE_ON_GROUND, 0)
19 else:
20 force = (PLAYER_MOVE_FORCE_IN_AIR, 0)
21 self.physics_engine.apply_force(self.player_sprite, force)
22 # Set friction to zero for the player while moving
23 self.physics_engine.set_friction(self.player_sprite, 0)
24 elif self.up_pressed and not self.down_pressed:
25 # Create a force to the right. Apply it.
26 if self.player_sprite.is_on_ladder:
27 force = (0, PLAYER_MOVE_FORCE_ON_GROUND)
28 self.physics_engine.apply_force(self.player_sprite, force)
29 # Set friction to zero for the player while moving
30 self.physics_engine.set_friction(self.player_sprite, 0)
31 elif self.down_pressed and not self.up_pressed:
32 # Create a force to the right. Apply it.
33 if self.player_sprite.is_on_ladder:
34 force = (0, -PLAYER_MOVE_FORCE_ON_GROUND)
35 self.physics_engine.apply_force(self.player_sprite, force)
36 # Set friction to zero for the player while moving
37 self.physics_engine.set_friction(self.player_sprite, 0)

And, of course, don’t forget to draw the ladders:

Add Ladders - Game Window Key Down

1 def on_draw(self):
2 """ Draw everything """
3 self.clear()
4 self.wall_list.draw()
5 self.ladder_list.draw()
6 self.moving_sprites_list.draw()
7 self.bullet_list.draw()
8 self.item_list.draw()
9 self.player_list.draw()

	pymunk_demo_platformer_12.py Full Listing

	pymunk_demo_platformer_12.py Diff

 Using Views for Start/End Screens

Using Views for Start/End Screens

[image: ../../_images/screen-switch.svg]Views allow you to easily switch “views” for what you are showing on the window.
You can use this to support adding screens such as:

	Start screens

	Instruction screens

	Game over screens

	Pause screens

The View class is a lot like the Window class that you are already used
to. The View class has methods for on_update and on_draw just like
Window. We can change the current view to quickly change the code that is
managing what is drawn on the window and handling user input.

If you know ahead of time you want to use views, you can build your code around
the View Management. However, typically a programmer wants to add these
items to a game that already exists.

This tutorial steps you through how to do just that.

Change Main Program to Use a View

[image: ../../_images/collect-coins-game.png]
First, we’ll start with a simple collect coins example: 01_views.py Full Listing

Then we’ll move our game into a game view. Take the code where we define our window
class:

class MyGame(arcade.Window):

Change it to derive from arcade.View instead of arcade.Window.
I also suggest using “View” as part of the name:

class GameView(arcade.View):

This will require a couple other updates. The View class does not control
the size of the window, so we’ll need to take that out of the call to the
parent class. Change:

super().__init__(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)

to:

super().__init__()

The Window class still controls if the mouse is visible or not, so to hide
the mouse, we’ll need to use the window attribute that is part of the View
class. Change:

self.set_mouse_visible(False)

to:

self.window.set_mouse_visible(False)

Now in the main function, instead of just creating a window, we’ll create
a window, a view, and then show that view.

Add views - Main function

1def main():
2 """ Main function """
3
4 window = arcade.Window(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)
5 start_view = GameView()
6 window.show_view(start_view)
7 start_view.setup()
8 arcade.run()

At this point, run your game and make sure that it still operates properly.
It should run just like it did before, but now we are set up to add additional
views.

	02_views.py Full Listing ← Full listing of where we are right now

	02_views.py Diff ← What we changed to get here

Add Instruction Screen

[image: ../../_images/instruction_screen.png]
Now we are ready to add in our instruction screen as a view. Create a class for
it:

class InstructionView(arcade.View):

Then we need to define the on_show_view method that will be run once when we
switch to this view. In this case, we don’t need to do much, just set the
background color. If the game is one that scrolls, we’ll also need to reset
the viewport so that (0, 0) is back to the lower-left coordinate.

Add views - on_show_view

 def on_show_view(self):
 """ This is run once when we switch to this view """
 self.window.background_color = arcade.csscolor.DARK_SLATE_BLUE

 # Reset the viewport, necessary if we have a scrolling game and we need
 # to reset the viewport back to the start so we can see what we draw.
 arcade.set_viewport(0, self.window.width, 0, self.window.height)

The on_draw method works just like the window class’s method, but it will
only be called when this view is active.

In this case, we’ll just draw some text for the instruction screen. Another
alternative is to make a graphic in a paint program, and show that image. We’ll
do that below where we show the Game Over screen.

Add views - on_draw

 def on_draw(self):
 """ Draw this view """
 self.clear()
 arcade.draw_text("Instructions Screen", self.window.width / 2, self.window.height / 2,
 arcade.color.WHITE, font_size=50, anchor_x="center")
 arcade.draw_text("Click to advance", self.window.width / 2, self.window.height / 2-75,
 arcade.color.WHITE, font_size=20, anchor_x="center")

Then we’ll put in a method to respond to a mouse click. Here we’ll create our
GameView and call the setup method.

Add views - on_mouse_press

 def on_mouse_press(self, _x, _y, _button, _modifiers):
 """ If the user presses the mouse button, start the game. """
 game_view = GameView()
 game_view.setup()
 self.window.show_view(game_view)

Now we need to go back to the main function. Instead of creating a
GameView it needs to now create an InstructionView.

Add views - Main function

1def main():
2 """ Main function """
3
4 window = arcade.Window(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)
5 start_view = InstructionView()
6 window.show_view(start_view)
7 arcade.run()

	03_views.py Full Listing ← Full listing of where we are right now

	03_views.py Diff ← What we changed to get here

Game Over Screen

[image: ../../_images/game_over_screenshot.png]
Another way of doing instruction, pause, and game over screens is with a graphic.
In this example, we’ve created a separate image with the same size as our
window (800x600) and saved it as game_over.png. You can use the Windows “Paint”
app or get an app for your Mac to make images in order to do this yourself.

The new GameOverView view that we are adding loads in the game over screen
image as a texture in its __init__. The on_draw method draws that texture
to the screen. By using an image, we can fancy up the game over screen using an
image editor as much as we want, while keeping the code simple.

When the user clicks the mouse button, we just start the game over.

Add views - Game Over View

 1class GameOverView(arcade.View):
 2 """ View to show when game is over """
 3
 4 def __init__(self):
 5 """ This is run once when we switch to this view """
 6 super().__init__()
 7 self.texture = arcade.load_texture("game_over.png")
 8
 9 # Reset the viewport, necessary if we have a scrolling game and we need
10 # to reset the viewport back to the start so we can see what we draw.
11 arcade.set_viewport(0, SCREEN_WIDTH - 1, 0, SCREEN_HEIGHT - 1)
12
13 def on_draw(self):
14 """ Draw this view """
15 self.clear()
16 self.texture.draw_sized(SCREEN_WIDTH / 2, SCREEN_HEIGHT / 2,
17 SCREEN_WIDTH, SCREEN_HEIGHT)
18
19 def on_mouse_press(self, _x, _y, _button, _modifiers):
20 """ If the user presses the mouse button, re-start the game. """
21 game_view = GameView()
22 game_view.setup()
23 self.window.show_view(game_view)

The last thing we need, is to trigger the “Game Over” view. In our GameView.on_update
method, we can check the list length. As soon as it hits zero, we’ll change
our view.

Add views - Game Over View

 1 def on_update(self, delta_time):
 2 """ Movement and game logic """
 3
 4 # Call update on all sprites (The sprites don't do much in this
 5 # example though.)
 6 self.coin_list.update()
 7
 8 # Generate a list of all sprites that collided with the player.
 9 coins_hit_list = arcade.check_for_collision_with_list(self.player_sprite, self.coin_list)
10
11 # Loop through each colliding sprite, remove it, and add to the score.
12 for coin in coins_hit_list:
13 coin.remove_from_sprite_lists()
14 self.score += 1
15
16 # Check length of coin list. If it is zero, flip to the
17 # game over view.
18 if len(self.coin_list) == 0:
19 view = GameOverView()
20 self.window.show_view(view)

	04_views.py Full Listing ← Full listing of where we are right now

	04_views.py Diff ← What we changed to get here

 Solitaire

Solitaire

[image: ../../_images/animated.gif]
This solitaire tutorial takes you though the basics of creating a card game, and
doing extensive drag/drop work.

Open a Window

[image: ../../_images/solitaire_01.png]
To begin with, let’s start with a program that will use Arcade to open a blank
window. The listing below also has stubs for methods we’ll fill in later.

Get started with this code and make sure you can run it.
It should pop open a green window.

Starting Program

 1"""
 2Solitaire clone.
 3"""
 4import arcade
 5
 6# Screen title and size
 7SCREEN_WIDTH = 1024
 8SCREEN_HEIGHT = 768
 9SCREEN_TITLE = "Drag and Drop Cards"
10
11
12class MyGame(arcade.Window):
13 """ Main application class. """
14
15 def __init__(self):
16 super().__init__(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)
17
18 self.background_color = arcade.color.AMAZON
19
20 def setup(self):
21 """ Set up the game here. Call this function to restart the game. """
22 pass
23
24 def on_draw(self):
25 """ Render the screen. """
26 # Clear the screen
27 self.clear()
28
29 def on_mouse_press(self, x, y, button, key_modifiers):
30 """ Called when the user presses a mouse button. """
31 pass
32
33 def on_mouse_release(self, x: float, y: float, button: int,
34 modifiers: int):
35 """ Called when the user presses a mouse button. """
36 pass
37
38 def on_mouse_motion(self, x: float, y: float, dx: float, dy: float):
39 """ User moves mouse """
40 pass
41
42
43def main():
44 """ Main function """
45 window = MyGame()
46 window.setup()
47 arcade.run()
48
49
50if __name__ == "__main__":
51 main()

Create Card Sprites

Our next step is the create a bunch of sprites, one for each card.

Constants

First, we’ll create some constants used in positioning the cards, and keeping
track of what card is which.

We could just hard-code numbers, but I like to calculate things out. The “mat”
will eventually be a square slightly larger than each card that tracks where
we can put cards. (A mat where we can put a pile of cards on.)

Create constants for positioning

 1# Constants for sizing
 2CARD_SCALE = 0.6
 3
 4# How big are the cards?
 5CARD_WIDTH = 140 * CARD_SCALE
 6CARD_HEIGHT = 190 * CARD_SCALE
 7
 8# How big is the mat we'll place the card on?
 9MAT_PERCENT_OVERSIZE = 1.25
10MAT_HEIGHT = int(CARD_HEIGHT * MAT_PERCENT_OVERSIZE)
11MAT_WIDTH = int(CARD_WIDTH * MAT_PERCENT_OVERSIZE)
12
13# How much space do we leave as a gap between the mats?
14# Done as a percent of the mat size.
15VERTICAL_MARGIN_PERCENT = 0.10
16HORIZONTAL_MARGIN_PERCENT = 0.10
17
18# The Y of the bottom row (2 piles)
19BOTTOM_Y = MAT_HEIGHT / 2 + MAT_HEIGHT * VERTICAL_MARGIN_PERCENT
20
21# The X of where to start putting things on the left side
22START_X = MAT_WIDTH / 2 + MAT_WIDTH * HORIZONTAL_MARGIN_PERCENT
23
24# Card constants
25CARD_VALUES = ["A", "2", "3", "4", "5", "6", "7", "8", "9", "10", "J", "Q", "K"]
26CARD_SUITS = ["Clubs", "Hearts", "Spades", "Diamonds"]

Card Class

Next up, we’ll create a card class. The card class is a subclass of
arcade.Sprite. It will have attributes for the suit and value of the
card, and auto-load the image for the card based on that.

We’ll use the entire image as the hit box, so we don’t need to go through the
time consuming hit box calculation. Therefore we turn that off. Otherwise loading
the sprites would take a long time.

Create card sprites

 1class Card(arcade.Sprite):
 2 """ Card sprite """
 3
 4 def __init__(self, suit, value, scale=1):
 5 """ Card constructor """
 6
 7 # Attributes for suit and value
 8 self.suit = suit
 9 self.value = value
10
11 # Image to use for the sprite when face up
12 self.image_file_name = f":resources:images/cards/card{self.suit}{self.value}.png"
13
14 # Call the parent
15 super().__init__(self.image_file_name, scale, hit_box_algorithm="None")

Creating Cards

We’ll start by creating an attribute for the SpriteList that will hold all
the cards in the game.

Create card sprites

1 def __init__(self):
2 super().__init__(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)
3
4 # Sprite list with all the cards, no matter what pile they are in.
5 self.card_list = None
6
7 self.background_color = arcade.color.AMAZON

In setup we’ll create the list and the cards. We don’t do this in __init__
because by separating the creation into its own method, we can easily restart the
game by calling setup.

Create card sprites

 1 def setup(self):
 2 """ Set up the game here. Call this function to restart the game. """
 3
 4 # Sprite list with all the cards, no matter what pile they are in.
 5 self.card_list = arcade.SpriteList()
 6
 7 # Create every card
 8 for card_suit in CARD_SUITS:
 9 for card_value in CARD_VALUES:
10 card = Card(card_suit, card_value, CARD_SCALE)
11 card.position = START_X, BOTTOM_Y
12 self.card_list.append(card)

Drawing Cards

Finally, draw the cards:

Create card sprites

1 def on_draw(self):
2 """ Render the screen. """
3 # Clear the screen
4 self.clear()
5
6 # Draw the cards
7 self.card_list.draw()

You should end up with all the cards stacked in the lower-left corner:

[image: ../../_images/solitaire_02.png]

	solitaire_02.py Full Listing ← Full listing of where we are right now

	solitaire_02.py Diff ← What we changed to get here

Implement Drag and Drop

Next up, let’s add the ability to pick up, drag, and drop the cards.

Track the Cards

First, let’s add attributes to track what cards we are moving. Because we can
move multiple cards, we’ll keep this as a list. If the user drops the card in
an illegal spot, we’ll need to reset the card to its original position. So we’ll
also track that.

Create the attributes:

Add attributes to __init__

 1 def __init__(self):
 2 super().__init__(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)
 3
 4 # Sprite list with all the cards, no matter what pile they are in.
 5 self.card_list = None
 6
 7 self.background_color = arcade.color.AMAZON
 8
 9 # List of cards we are dragging with the mouse
10 self.held_cards = None
11
12 # Original location of cards we are dragging with the mouse in case
13 # they have to go back.
14 self.held_cards_original_position = None

Set the initial values (an empty list):

Create empty list attributes

 1 def setup(self):
 2 """ Set up the game here. Call this function to restart the game. """
 3
 4 # List of cards we are dragging with the mouse
 5 self.held_cards = []
 6
 7 # Original location of cards we are dragging with the mouse in case
 8 # they have to go back.
 9 self.held_cards_original_position = []
10
11 # Sprite list with all the cards, no matter what pile they are in.
12 self.card_list = arcade.SpriteList()
13
14 # Create every card
15 for card_suit in CARD_SUITS:
16 for card_value in CARD_VALUES:
17 card = Card(card_suit, card_value, CARD_SCALE)
18 card.position = START_X, BOTTOM_Y
19 self.card_list.append(card)

Pull Card to Top of Draw Order

When we click on the card, we’ll want it to be the last card drawn, so it
appears on top of all the other cards. Otherwise we might drag a card underneath
another card, which would look odd.

Pull card to top

1 def pull_to_top(self, card: arcade.Sprite):
2 """ Pull card to top of rendering order (last to render, looks on-top) """
3
4 # Remove, and append to the end
5 self.card_list.remove(card)
6 self.card_list.append(card)

Mouse Button Pressed

When the user presses the mouse button, we will:

	See if they clicked on a card

	If so, put that card in our held cards list

	Save the original position of the card

	Pull it to the top of the draw order

Pull card to top

 1 def on_mouse_press(self, x, y, button, key_modifiers):
 2 """ Called when the user presses a mouse button. """
 3
 4 # Get list of cards we've clicked on
 5 cards = arcade.get_sprites_at_point((x, y), self.card_list)
 6
 7 # Have we clicked on a card?
 8 if len(cards) > 0:
 9
10 # Might be a stack of cards, get the top one
11 primary_card = cards[-1]
12
13 # All other cases, grab the face-up card we are clicking on
14 self.held_cards = [primary_card]
15 # Save the position
16 self.held_cards_original_position = [self.held_cards[0].position]
17 # Put on top in drawing order
18 self.pull_to_top(self.held_cards[0])

Mouse Moved

If the user moves the mouse, we’ll move any held cards with it.

Pull card to top

1 def on_mouse_motion(self, x: float, y: float, dx: float, dy: float):
2 """ User moves mouse """
3
4 # If we are holding cards, move them with the mouse
5 for card in self.held_cards:
6 card.center_x += dx
7 card.center_y += dy

Mouse Released

When the user releases the mouse button, we’ll clear the held card list.

Pull card to top

 1 def on_mouse_release(self, x: float, y: float, button: int,
 2 modifiers: int):
 3 """ Called when the user presses a mouse button. """
 4
 5 # If we don't have any cards, who cares
 6 if len(self.held_cards) == 0:
 7 return
 8
 9 # We are no longer holding cards
10 self.held_cards = []

Test the Program

You should now be able to pick up and move cards around the screen.
Try it out!

[image: ../../_images/solitaire_03.png]

	solitaire_03.py Full Listing ← Full listing of where we are right now

	solitaire_03.py Diff ← What we changed to get here

Draw Pile Mats

Next, we’ll create sprites that will act as guides to where the piles of cards
go in our game. We’ll create these as sprites, so we can use collision detection
to figure out of we are dropping a card on them or not.

Create Constants

First, we’ll create constants for the middle row of seven piles, and for the
top row of four piles. We’ll also create a constant for how far apart each pile
should be.

Again, we could hard-code numbers, but I like calculating them so I can change
the scale easily.

Add constants

1# The Y of the top row (4 piles)
2TOP_Y = SCREEN_HEIGHT - MAT_HEIGHT / 2 - MAT_HEIGHT * VERTICAL_MARGIN_PERCENT
3
4# The Y of the middle row (7 piles)
5MIDDLE_Y = TOP_Y - MAT_HEIGHT - MAT_HEIGHT * VERTICAL_MARGIN_PERCENT
6
7# How far apart each pile goes
8X_SPACING = MAT_WIDTH + MAT_WIDTH * HORIZONTAL_MARGIN_PERCENT

Create Mat Sprites

Create an attribute for the mat sprite list:

Create the mat sprites

 1 def __init__(self):
 2 super().__init__(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)
 3
 4 # Sprite list with all the cards, no matter what pile they are in.
 5 self.card_list = None
 6
 7 self.background_color = arcade.color.AMAZON
 8
 9 # List of cards we are dragging with the mouse
10 self.held_cards = None
11
12 # Original location of cards we are dragging with the mouse in case
13 # they have to go back.
14 self.held_cards_original_position = None
15
16 # Sprite list with all the mats tha cards lay on.
17 self.pile_mat_list = None

Then create the mat sprites in the setup method

Create the mat sprites

 1 def setup(self):
 2 """ Set up the game here. Call this function to restart the game. """
 3
 4 # List of cards we are dragging with the mouse
 5 self.held_cards = []
 6
 7 # Original location of cards we are dragging with the mouse in case
 8 # they have to go back.
 9 self.held_cards_original_position = []
10
11 # --- Create the mats the cards go on.
12
13 # Sprite list with all the mats tha cards lay on.
14 self.pile_mat_list: arcade.SpriteList = arcade.SpriteList()
15
16 # Create the mats for the bottom face down and face up piles
17 pile = arcade.SpriteSolidColor(MAT_WIDTH, MAT_HEIGHT, arcade.csscolor.DARK_OLIVE_GREEN)
18 pile.position = START_X, BOTTOM_Y
19 self.pile_mat_list.append(pile)
20
21 pile = arcade.SpriteSolidColor(MAT_WIDTH, MAT_HEIGHT, arcade.csscolor.DARK_OLIVE_GREEN)
22 pile.position = START_X + X_SPACING, BOTTOM_Y
23 self.pile_mat_list.append(pile)
24
25 # Create the seven middle piles
26 for i in range(7):
27 pile = arcade.SpriteSolidColor(MAT_WIDTH, MAT_HEIGHT, arcade.csscolor.DARK_OLIVE_GREEN)
28 pile.position = START_X + i * X_SPACING, MIDDLE_Y
29 self.pile_mat_list.append(pile)
30
31 # Create the top "play" piles
32 for i in range(4):
33 pile = arcade.SpriteSolidColor(MAT_WIDTH, MAT_HEIGHT, arcade.csscolor.DARK_OLIVE_GREEN)
34 pile.position = START_X + i * X_SPACING, TOP_Y
35 self.pile_mat_list.append(pile)
36
37 # Sprite list with all the cards, no matter what pile they are in.
38 self.card_list = arcade.SpriteList()
39
40 # Create every card
41 for card_suit in CARD_SUITS:
42 for card_value in CARD_VALUES:
43 card = Card(card_suit, card_value, CARD_SCALE)
44 card.position = START_X, BOTTOM_Y
45 self.card_list.append(card)

Draw Mat Sprites

Finally, the mats aren’t going to display if we don’t draw them:

Draw the mat sprites

 1 def on_draw(self):
 2 """ Render the screen. """
 3 # Clear the screen
 4 self.clear()
 5
 6 # Draw the mats the cards go on to
 7 self.pile_mat_list.draw()
 8
 9 # Draw the cards
10 self.card_list.draw()

Test the Program

Run the program, and see if the mats appear:

[image: ../../_images/solitaire_04.png]

	solitaire_04.py Full Listing ← Full listing of where we are right now

	solitaire_04.py Diff ← What we changed to get here

Snap Cards to Piles

Right now, you can drag the cards anywhere. They don’t have to go onto a
pile. Let’s add code that “snaps” the card onto a pile. If we don’t drop
on a pile, let’s reset back to the original location.

Snap to nearest pile

 1 def on_mouse_release(self, x: float, y: float, button: int,
 2 modifiers: int):
 3 """ Called when the user presses a mouse button. """
 4
 5 # If we don't have any cards, who cares
 6 if len(self.held_cards) == 0:
 7 return
 8
 9 # Find the closest pile, in case we are in contact with more than one
10 pile, distance = arcade.get_closest_sprite(self.held_cards[0], self.pile_mat_list)
11 reset_position = True
12
13 # See if we are in contact with the closest pile
14 if arcade.check_for_collision(self.held_cards[0], pile):
15
16 # For each held card, move it to the pile we dropped on
17 for i, dropped_card in enumerate(self.held_cards):
18 # Move cards to proper position
19 dropped_card.position = pile.center_x, pile.center_y
20
21 # Success, don't reset position of cards
22 reset_position = False
23
24 # Release on top play pile? And only one card held?
25 if reset_position:
26 # Where-ever we were dropped, it wasn't valid. Reset the each card's position
27 # to its original spot.
28 for pile_index, card in enumerate(self.held_cards):
29 card.position = self.held_cards_original_position[pile_index]
30
31 # We are no longer holding cards
32 self.held_cards = []

	solitaire_05.py Full Listing ← Full listing of where we are right now

	solitaire_05.py Diff ← What we changed to get here

Shuffle the Cards

Having all the cards in order is boring. Let’s shuffle them in the setup
method:

Shuffle Cards

1 # Shuffle the cards
2 for pos1 in range(len(self.card_list)):
3 pos2 = random.randrange(len(self.card_list))
4 self.card_list.swap(pos1, pos2)

Don’t forget to import random at the top.

Run your program and make sure you can move cards around.

[image: ../../_images/solitaire_06.png]

	solitaire_06.py Full Listing ← Full listing of where we are right now

	solitaire_06.py Diff ← What we changed to get here

Track Card Piles

Right now we are moving the cards around. But it isn’t easy to figure out what
card is in which pile. We could check by position, but then we start fanning
the cards out, that will be very difficult.

Therefore we will keep a separate list for each pile of cards. When we move
a card we need to move the position, and switch which list it is in.

Add New Constants

To start with, let’s add some constants for each pile:

New Constants

 1# If we fan out cards stacked on each other, how far apart to fan them?
 2CARD_VERTICAL_OFFSET = CARD_HEIGHT * CARD_SCALE * 0.3
 3
 4# Constants that represent "what pile is what" for the game
 5PILE_COUNT = 13
 6BOTTOM_FACE_DOWN_PILE = 0
 7BOTTOM_FACE_UP_PILE = 1
 8PLAY_PILE_1 = 2
 9PLAY_PILE_2 = 3
10PLAY_PILE_3 = 4
11PLAY_PILE_4 = 5
12PLAY_PILE_5 = 6
13PLAY_PILE_6 = 7
14PLAY_PILE_7 = 8
15TOP_PILE_1 = 9
16TOP_PILE_2 = 10
17TOP_PILE_3 = 11
18TOP_PILE_4 = 12

Create the Pile Lists

Then in our __init__ add a variable to track the piles:

Init Method Additions

1 # Create a list of lists, each holds a pile of cards.
2 self.piles = None

In the setup method, create a list for each pile. Then, add all the cards
to the face-down deal pile. (Later, we’ll add support for face-down cards.
Yes, right now all the cards in the face down pile are up.)

Setup Method Additions

1 # Create a list of lists, each holds a pile of cards.
2 self.piles = [[] for _ in range(PILE_COUNT)]
3
4 # Put all the cards in the bottom face-down pile
5 for card in self.card_list:
6 self.piles[BOTTOM_FACE_DOWN_PILE].append(card)

Card Pile Management Methods

Next, we need some convenience methods we’ll use elsewhere.

First, given a card, return the index of which pile that card belongs to:

get_pile_for_card method

1 def get_pile_for_card(self, card):
2 """ What pile is this card in? """
3 for index, pile in enumerate(self.piles):
4 if card in pile:
5 return index

Next, remove a card from whatever pile it happens to be in.

remove_card_from_pile method

1 def remove_card_from_pile(self, card):
2 """ Remove card from whatever pile it was in. """
3 for pile in self.piles:
4 if card in pile:
5 pile.remove(card)
6 break

Finally, move a card from one pile to another.

move_card_to_new_pile method

1 def move_card_to_new_pile(self, card, pile_index):
2 """ Move the card to a new pile """
3 self.remove_card_from_pile(card)
4 self.piles[pile_index].append(card)

Dropping the Card

Next, we need to modify what happens when we release the mouse.

First, see if we release it onto the same pile it came from. If so, just reset
the card back to its original location.

on_mouse_release method

 1 def on_mouse_release(self, x: float, y: float, button: int,
 2 modifiers: int):
 3 """ Called when the user presses a mouse button. """
 4
 5 # If we don't have any cards, who cares
 6 if len(self.held_cards) == 0:
 7 return
 8
 9 # Find the closest pile, in case we are in contact with more than one
10 pile, distance = arcade.get_closest_sprite(self.held_cards[0], self.pile_mat_list)
11 reset_position = True
12
13 # See if we are in contact with the closest pile
14 if arcade.check_for_collision(self.held_cards[0], pile):
15
16 # What pile is it?
17 pile_index = self.pile_mat_list.index(pile)
18
19 # Is it the same pile we came from?
20 if pile_index == self.get_pile_for_card(self.held_cards[0]):
21 # If so, who cares. We'll just reset our position.
22 pass

What if it is on a middle play pile? Ugh, that’s a bit complicated. If the mat
is empty, we need to place it in the middle of the mat. If there are cards on the
mat, we need to offset the card so we can see a spread of cards.

While we can only pick up one card at a time right now, we need to support
dropping multiple cards for once we support multiple card carries.

on_mouse_release method

 1 # Is it on a middle play pile?
 2 elif PLAY_PILE_1 <= pile_index <= PLAY_PILE_7:
 3 # Are there already cards there?
 4 if len(self.piles[pile_index]) > 0:
 5 # Move cards to proper position
 6 top_card = self.piles[pile_index][-1]
 7 for i, dropped_card in enumerate(self.held_cards):
 8 dropped_card.position = top_card.center_x, \
 9 top_card.center_y - CARD_VERTICAL_OFFSET * (i + 1)
10 else:
11 # Are there no cards in the middle play pile?
12 for i, dropped_card in enumerate(self.held_cards):
13 # Move cards to proper position
14 dropped_card.position = pile.center_x, \
15 pile.center_y - CARD_VERTICAL_OFFSET * i
16
17 for card in self.held_cards:
18 # Cards are in the right position, but we need to move them to the right list
19 self.move_card_to_new_pile(card, pile_index)
20
21 # Success, don't reset position of cards
22 reset_position = False

What if it is released on a top play pile? Make sure that we only have one
card we are holding. We don’t want to drop a stack up top. Then move the card
to that pile.

on_mouse_release method

1 # Release on top play pile? And only one card held?
2 elif TOP_PILE_1 <= pile_index <= TOP_PILE_4 and len(self.held_cards) == 1:
3 # Move position of card to pile
4 self.held_cards[0].position = pile.position
5 # Move card to card list
6 for card in self.held_cards:
7 self.move_card_to_new_pile(card, pile_index)
8
9 reset_position = False

If the move is invalid, we need to reset all held cards to their initial location.

on_mouse_release method

1 if reset_position:
2 # Where-ever we were dropped, it wasn't valid. Reset the each card's position
3 # to its original spot.
4 for pile_index, card in enumerate(self.held_cards):
5 card.position = self.held_cards_original_position[pile_index]
6
7 # We are no longer holding cards
8 self.held_cards = []

Test

Test out your program, and see if the cards are being fanned out properly.

Note

The code isn’t enforcing any game rules. You can stack cards in any
order. Also, with long stacks of cards, you still have to drop the card
on the mat. This is counter-intuitive when the stack of cards extends
downwards past the mat.

We leave the solutions to these issues as an exercise for the reader.

[image: ../../_images/solitaire_07.png]

	solitaire_07.py Full Listing ← Full listing of where we are right now

	solitaire_07.py Diff ← What we changed to get here

Pick Up Card Stacks

How do we pick up a whole stack of cards? When the mouse is pressed, we need
to figure out what pile the card is in.

Next, look at where in the pile the card is that we clicked on. If there are
any cards later on on the pile, we want to pick up those cards too. Add them
to the list.

on_mouse_release method

 1 def on_mouse_press(self, x, y, button, key_modifiers):
 2 """ Called when the user presses a mouse button. """
 3
 4 # Get list of cards we've clicked on
 5 cards = arcade.get_sprites_at_point((x, y), self.card_list)
 6
 7 # Have we clicked on a card?
 8 if len(cards) > 0:
 9
10 # Might be a stack of cards, get the top one
11 primary_card = cards[-1]
12 # Figure out what pile the card is in
13 pile_index = self.get_pile_for_card(primary_card)
14
15 # All other cases, grab the face-up card we are clicking on
16 self.held_cards = [primary_card]
17 # Save the position
18 self.held_cards_original_position = [self.held_cards[0].position]
19 # Put on top in drawing order
20 self.pull_to_top(self.held_cards[0])
21
22 # Is this a stack of cards? If so, grab the other cards too
23 card_index = self.piles[pile_index].index(primary_card)
24 for i in range(card_index + 1, len(self.piles[pile_index])):
25 card = self.piles[pile_index][i]
26 self.held_cards.append(card)
27 self.held_cards_original_position.append(card.position)
28 self.pull_to_top(card)

After this, you should be able to pick up a stack of cards from the middle piles
with the mouse and move them around.

	solitaire_08.py Full Listing ← Full listing of where we are right now

	solitaire_08.py Diff ← What we changed to get here

Deal Out Cards

We can deal the cards into the seven middle piles by adding some code to the
setup method. We need to change the list each card is part of, along with
its position.

Setup Method Additions

 1 # - Pull from that pile into the middle piles, all face-down
 2 # Loop for each pile
 3 for pile_no in range(PLAY_PILE_1, PLAY_PILE_7 + 1):
 4 # Deal proper number of cards for that pile
 5 for j in range(pile_no - PLAY_PILE_1 + 1):
 6 # Pop the card off the deck we are dealing from
 7 card = self.piles[BOTTOM_FACE_DOWN_PILE].pop()
 8 # Put in the proper pile
 9 self.piles[pile_no].append(card)
10 # Move card to same position as pile we just put it in
11 card.position = self.pile_mat_list[pile_no].position
12 # Put on top in draw order
13 self.pull_to_top(card)

	solitaire_09.py Full Listing ← Full listing of where we are right now

	solitaire_09.py Diff ← What we changed to get here

Face Down Cards

We don’t play solitaire with all the cards facing up, so let’s add face-down
support to our game.

New Constants

First define a constant for what image to use when face-down.

Face Down Image Constant

1# Face down image
2FACE_DOWN_IMAGE = ":resources:images/cards/cardBack_red2.png"

Updates to Card Class

Next, default each card in the Card class to be face up. Also, let’s add
methods to flip the card up or down.

Updated Card Class

 1class Card(arcade.Sprite):
 2 """ Card sprite """
 3
 4 def __init__(self, suit, value, scale=1):
 5 """ Card constructor """
 6
 7 # Attributes for suit and value
 8 self.suit = suit
 9 self.value = value
10
11 # Image to use for the sprite when face up
12 self.image_file_name = f":resources:images/cards/card{self.suit}{self.value}.png"
13 self.is_face_up = False
14 super().__init__(FACE_DOWN_IMAGE, scale, hit_box_algorithm="None")
15
16 def face_down(self):
17 """ Turn card face-down """
18 self.texture = arcade.load_texture(FACE_DOWN_IMAGE)
19 self.is_face_up = False
20
21 def face_up(self):
22 """ Turn card face-up """
23 self.texture = arcade.load_texture(self.image_file_name)
24 self.is_face_up = True
25
26 @property
27 def is_face_down(self):
28 """ Is this card face down? """
29 return not self.is_face_up

Flip Up Cards On Middle Seven Piles

Right now every card is face down. Let’s update the setup method so the
top cards in the middle seven piles are face up.

Flip Up Cards

1 # Flip up the top cards
2 for i in range(PLAY_PILE_1, PLAY_PILE_7 + 1):
3 self.piles[i][-1].face_up()

Flip Up Cards When Clicked

When we click on a card that is face down, instead of picking it up, let’s flip
it over:

Flip Up Cards

 1 def on_mouse_press(self, x, y, button, key_modifiers):
 2 """ Called when the user presses a mouse button. """
 3
 4 # Get list of cards we've clicked on
 5 cards = arcade.get_sprites_at_point((x, y), self.card_list)
 6
 7 # Have we clicked on a card?
 8 if len(cards) > 0:
 9
10 # Might be a stack of cards, get the top one
11 primary_card = cards[-1]
12 assert isinstance(primary_card, Card)
13
14 # Figure out what pile the card is in
15 pile_index = self.get_pile_for_card(primary_card)
16
17 if primary_card.is_face_down:
18 # Is the card face down? In one of those middle 7 piles? Then flip up
19 primary_card.face_up()
20 else:
21 # All other cases, grab the face-up card we are clicking on
22 self.held_cards = [primary_card]
23 # Save the position
24 self.held_cards_original_position = [self.held_cards[0].position]
25 # Put on top in drawing order
26 self.pull_to_top(self.held_cards[0])
27
28 # Is this a stack of cards? If so, grab the other cards too
29 card_index = self.piles[pile_index].index(primary_card)
30 for i in range(card_index + 1, len(self.piles[pile_index])):
31 card = self.piles[pile_index][i]
32 self.held_cards.append(card)
33 self.held_cards_original_position.append(card.position)
34 self.pull_to_top(card)

Test

Try out your program. As you move cards around, you should see face down cards
as well, and be able to flip them over.

[image: ../../_images/solitaire_10.png]

	solitaire_10.py Full Listing ← Full listing of where we are right now

	solitaire_10.py Diff ← What we changed to get here

Restart Game

We can add the ability to restart are game any type we press the ‘R’ key:

Flip Up Cards

1 def on_key_press(self, symbol: int, modifiers: int):
2 """ User presses key """
3 if symbol == arcade.key.R:
4 # Restart
5 self.setup()

Flip Three From Draw Pile

The draw pile at the bottom of our screen doesn’t work right yet. When we
click on it, we need it to flip three cards to the bottom-right pile. Also,
if the have gone through all the cards in the pile, we need to reset the pile
so we can go through it again.

Flipping of Bottom Deck

 1 def on_mouse_press(self, x, y, button, key_modifiers):
 2 """ Called when the user presses a mouse button. """
 3
 4 # Get list of cards we've clicked on
 5 cards = arcade.get_sprites_at_point((x, y), self.card_list)
 6
 7 # Have we clicked on a card?
 8 if len(cards) > 0:
 9
10 # Might be a stack of cards, get the top one
11 primary_card = cards[-1]
12 assert isinstance(primary_card, Card)
13
14 # Figure out what pile the card is in
15 pile_index = self.get_pile_for_card(primary_card)
16
17 # Are we clicking on the bottom deck, to flip three cards?
18 if pile_index == BOTTOM_FACE_DOWN_PILE:
19 # Flip three cards
20 for i in range(3):
21 # If we ran out of cards, stop
22 if len(self.piles[BOTTOM_FACE_DOWN_PILE]) == 0:
23 break
24 # Get top card
25 card = self.piles[BOTTOM_FACE_DOWN_PILE][-1]
26 # Flip face up
27 card.face_up()
28 # Move card position to bottom-right face up pile
29 card.position = self.pile_mat_list[BOTTOM_FACE_UP_PILE].position
30 # Remove card from face down pile
31 self.piles[BOTTOM_FACE_DOWN_PILE].remove(card)
32 # Move card to face up list
33 self.piles[BOTTOM_FACE_UP_PILE].append(card)
34 # Put on top draw-order wise
35 self.pull_to_top(card)
36
37 elif primary_card.is_face_down:
38 # Is the card face down? In one of those middle 7 piles? Then flip up
39 primary_card.face_up()
40 else:
41 # All other cases, grab the face-up card we are clicking on
42 self.held_cards = [primary_card]
43 # Save the position
44 self.held_cards_original_position = [self.held_cards[0].position]
45 # Put on top in drawing order
46 self.pull_to_top(self.held_cards[0])
47
48 # Is this a stack of cards? If so, grab the other cards too
49 card_index = self.piles[pile_index].index(primary_card)
50 for i in range(card_index + 1, len(self.piles[pile_index])):
51 card = self.piles[pile_index][i]
52 self.held_cards.append(card)
53 self.held_cards_original_position.append(card.position)
54 self.pull_to_top(card)
55
56 else:
57
58 # Click on a mat instead of a card?
59 mats = arcade.get_sprites_at_point((x, y), self.pile_mat_list)
60
61 if len(mats) > 0:
62 mat = mats[0]
63 mat_index = self.pile_mat_list.index(mat)
64
65 # Is it our turned over flip mat? and no cards on it?
66 if mat_index == BOTTOM_FACE_DOWN_PILE and len(self.piles[BOTTOM_FACE_DOWN_PILE]) == 0:
67 # Flip the deck back over so we can restart
68 temp_list = self.piles[BOTTOM_FACE_UP_PILE].copy()
69 for card in reversed(temp_list):
70 card.face_down()
71 self.piles[BOTTOM_FACE_UP_PILE].remove(card)
72 self.piles[BOTTOM_FACE_DOWN_PILE].append(card)
73 card.position = self.pile_mat_list[BOTTOM_FACE_DOWN_PILE].position

Test

Now we’ve got a basic working solitaire game! Try it out!

[image: ../../_images/solitaire_111.png]

	solitaire_11.py Full Listing ← Full listing of where we are right now

	solitaire_11.py Diff ← What we changed to get here

Conclusion

There’s a lot more that could be added to this game, such as enforcing rules,
adding animation to ‘slide’ a dropped card to its position, sound, better graphics,
and more. Or this could be adapted to a different card game.

Hopefully this is enough to get you started on your own game.

 Lights

Lights

[image: ../../_images/lights.png]
This tutorial needs some documentation. Feel free to submit a PR to improve it!

light_demo.py

 1"""
 2Show how to use lights.
 3
 4.. note:: This uses features from the upcoming version 2.4. The API for these
 5 functions may still change. To use, you will need to install one of the
 6 pre-release packages, or install via GitHub.
 7
 8Artwork from http://kenney.nl
 9
 10"""
 11import arcade
 12from arcade.experimental.lights import Light, LightLayer
 13
 14SCREEN_WIDTH = 1024
 15SCREEN_HEIGHT = 768
 16SCREEN_TITLE = "Lighting Demo"
 17VIEWPORT_MARGIN = 200
 18MOVEMENT_SPEED = 5
 19
 20# This is the color used for 'ambient light'. If you don't want any
 21# ambient light, set it to black.
 22AMBIENT_COLOR = (10, 10, 10)
 23
 24class MyGame(arcade.Window):
 25 """ Main Game Window """
 26
 27 def __init__(self, width, height, title):
 28 """ Set up the class. """
 29 super().__init__(width, height, title, resizable=True)
 30
 31 # Sprite lists
 32 self.background_sprite_list = None
 33 self.player_list = None
 34 self.wall_list = None
 35 self.player_sprite = None
 36
 37 # Physics engine
 38 self.physics_engine = None
 39
 40 # Used for scrolling
 41 self.view_left = 0
 42 self.view_bottom = 0
 43
 44 # --- Light related ---
 45 # List of all the lights
 46 self.light_layer = None
 47 # Individual light we move with player, and turn on/off
 48 self.player_light = None
 49
 50 def setup(self):
 51 """ Create everything """
 52
 53 # Create sprite lists
 54 self.background_sprite_list = arcade.SpriteList()
 55 self.player_list = arcade.SpriteList()
 56 self.wall_list = arcade.SpriteList()
 57
 58 # Create player sprite
 59 self.player_sprite = arcade.Sprite(":resources:images/animated_characters/female_person/femalePerson_idle.png", 0.4)
 60 self.player_sprite.center_x = 64
 61 self.player_sprite.center_y = 270
 62 self.player_list.append(self.player_sprite)
 63
 64 # --- Light related ---
 65 # Lights must shine on something. If there is no background sprite or color,
 66 # you will just see black. Therefore, we use a loop to create a whole bunch of brick tiles to go in the
 67 # background.
 68 for x in range(-128, 2000, 128):
 69 for y in range(-128, 1000, 128):
 70 sprite = arcade.Sprite(":resources:images/tiles/brickTextureWhite.png")
 71 sprite.position = x, y
 72 self.background_sprite_list.append(sprite)
 73
 74 # Create a light layer, used to render things to, then post-process and
 75 # add lights. This must match the screen size.
 76 self.light_layer = LightLayer(SCREEN_WIDTH, SCREEN_HEIGHT)
 77 # We can also set the background color that will be lit by lights,
 78 # but in this instance we just want a black background
 79 self.light_layer.set_background_color(arcade.color.BLACK)
 80
 81 # Here we create a bunch of lights.
 82
 83 # Create a small white light
 84 x = 100
 85 y = 200
 86 radius = 100
 87 mode = 'soft'
 88 color = arcade.csscolor.WHITE
 89 light = Light(x, y, radius, color, mode)
 90 self.light_layer.add(light)
 91
 92 # Create an overlapping, large white light
 93 x = 300
 94 y = 150
 95 radius = 200
 96 color = arcade.csscolor.WHITE
 97 mode = 'soft'
 98 light = Light(x, y, radius, color, mode)
 99 self.light_layer.add(light)
100
101 # Create three, non-overlapping RGB lights
102 x = 50
103 y = 450
104 radius = 100
105 mode = 'soft'
106 color = arcade.csscolor.RED
107 light = Light(x, y, radius, color, mode)
108 self.light_layer.add(light)
109
110 x = 250
111 y = 450
112 radius = 100
113 mode = 'soft'
114 color = arcade.csscolor.GREEN
115 light = Light(x, y, radius, color, mode)
116 self.light_layer.add(light)
117
118 x = 450
119 y = 450
120 radius = 100
121 mode = 'soft'
122 color = arcade.csscolor.BLUE
123 light = Light(x, y, radius, color, mode)
124 self.light_layer.add(light)
125
126 # Create three, overlapping RGB lights
127 x = 650
128 y = 450
129 radius = 100
130 mode = 'soft'
131 color = arcade.csscolor.RED
132 light = Light(x, y, radius, color, mode)
133 self.light_layer.add(light)
134
135 x = 750
136 y = 450
137 radius = 100
138 mode = 'soft'
139 color = arcade.csscolor.GREEN
140 light = Light(x, y, radius, color, mode)
141 self.light_layer.add(light)
142
143 x = 850
144 y = 450
145 radius = 100
146 mode = 'soft'
147 color = arcade.csscolor.BLUE
148 light = Light(x, y, radius, color, mode)
149 self.light_layer.add(light)
150
151 # Create three, overlapping RGB lights
152 # But 'hard' lights that don't fade out.
153 x = 650
154 y = 150
155 radius = 100
156 mode = 'hard'
157 color = arcade.csscolor.RED
158 light = Light(x, y, radius, color, mode)
159 self.light_layer.add(light)
160
161 x = 750
162 y = 150
163 radius = 100
164 mode = 'hard'
165 color = arcade.csscolor.GREEN
166 light = Light(x, y, radius, color, mode)
167 self.light_layer.add(light)
168
169 x = 850
170 y = 150
171 radius = 100
172 mode = 'hard'
173 color = arcade.csscolor.BLUE
174 light = Light(x, y, radius, color, mode)
175 self.light_layer.add(light)
176
177 # Create a light to follow the player around.
178 # We'll position it later, when the player moves.
179 # We'll only add it to the light layer when the player turns the light
180 # on. We start with the light off.
181 radius = 150
182 mode = 'soft'
183 color = arcade.csscolor.WHITE
184 self.player_light = Light(0, 0, radius, color, mode)
185
186 # Create the physics engine
187 self.physics_engine = arcade.PhysicsEngineSimple(self.player_sprite, self.wall_list)
188
189 # Set the viewport boundaries
190 # These numbers set where we have 'scrolled' to.
191 self.view_left = 0
192 self.view_bottom = 0
193
194 def on_draw(self):
195 """ Draw everything. """
196 self.clear()
197
198 # --- Light related ---
199 # Everything that should be affected by lights gets rendered inside this
200 # 'with' statement. Nothing is rendered to the screen yet, just the light
201 # layer.
202 with self.light_layer:
203 self.background_sprite_list.draw()
204 self.player_list.draw()
205
206 # Draw the light layer to the screen.
207 # This fills the entire screen with the lit version
208 # of what we drew into the light layer above.
209 self.light_layer.draw(ambient_color=AMBIENT_COLOR)
210
211 # Now draw anything that should NOT be affected by lighting.
212 arcade.draw_text("Press SPACE to turn character light on/off.",
213 10 + self.view_left, 10 + self.view_bottom,
214 arcade.color.WHITE, 20)
215
216 def on_resize(self, width, height):
217 """ User resizes the screen. """
218
219 # --- Light related ---
220 # We need to resize the light layer to
221 self.light_layer.resize(width, height)
222
223 # Scroll the screen so the user is visible
224 self.scroll_screen()
225
226 def on_key_press(self, key, _):
227 """Called whenever a key is pressed. """
228
229 if key == arcade.key.UP:
230 self.player_sprite.change_y = MOVEMENT_SPEED
231 elif key == arcade.key.DOWN:
232 self.player_sprite.change_y = -MOVEMENT_SPEED
233 elif key == arcade.key.LEFT:
234 self.player_sprite.change_x = -MOVEMENT_SPEED
235 elif key == arcade.key.RIGHT:
236 self.player_sprite.change_x = MOVEMENT_SPEED
237 elif key == arcade.key.SPACE:
238 # --- Light related ---
239 # We can add/remove lights from the light layer. If they aren't
240 # in the light layer, the light is off.
241 if self.player_light in self.light_layer:
242 self.light_layer.remove(self.player_light)
243 else:
244 self.light_layer.add(self.player_light)
245
246 def on_key_release(self, key, _):
247 """Called when the user releases a key. """
248
249 if key == arcade.key.UP or key == arcade.key.DOWN:
250 self.player_sprite.change_y = 0
251 elif key == arcade.key.LEFT or key == arcade.key.RIGHT:
252 self.player_sprite.change_x = 0
253
254 def scroll_screen(self):
255 """ Manage Scrolling """
256
257 # Scroll left
258 left_boundary = self.view_left + VIEWPORT_MARGIN
259 if self.player_sprite.left < left_boundary:
260 self.view_left -= left_boundary - self.player_sprite.left
261
262 # Scroll right
263 right_boundary = self.view_left + self.width - VIEWPORT_MARGIN
264 if self.player_sprite.right > right_boundary:
265 self.view_left += self.player_sprite.right - right_boundary
266
267 # Scroll up
268 top_boundary = self.view_bottom + self.height - VIEWPORT_MARGIN
269 if self.player_sprite.top > top_boundary:
270 self.view_bottom += self.player_sprite.top - top_boundary
271
272 # Scroll down
273 bottom_boundary = self.view_bottom + VIEWPORT_MARGIN
274 if self.player_sprite.bottom < bottom_boundary:
275 self.view_bottom -= bottom_boundary - self.player_sprite.bottom
276
277 # Make sure our boundaries are integer values. While the viewport does
278 # support floating point numbers, for this application we want every pixel
279 # in the view port to map directly onto a pixel on the screen. We don't want
280 # any rounding errors.
281 self.view_left = int(self.view_left)
282 self.view_bottom = int(self.view_bottom)
283
284 arcade.set_viewport(self.view_left,
285 self.width + self.view_left,
286 self.view_bottom,
287 self.height + self.view_bottom)
288
289 def on_update(self, delta_time):
290 """ Movement and game logic """
291
292 # Call update on all sprites (The sprites don't do much in this
293 # example though.)
294 self.physics_engine.update()
295
296 # --- Light related ---
297 # We can easily move the light by setting the position,
298 # or by center_x, center_y.
299 self.player_light.position = self.player_sprite.position
300
301 # Scroll the screen so we can see the player
302 self.scroll_screen()
303
304
305if __name__ == "__main__":
306 window = MyGame(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)
307 window.setup()
308 arcade.run()

 Bundling a Game with PyInstaller

Bundling a Game with PyInstaller

[image: ../../_images/floppy-disk.svg]You’ve written your game using Arcade and it is a masterpiece! Congrats! Now
you want to share it with others. That usually means helping people install
Python, downloading the necessary modules, copying your code, and then getting
it all working. Sharing is not an easy task. Well, PyInstaller [https://pyinstaller.readthedocs.io/en/stable/] can change all
that!

PyInstaller [https://pyinstaller.readthedocs.io/en/stable/] is a tool for Python that lets you bundle up an entire Python
application into a one-file executable bundle that you can easily share.
Thankfully, it works great with Arcade!

We will be demonstrating usage with Windows, but everything should work exactly
the same across Windows, Mac, and Linux. Note that you can only build for the
system you are on. This means that in order to make a Windows build, you must
be on a Windows machine, same thing for Linux and Mac.

Bundling a Simple Arcade Script

[image: ../../_images/script.svg]To demonstrate how PyInstaller works, we will:

	Install PyInstaller

	Create a simple example application that uses Arcade

	Bundle the application into a one-file executable

	Run the application

First, make sure both Arcade and PyInstaller are installed in your Python environment with:

pip install arcade pyinstaller

Then we need our game. In this case, we’ll start simple. We need a one-file game that doesn’t require
any additional images or sounds. Once we have that working, we can get more complicated.
Create a file called main.py that contains the following:

Sample game – main.py

import arcade

arcade.open_window(400, 400, "My Game")

self.clear()
arcade.draw_circle_filled(200, 200, 100, arcade.color.BLUE)
arcade.finish_render()

arcade.run()

Now, create a one-file executable bundle file by running PyInstaller from the command-line:

pyinstaller main.py --onefile

PyInstaller generates the executable that is a bundle of your game. It puts it in the dist\ folder under your current working directory. Look for a
file named main.exe in dist\. Run this and see the example application start up!

You can copy this file wherever you want on your computer and run it. Or, share it with others. Everything your
script needs is inside this executable file.

For simple games, this is all you need to know! But, if your game loads any kind of data files from disk, continue reading.

Handling Data Files

[image: ../../_images/data-files.svg]When creating a bundle, PyInstaller first examines your project and automatically identifies nearly everything your project needs (a Python interpreter,
installed modules, etc). But, it can’t automatically determine what data files your game is loading from disk (images, sounds,
maps). So, you must explicitly tell PyInstaller about these files and where it should put them in the bundle.
This is done with PyInstaller’s --add-data flag:

pyinstaller main.py --add-data "stripes.jpg;."

The first item passed to --add-data is the “source” file or directory (ex: stripes.jpg) identifying what
PyInstaller should include in the bundle. The item after the semicolon is the “destination” (ex: “.”), which
specifies where files should be placed in the bundle, relative to the bundle’s root. In the example
above, the stripes.jpg image is copied to the root of the bundle (”.”).

After instructing PyInstaller to include data files in a bundle, you must make sure your code loads
the data files from the correct directory. When you share your game’s bundle, you have no control over what directory
the user will run your bundle from. This is complicated by the fact that a one-file PyInstaller
bundle is uncompressed at runtime to a random temporary directory and then executed from there. This document describes
one simple approach that allows your code to execute and load files when running in a PyInstaller bundle AND also be
able to run when not bundled.

You need to do two things. First, the snippet below must be placed at the beginning of your script:

if getattr(sys, 'frozen', False) and hasattr(sys, '_MEIPASS'):
 os.chdir(sys._MEIPASS)

This snippet uses sys.frozen and sys._MEIPASS, which are both set by PyInstaller. The sys.frozen setting
indicates whether code is running from a bundle (“frozen”). If the code is “frozen”, the working
directory is changed to the root of where the bundle has been uncompressed to (sys._MEIPASS). PyInstaller often
uncompresses its one-file bundles to a directory named something like: C:\Users\user\AppData\Local\Temp_MEI123456.

Second, once the code above has set the current working directory, all file paths in your code can be relative
paths (ex: resources\images\stripes.jpg) as opposed to absolute paths (ex:
C:\projects\mygame\resources\images\stripes.jpg). If you do these two things and add data files to
your package as demonstrated below, your code will be able to run “normally” as well as running in a bundle.

Below are some examples that show a few common patterns of how data files can be included in a PyInstaller bundle.
The examples first show a code snippet that demonstrates how data is loaded (relative path names), followed by the
PyInstaller command to copy data files into the bundle. They all assume that the os.chdir() snippet
of code listed above is being used.

One Data File

If you simply have one data file in the same directory as your script, refer to the data file using a relative path like this:

sprite = arcade.Sprite("stripes.jpg")

Then, you would use a PyInstaller command like this to include the data file in the bundled executable:

pyinstaller main.py --add-data "stripes.jpg;."
...or...
pyinstaller main.py --add-data "*.jpg;."

One Data Directory

[image: ../../_images/document-icon.svg]If you have a directory of data files (such as images), refer to the data directory using a relative path like this:

sprite = arcade.Sprite("images/player.jpg")
sprite = arcade.Sprite("images/enemy.jpg")

Then, you would use a PyInstaller command like this to include the directory in the bundled executable:

pyinstaller main.py --add-data "images;images"

Multiple Data Files and Directories

You can use the --add-data flag multiple times to add multiple files and directories into the bundle:

pyinstaller main.py --add-data "player.jpg;." --add-data "enemy.jpg;." --add-data "music;music"

One Directory for Everything

Although you can include every data file and directory with separate --add-data flags, it is suggested
that you write your game so that all of your data files are under one root directory, often named resources. You
can use subdirectories to help organize everything. An example directory tree could look like:

project/
|--- main.py
|--- resources/
 |--- images/
 | |--- enemy.jpg
 | |--- player.jpg
 |--- sound/
 | |--- game_over.wav
 | |--- laser.wav
 |--- text/
 |--- names.txt

With this approach, it becomes easy to bundle all your data with just a single --add-data flag. Your code
would use relative pathnames to load resources, something like this:

sprite = arcade.Sprite("resources/images/player.jpg")
text = open("resources/text/names.txt").read()

And, you would include this entire directory tree into the bundle like this:

pyinstaller main.py --add-data "resources;resources"

It is worth spending a bit of time to plan out how you will layout and load your data files in order to keep
the bundling process simple.

The technique of handling data files described above is just one approach. If you want more control and flexibility
in handling data files, learn about the different path information that is available by reading the
PyInstaller Run-Time Information [https://pyinstaller.readthedocs.io/en/stable/runtime-information.html]
documentation.

Now that you know how to install PyInstaller, include data files, and bundle your game into an executable, you
have what you need to bundle your game and share it with your new fans!

Troubleshooting

[image: ../../_images/detective.svg]
Use a One-Folder Bundle for Troubleshooting

If you are having problems getting your bundle to work properly, it may help to temporarily
omit the --onefile flag from the pyinstaller command. This will bundle your
game into a one-folder bundle with an executable inside it. This allows you to inspect
the contents of the folder and make sure all of the files are where you expect them
to be. The one-file bundle produced by --onefile is simply a
self-uncompressing archive of this one-folder bundle.

PyInstaller Not Bundling a Needed Module

In most cases, PyInstaller is able to analyze your project and automatically determine
what modules to place in the bundle. But, if PyInstaller happens to miss a module, you can use
the --hidden-import MODULENAME flag to explicitly instruct PyInstaller to include a module. See the
PyInstaller documentation [https://pyinstaller.readthedocs.io/en/stable/usage.html#what-to-bundle-where-to-search]
for more details.

Extra Details

	You will notice that after running pyinstaller, a .spec file will appear in your directory. This file is generated by PyInstaller and does not need to be saved or checked into your source code repo.

	Executable one-file bundles produced by PyInstaller’s --onefile flag will start up slower than your original application or the one-folder bundle. This is expected because one-file bundles are ultimately just a compressed folder, so they must take time to uncompress themselves each time the bundle is run.

	By default, when PyInstaller creates a bundled application, the application opens a console window. You can suppress the cre