Python Arcade Library
Release 3.0.0.dev26

Paul Vincent Craven

Dec 15, 2023

10

11

12

13

14

15

16

17

18

19

20

21

22

What is Arcade?

Start Here

Installation

How to Get Help

How-To Example Code

Python Discord GameJam 2020
Games Made With Arcade

Simple Platformer

Pymunk Platformer

Using Views for Start/End Screens
Solitaire

Lights

Bundling a Game with PyInstaller
Compiling a Game with Nuitka
Shaders

Making a Menu with Arcade’s GUI
Working With FrameBuffer Objects
Drawing & Using Sprites
Keyboard

Sound

Textures

Sections

GET STARTED

19

25

61

65

75
141
169
175
203
211
217
221
297
311
317
323
327
339

341

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

GUI

Texture Atlas

Edge Artifacts

Logging

OpenGL

Performance

Headless Arcade
Vertical Synchronization
Pygame Comparison
API Index

API Reference

Built-In Resources
Release Notes

Ways to Contribute
Contributing to Arcade
Directory Structure
How to Submit Changes
Release Checklist

Social

Learning Resources

Index

349

365

369

373

375

377

379

383

385

389

397

603

641

691

693

697

699

701

703

705

707

CHAPTER
ONE

WHAT IS ARCADE?

Arcade is an easy-to-learn Python library for creating 2D video games. It is ideal for people learning to program, or
developers that want to code a 2D game without learning a complex framework.

Python Arcade Library, Release 3.0.0.dev26

2 Chapter 1. What is Arcade?

CHAPTER
TWO

START HERE

2.1 Installation

Arcade can be installed like any other Python Package. Arcade needs support for OpenGL 3.3+. If you are familiar
with Python package management you can just “pip install” Arcade. For more detailed instructions see Installation.

2.2 Getting Help

If you get stuck, you can always ask for help! See the page on How fo Get Help for more information.

2.3 Tutorials

If you are already familiar with basic Python programming, follow the Simple Platformer as a quick way to get up and
running. If you are just learning how to program, see the Learn Arcade book.

2.4 Arcade Skill Tree

* Basic Drawing Commands - See How to Draw with Your Computer, drawing_primitives

— ShapeElementLists - Batch together thousands of drawing commands into one using a arcade.
ShapeElementList. See examples in Faster Drawing with ShapeElementLists.

* Sprites - Almost everything in Arcade is done with the arcade. Sprite class.
— Basic Sprites and Collisions
— Individually place sprites
— Place sprites with a loop
— Place sprites with a list
* Moving player sprites
— Mouse - sprite_collect_coins

— Keyboard - sprite_move_keyboard

https://learn.arcade.academy
https://learn.arcade.academy/en/latest/chapters/05_drawing/drawing.html
https://learn.arcade.academy/en/latest/chapters/21_sprites_and_collisions/sprites.html#basic-sprites-and-collisions
https://learn.arcade.academy/en/latest/chapters/25_sprites_and_walls/sprites_and_walls.html#individually-placing-walls
https://learn.arcade.academy/en/latest/chapters/25_sprites_and_walls/sprites_and_walls.html#placing-walls-with-a-loop
https://learn.arcade.academy/en/latest/chapters/25_sprites_and_walls/sprites_and_walls.html#placing-walls-with-a-list

Python Arcade Library, Release 3.0.0.dev26

% Keyboard, slightly more complex but handles multiple key presses better:
sprite_move_keyboard_better

Keyboard with acceleration, de-acceleration: sprite_move_keyboard_accel

* Keyboard, rotate and move forward/back like a space ship: sprite_move_angle
— Game Controller - sprite_move_controller

% Game controller buttons - Supported, but documentation needed.

* Sprite collision detection

Basic detection - Learn arcade book on collisions, sprite_collect_coins

Understanding collision detection and spatial hashing: Collision detection performance

Sprite Hit boxes
* Detail amount - arcade. Sprite
Changing -arcade. Sprite.hit_box

Drawing - arcade.Sprite.draw_hit_box

Avoid placing items on walls - sprite_no_coins_on_walls

Sprite drag-and-drop - See the Solitaire.
* Drawing sprites in layers
* Sprite animation
— Change texture on sprite when hit - sprite_change_coins

* Moving non-player sprites

Bouncing - sprite_bouncing_coins

Moving towards player - sprite_follow_simple

Moving towards player, but with a delay - sprite_follow_simple_2

Space-invaders style - slime_invaders

Can a sprite see the player? - line_of_sight

A-star pathfinding - astar_pathfinding

 Shooting

Player shoots straight up - sprite_bullets

Enemy shoots every x frames - sprite_bullets_periodic

Enemy randomly shoots x frames - sprite_bullets_random

Player aims - sprite_bullets_aimed
— Enemy aims - sprite_bullets_enemy_aims
* Physics Engines

— SimplePhysicsEngine - Platformer tutorial Step 3 - Many Sprites with SpriteList, Learn Arcade Book Simple
Physics Engine, Example sprite_move_walls

— PlatformerPhysicsEngine - From the platformer tutorial: Step 4 - Add User Control,
% sprite_moving_platforms

% Ladders - Platformer tutorial Step 10 - Adding a Score

4 Chapter 2. Start Here

https://learn.arcade.academy/en/latest/chapters/21_sprites_and_collisions/sprites.html#the-update-method
https://learn.arcade.academy/en/latest/chapters/25_sprites_and_walls/sprites_and_walls.html#physics-engine
https://learn.arcade.academy/en/latest/chapters/25_sprites_and_walls/sprites_and_walls.html#physics-engine

Python Arcade Library, Release 3.0.0.dev26

— Using the physics engine on multiple sprites - Supported, but documentation needed.
— Pymunk top-down - Supported, needs docs
— Pymunk physics engine for a platformer - Pymunk Platformer
* View management
— Minimal example of using views - view_screens_minimal
— Using views to add a pause screen - view_pause_screen
— Using views to add an instruction and game over screen - view_instructions_and_game_over
* Window management
— Scrolling - sprite_move_scrolling
— Add full screen support - full_screen_example
— Allow user to resize the window - resizable_window
e Map Creation
— Programmatic creation
% Individually place sprites
% Place sprites with a loop
% Place sprites with a list
— Procedural Generation
% maze_depth_first
* maze_recursive
% procedural_caves_bsp
% procedural_caves_cellular

— TMX map creation - Platformer tutorial: Step 8 - Collecting Coins

*

Layers - Platformer tutorial: Step 8 - Collecting Coins

*

Multiple Levels - sprite_tiled_map_with_levels

*

Object Layer - Supported, but documentation needed.
% Hit-boxes - Supported, but documentation needed.
% Animated Tiles - Supported, but documentation needed.
* Sound - Learn Arcade book sound chapter
— music_control_demo
— Spatial sound sound_demo
* Particles - particle_systems
* GUI
— Concepts - GUI Concepts
— Examples - GUI Concepts
* OpenGL
— Read more about using OpenGL in Arcade with OpenGL.

2.4. Arcade Skill Tree 5

https://learn.arcade.academy/en/latest/chapters/25_sprites_and_walls/sprites_and_walls.html#individually-placing-walls
https://learn.arcade.academy/en/latest/chapters/25_sprites_and_walls/sprites_and_walls.html#placing-walls-with-a-loop
https://learn.arcade.academy/en/latest/chapters/25_sprites_and_walls/sprites_and_walls.html#placing-walls-with-a-list
https://learn.arcade.academy/en/latest/chapters/20_sounds/sounds.html

Python Arcade Library, Release 3.0.0.dev26

— Lights - light_demo
— Writing shaders using “ShaderToy”
% Shader Toy - Glow
% Shader Toy - Particles
% Learn how to ray-cast shadows in the Ray-casting Shadows.
% Make your screen look like an 80s monitor in CRT Filter.
% Study the Asteroids Example Code.
— Rendering onto a sprite to create a mini-map - minimap
— Bloom/glow effect - bloom_defender
— Learn to do a compute shader in Compute Shader.

e Logging

6 Chapter 2. Start Here

https://github.com/pythonarcade/asteroids

CHAPTER
THREE

INSTALLATION

Arcade runs on Windows, Mac OS X, and Linux.
Arcade requires Python 3.7 or newer. It does not run on Python 2.x.

Select the instructions for your platform:

3.1 Installation on Windows

To develop with the Arcade library, we need to install Python, then install Arcade.

3.1.1 Step 1: Install Python

Install Python from the official Python website:
https://www.python.org/downloads/

Run the downloader. From there, you can just click ‘install’. If you aren’t using an IDE like PyCharm or Visual Studio,
you might want to also mark the checkbox and add Python to the path.

» Python 3.10.1 (64-bit) Setup - X

) Install Python 3.10.1 (64-bit)
Select Install Now to install Python with default settings, or choose

Customize to enable or disable features.

= Install Now

C:\Users\craven\AppData\Local\Programs\Python\Python310

Includes IDLE, pip and documentation
Creates shortcuts and file associations

—> Customize installation

Choose location and features

python
for nstall launcher for all users (recommended)

Wind()ws [J Add Python 3.10 to PATH Cancel

Once installed, you can just close the dialog. There’s no need to increase the path length, although it doesn’t hurt
anything if you do.

https://www.python.org/downloads/

Python Arcade Library, Release 3.0.0.dev26

3.1.2 Step 2: Install The Arcade Library

If you install Arcade as a pre-built library, there are two options on how to do it. The best way is to use a “virtual
environment.” This is a collection of Python libraries that only apply to your particular project. You don’t have to worry
about libraries for other projects conflicting with your project. You also don’t need “administrator” level privileges to
install libraries. Instructions for doing this with the PyCharm IDE are below:

Install Arcade with PyCharm and a Virtual Environment

If you are using PyCharm, (the community edition works great and is free) setting up a virtual environment is easy.
Once you’ve created your project, open up the settings:

Ru

Alt+Insert

Ctrl+Alt+Shift+ Insert

& Settingy... Ctrl+Alt+5

Other Settings »

Select project interpreter:
PC| Settings
Project: arcade-games-work * Project Interpreter
P Appearance & Behavior Proj n | @ Py
Keymap
P Editor

Plugins

Control

cade-games-work

» Build, Execution, Deployment

P Languages & Frameworks

P Tools

Create a new virtual environment. Make sure the venv is inside your project folder.

8 Chapter 3. Installation

https://www.jetbrains.com/pycharm/

Python Arcade Library, Release 3.0.0.dev26

vdd Python Int

& Virtualenv Environment

H Interpreter

rant

Cancel

Now you can install libraries. You can search for “Arcade” and install it.

Another way to do it is create a file called requirements.txt and just type arcade in that file. PyCharm will
automatically ask any libraries in that file. It is a common way to list dependencies for Python projects.

B File Edit W

requirement:

Plugi

¥y ¥ Y ¥ Y ¥Y Y Y Y VY¥YYYYYY

figuration updated

CRLF UTF-8

3.1. Installation on Windows 9

Python Arcade Library, Release 3.0.0.dev26

Install Arcade using the command line interface

If you prefer to use the command line interface (CLI), then you can install arcade directly using pip:
pip3 install arcade
If you happen to be using pipenv, then the appropriate command is:

python3 -m pipenv install arcade

3.2 Installation on Mac

Go to the Python website and download Python.

& python’ A

About Downloads Documentation Community Success Stories

All releases

Download Download for Mac OS X

Source code
Python 3.8.1

Download Pythol Windows

Not the OS you are looking for? Python can be used on

FEl T T, Mac 0S X many operating systems and environments.

Linux/UNIX, Mac O View the full list of downloads.

Want to help test d Other Platforms

Docker images .
HOCKERI M AEES License

Looking for Python|
Alternative Implementations

Then install it:

10 Chapter 3. Installation

https://www.python.org/downloads/

Python Arcade Library, Release 3.0.0.dev26

® O & Install Python a

Welcome to the Python Installer

This package will install Python 3.8.1 for macOS 10.9 or later.
e Introduction
Python for macOS consists of the Python programming language
interpreter and its batteries-included standard library to allow easy
access to macOS features. It also includes the Python integrated
development environment, IDLE. You can also use the included pip to
download and install third-party packages from the Python Package
Index.

At the end of this install, click on Install Certificates toinstall a
set of current SSL root certificates.

Continue
S
Download and install PyCharm. The community edition is free, and WAY better than IDLE.
Download the zip file (or use git) for the Arcade template file.
https://github.com/pythonarcade/template
LI pythonarcade / template @Unwatch~ 2 dstar 0 YFork 1
<> Code Issues 0 Pull requests 0 Actions Projects 0 Wiki Security Insights Settings
No description, website, or topics provided. Edit
Manage topics
P 1 commit ¥ 1branch T 0 packages $ 0 releases 42 1 contributor s View license
Branch: master = New pull request Create new file Upload files = Find file
‘ pvcraven First commit Clone with SSH ® Use HTTPS
B source_code First commit Use a password protected SSH key.
git@github.com:pythonarcade/template.git @_
B .gitignore First commit
li rst First it
8 license.rs rst comm Open in Desktop Download ZIP
=) readme ret First rammit iy ETvaTerey

After you've downloaded it, open up the zip file, and pull out the template folder to your desktop or wherever you’d
like to save it. Then rename it to your project name.

3.2. Installation on Mac 11

https://www.jetbrains.com/pycharm/
https://github.com/pythonarcade/template

Python Arcade Library, Release 3.0.0.dev26

Start PyCharm, and select File. .. Open and select the folder you just created.

When creating opening the new project, create a virtual environment like so:

® 0 New Project
& Pure Python
B Django

Location: | /Users/paulcraven/Desktop/MacProject

Flask ¥ Project Interpreter: New Virtualenv environment
© Google App Engine
Pyramid *) New environment using | ¢ Virtualenv

B Web2Py

isi Scientific

Location: /Users/paulcraven/Desktop/MacProject/venv

A Angular CLI Base interpreter: /usr/local/bin/python3.8

@ AngularJ$ Inherit global site-packages

(B Bootstrap Make available to all projects
F| Foundation Existing interpreter

8 HTMLS5 Boilerplate

& React App

& React Native

e Python 3.7

If that doesn’t work, (sometimes PyCharm seems to ignore that, or maybe that step got skipped) go into Py-
Charm. .. settings, then “Project interpreter” on the right side, click the easy-to-miss gear icon and “Add”

12 Chapter 3. Installation

Python Arcade Library, Release 3.0.0.dev26

® O Preferences

Project: MacProject > Project Interpreter

> Appearance & Behavior Project Interpreter: | é@ Python 3.8 (MacProject)
Keymap

> Editor Package Version Latest version

Plugins Pillow 7.0.0 7.0.0
> Version Control arcade 2.3.6 2.3.6

¥ Project: MacProject atirs 19.3.0 19.3.0

future 0.18.2
numpy o 1.18.1

pip I A 20.0.2
> Build, Execution, Deployment pyglet 5. 1.5.0

Project Interpreter

Project Structure

> Languages & Frameworks pyglet-ffmpeg2 bl OXINIG

> Tools pytiled-parser .9: 0.9.2
setuptools A 4520

Cancel

... Then set it like so:

3.2. Installation on Mac 13

Python Arcade Library, Release 3.0.0.dev26

[BON | Add Python Interpreter

«* Virtualenv Environment ¢) New environment

Conda Environment Location: /Users/paulcraven/Desktop/MacProject/venv

e s Base interpreter: /usr/local/bin/python3.8

® Pipenv Environment .)
Inherit global site-packages
SSH Interpreter Make available to all projects

Vagrant Existing environment

> Docker <No interpreter>

s Docker Compose

You should get a warning at the top of the screen that ‘arcade’ is not installed. Go ahead and install it. Then try running
the starting template.

3.2.1 Sound Support

Support for .ogg Ogg Vorbis files and mp3 files can be added via HomeBrew with:

brew install ffmpeg

3.3 Installation on Linux

The Arcade library is Python 3.7+ only. First check your version of Python to ensure you have 3.7 or higher:

[python -V

If your version shows Python 2.X then try running with:

[python3 -V

If that works and shows you Python 3.7+, then anytime you see the python command, replace it with python3.

If you do not have Python 3.7+, please lookup how to install it for your specific distro of Linux. For Ubuntu/Debian
this would be with the below command, if you did have Python 3.7, you can skip this step:

[sudo apt install python3 python3-pip libjpeg-dev zliblg-dev]

14 Chapter 3. Installation

https://brew.sh/

Python Arcade Library, Release 3.0.0.dev26

Next you’ll need to setup a Virtual Environment. Arcade should always be installed with a virtual environment. In-
stalling outside of a virtual environment can lead to unintended consequences and bugs with your system. You can read
more about Virtual Environments at this page: https://docs.python.org/3/tutorial/venv.html

[python -m venv my_venv]

This creates a new folder called my_venv which contains your Python virtual environment. You can now activate it
with:

{source my_venv/bin/activate]

And deactivate it with:

[deactivate }

Once your venv is activated, you can install Arcade with:

[pip install arcade]

3.3.1 Raspberry Pi Instructions

Arcade required OpenGL graphics 3.3 or higher. Unfortunately the Raspberry Pi does not support this, Arcade can not
run on the Raspberry Pi.

3.4 Installation From Source

First step is to clone the repository:

[git clone https://github.com/pythonarcade/arcade.git]

Or download from:
https://github.com/pythonarcade/arcade/archive/development.zip

Next, we’ll create a linked install. This will allow you to change files in the arcade directory, and is great if you want
to modify the Arcade library code. From the root directory of arcade type:

[pip install -e .]

To install additional documentation and development requirements:

[pip install -e .[dev] J

3.4. Installation From Source 15

https://docs.python.org/3/tutorial/venv.html
https://github.com/pythonarcade/arcade/archive/development.zip

Python Arcade Library, Release 3.0.0.dev26

3.5 Setting Up a Virtual Environment In PyCharm

A Python virtual environment (venv) allows libraries to be installed for just a single project, rather than shared across
everyone using the computer. It also does not require administrator privilages to install.

Assuming you already have a project, follow these steps to create a venv:

Step 1: Select File. .. Settings

E wenv_test [C\Web Server\venv_test] - . \source\test.py [venv_test] - PyC

File: Edit Yiew MNavigate Cod Befactor Run TJTools YC5 Wind:

Alt+|nsert

Ctrl+Alt+5hift+ Insert

Settings... Ctrl+Alt+5
ult Settings
Sync Settings to JetBrains Account...

Import Settings...

Step 2: Click “Project Interpreter”. Then find the gear icon in the upper right. click on it and select “Add”

B settings X

Project: venv_test } Project Interpreter =]

Click Gear Icon

Appearance 8 Behavior Project Interpreter: | il Python 3.7
Keymap
Editor

Plugins

Step 3: Select Virtualenv Environment from the left. Then create a new environment. Usually it should be in a folder
called venv in your main project. PyCharm does not always select the correct location by default, so carefully look at
the path to make sure it is correct, then select “Ok”.

16 Chapter 3. Installation

Python Arcade Library, Release 3.0.0.dev26

& Add Python Interpreter >
environment

Location:

Inherit global site- pa

Malke ble to all proj
ng environment

<Mao ir

Now a virtual environment has been set up. The standard in Python projects is to create a file called requirements.
txt and list the packages you want in there.

PyCharm will automatically ask if you want to install those packages as soon as you type them in. Go ahead and let it.

E venv_test [C\Web Server\venv_test] - ..\requirements.txt [venv_test] - PyCharm = O =
Eile Edit
venv_test
oject ~
venv_test ge requirements ‘'numpy’, 'arcade’ are n

numpy
arcade

3.6 Installation for Obsolete Python Versions

Arcade aims to support the same Python versions currently supported by the PSF.

You are strongly encouraged to upgrade to one of the versions listed at the link above, with the exception of 3.11 or
later. Some of arcade’s dependencies have not yet been ported for those versions.

If you absolutely cannot upgrade to Python 3.7 or later, you can try using an older and unsupported version of Arcade.
Please remember the following:

1. Bugs will not be fixed, unless they are also present in current versions

2. The features and API may be very different from current versions

3. You will need use documentation for the version of Arcade you run

3.6. Installation for Obsolete Python Versions 17

https://devguide.python.org/versions/#supported-versions

Python Arcade Library, Release 3.0.0.dev26

The pairings suggested below might not work. They are based on briefly skimming git history. You may have to use
trial and error to look for a version that works, and it’s possible that you won’t find one! Here be dragons!

Obsolete Python Version Suggested Arcade Version Git Commit Hash

3.6 2.6.7 6e0a9af
3.5 1.2.2 078f5be

You can attempt to install these versions via the command line through pip, or by installing from source from github.
Check the tags on Arcade’s github page for additional commit IDs.

18 Chapter 3. Installation

https://github.com/pythonarcade/arcade

CHAPTER
FOUR

HOW TO GET HELP

The best places to get help are the help channels on the the Discord server. They are located in the 3rd category from
the top in the channel list:

0 Python Arcade

To get help, start by choosing an inactive help channel. Inactive means that the last message was sent a day or more
ago. If all the help channels have been active in that time, choose the one in with the earliest last message.

Once you have chosen a channel, do your best to provide the following information:
1. A very short explanation of what you’re trying to do

2. The problem you’re having, with any error output formatted properly

19

https://discord.gg/ZjGDqMp

Python Arcade Library, Release 3.0.0.dev26

3. Your code, with proper formatting
4. Which version of arcade you’re using and how you installed it

Here’s an example as a series of Discord messages (click or tap to enlarge):

example user T
Hi, I'm tryin

er

Tre

en | run

The rest of this page will explain how to format your messages like the example above.

20 Chapter 4. How to Get Help

Python Arcade Library, Release 3.0.0.dev26

4.1 Sharing & Formatting Your Code

Other people need to be able to see your code to help you. There are two preferred ways of showing it to them:
1. Pasting into Discord for small amounts of code

2. Using a code hosting service for 1 or more files

4.1.1 Formatting for Discord & Github Issues

It is important to format code and terminal output when posting it. Formatting helps other people understand what
you’ve pasted.

Both Discord & GitHub issues use the same 3 steps below.
Step 1 : Find your Backtick Key

The * characters below are not single quotes or apostrophes. They’re called backticks.

On standard US keyboards, the backtick key is the same one used to type a tilda (~). You can find it to the left of the 1
key.

For other keyboard layouts, please see this StackExchange answer.

Step 2: Format & Paste

Formatting Python code is nearly identical to formatting terminal output.

Formatting Code

Once you have found your backtick key, you can format your code like this:

" “python
paste your code between the top and bottom lines!
print("Do stuff!")

If you cannot type a backtick on your keyboard, you can copy the example above to your clipboard. For convenience,
clicking the icon at the top right of the example box will copy it for you. You can paste it into Discord’s message box
as shown below:

4.1. Sharing & Formatting Your Code 21

https://superuser.com/a/254077

Python Arcade Library, Release 3.0.0.dev26

Formatting Terminal Output

Terminal output, such as error traceback, can be formatted in almost the exact same way. The difference is that you
don’t type python after the three backticks on the first line:

Traceback (most recent call last):
File "/home/user/src/arcade/helpexample.py", line 34, in <module>
main()
File "/home/user/src/arcade/helpexample.py", line 29, in main
window.setup()
File "/home/user/src/arcade/helpexample.py", line 17, in setup
self.player_sprite = arcade.Sprite(img, 1.0)
File "/home/user/src/arcade/arcade/sprite.py", line 243, in __init__
self._texture = load_texture(
File "/home/user/src/arcade/arcade/texture.py", line 543, in load_texture
file_name = resolve(file_name)
File "/home/user/src/arcade/arcade/resources/__init__.py", line 40, in resolve
raise FileNotFoundError(f"Cannot locate resource : {path}")
FileNotFoundError: Cannot locate resource : my_player_image.png

Step 3: Post it!

On Discord, you can now press enter to send your message like any other formatted text.
For reporting bugs on GitHub, the same general formatting principles apply, but with a few differences.

You will also have to click Submit new issue instead of pressing enter. Please see the following links for more infor-
mation on reporting bugs, GitHub issues, and their supported markdown syntax:

* How to Report Bugs Effectively
* GitHub issue creation documentation
* GitHub general markdown guide

* GitHub’s code formatting documentation

4.1.2 Code Hosting

Code hosting services provide a formatted web view of your code which you can share with a link.

To share code snippets or single files without a signup, you can use the code pasting service provided by the Python
Discord. If you're ok with signing up for something, there are also GitHub Gists. Afterwards, you can paste a link in
Discord or another chat application.

A more advanced way to share code is to use a git hosting service. It takes effort to learn how to use git, but it has many
benefits. Some of them include:

* Easy backup & undo
* Easier collaboration with others
* Allow people to view your entire project’s source to help you better

Popular Git hosting options include:

22 Chapter 4. How to Get Help

https://www.chiark.greenend.org.uk/~sgtatham/bugs.html
https://docs.github.com/en/issues/tracking-your-work-with-issues/creating-an-issue
https://docs.github.com/en/get-started/writing-on-github/getting-started-with-writing-and-formatting-on-github/basic-writing-and-formatting-syntax
https://docs.github.com/en/get-started/writing-on-github/working-with-advanced-formatting/creating-and-highlighting-code-blocks#syntax-highlighting
https://paste.pythondiscord.com/
https://www.pythondiscord.com/
https://www.pythondiscord.com/
https://docs.github.com/en/get-started/writing-on-github/editing-and-sharing-content-with-gists/creating-gists

Python Arcade Library, Release 3.0.0.dev26

¢ GitHub
¢ GitLab

4.2 Arcade Version & Basic Environment Info

This section assumes you have installed arcade and activated your virtual environment.

To get basic information about your current arcade version and environment, run this from within your development
environment:

[arcade]

The command is cross-platform, which means it should work the same way regardless of whether you’re on Mac, Linux,
or Windows.

The output should should look something like this:

Arcade 2.7.0

vendor: Intel

renderer: Mesa Intel(R) UHD Graphics 620 (KBL GT2)
version: (4, 6)

python: 3.9.2 (default, Feb 28 2021, 17:03:44)
[GCC 10.2.1 20210110]

platform: linux

It’s ok if the output looks different from the example above. The second half of each line may change to reflect your
arcade version, hardware, and operating system.

You can copy and paste the output into Discord or GitHub using the markdown formatting for terminal output described
earlier.

Output like the example below means that something is wrong:

[bash: arcade: command not found]

You should still include the output as part of a request for help.

If you want to try fixing the problem yourself before getting help, the likeliest explanations for the error message above
are:

* Forgetting to activate your virtual environment

* Not installing arcade successfully

4.2. Arcade Version & Basic Environment Info 23

https://github.com
https://gitlab.com

Python Arcade Library, Release 3.0.0.dev26

24

Chapter 4. How to Get Help

CHAPTER
FIVE

HOW-TO EXAMPLE CODE

5.1 Starting Templates

Fig. 1: starting_template

Fig. 2: template_platformer

25

starting_template.html
template_platformer.html

Python Arcade Library, Release 3.0.0.dev26

" gy Yo e e

—/

Fig. 3: happy_face

il
W

D 1“1®10
Com|s

Fig. 4: drawing_primitives

Text Drawing Examples

Py Tent Py

Dol ¥ ety Pt of et 1.7
RO IR Y oo gl i
Ve T LRSS FENT

-
——— "hoe’ i
P Teassirn g veies
“rrws s w— o Tt e
——— Tl
HENTIEY PRAEL SOUPRE FONT
T PO T O

Fig. 5: drawing_text

Text Drawing Examples

Frnn Ve Pramassy

Fintdl Vo el J e
RN IR FEY T g

vl Vel BT LR FENT :

e —d
e ‘v e i

|rTwn m— — o b 1 L

HENTEY PIAEL SOUFWE FONT
e PRl E T
T PR L T

T s -

-

el il v

Fig. 6: drawing_text_objects

26

Chapter 5.

How-To Example Code

happy_face.html
drawing_primitives.html
drawing_text.html
drawing_text_objects.html

Python Arcade Library, Release 3.0.0.dev26

Fig. 7: bouncing_rectangle

Fig. 8: shapes-slow

Fig. 9: radar_sweep

Fig. 10: snow

5.1.

Starting Templates

27

bouncing_rectangle.html
shapes-slow.html
radar_sweep.html
snow.html

Python Arcade Library, Release 3.0.0.dev26

Fig. 11: shape_list_demo

Fig. 12: lines_buffered

Fig. 13: shape_list_demo_skylines

Fig. 14: gradients

28

Chapter 5.

How-To Example Code

shape_list_demo.html
lines_buffered.html
shape_list_demo_skylines.html
gradients.html

Python Arcade Library, Release 3.0.0.dev26

5.2 Drawing

5.2.1 Drawing Primitives
5.2.2 Animating Drawing Primitives

5.2.3 Faster Drawing with ShapeElementLists
5.3 Sprites

5.3.1 Player Movement

Fig. 15: sprite_collect_coins

L L re————

Fig. 17: sprite_move_keyboard_better

5.2. Drawing

29

sprite_collect_coins.html
sprite_move_keyboard.html
sprite_move_keyboard_better.html

Python Arcade Library, Release 3.0.0.dev26

Fig. 18: sprite_move_keyboard_accel

Fig. 19: sprite_move_angle

Fig. 20: sprite_face_left_or_right

Fig. 21: sprite_move_controller

30

Chapter 5. How-To Example Code

sprite_move_keyboard_accel.html
sprite_move_angle.html
sprite_face_left_or_right.html
sprite_move_controller.html

Python Arcade Library, Release 3.0.0.dev26

Fig. 22: dual_stick_shooter

Fig. 23: turn_and_move

Fig. 24: sprite_rotate_around_tank

5.3. Sprites 31

dual_stick_shooter.html
turn_and_move.html
sprite_rotate_around_tank.html

Python Arcade Library, Release 3.0.0.dev26

5.3.2 Non-Player Movement

Fig. 25: sprite_collect_coins_move_down

Fig. 26: sprite_collect_coins_move_bouncing

Fig. 27: sprite_bouncing_coins

32 Chapter 5. How-To Example Code

sprite_collect_coins_move_down.html
sprite_collect_coins_move_bouncing.html
sprite_bouncing_coins.html

Python Arcade Library, Release 3.0.0.dev26

Fig. 28: sprite_collect_coins_move_circle

Fig. 29: sprite_collect_rotating

Fig. 30: sprite_rotate_around_point

Fig. 31: easing_example_1

5.3.

Sprites

33

sprite_collect_coins_move_circle.html
sprite_collect_rotating.html
sprite_rotate_around_point.html
easing_example_1.html

Python Arcade Library, Release 3.0.0.dev26

Fig. 32: easing_example_2

Fig. 33: follow_path

Fig. 35: sprite_follow_simple_2

34

Chapter 5. How-To Example Code

easing_example_2.html
follow_path.html
sprite_follow_simple.html
sprite_follow_simple_2.html

Python Arcade Library, Release 3.0.0.dev26

Fig. 36: line_of_sight

Fig. 37: astar_pathfinding

Fig. 38: sprite_health

Fig. 39: sprite_properties

5.3.

Sprites

35

line_of_sight.html
astar_pathfinding.html
sprite_health.html
sprite_properties.html

Python Arcade Library, Release 3.0.0.dev26

Fig. 40: sprite_change_coins

Fig. 41: example-sprite-collect-coins-diff-levels

Fig. 42: sprite_rooms

Fig. 44: sprite_bullets_aimed

36 Chapter 5. How-To Example Code

sprite_change_coins.html
example-sprite-collect-coins-diff-levels.html
sprite_rooms.html
sprite_bullets.html
sprite_bullets_aimed.html

Python Arcade Library, Release 3.0.0.dev26

Fig. 46: sprite_bullets_random

Fig. 48: sprite_explosion_bitmapped

5.3.

Sprites

37

sprite_bullets_periodic.html
sprite_bullets_random.html
sprite_bullets_enemy_aims.html
sprite_explosion_bitmapped.html

Python Arcade Library, Release 3.0.0.dev26

5.3.3 Easing

5.3.4 Calculating a Path
5.3.5 Sprite Properties
5.3.6 Games with Levels

5.3.7 Shooting with Sprites

5.4 Audio

5.4.1 Sound Effects

Fig. 49: sprite_explosion_particles

Fig. 50: sound_demo

38

Chapter 5. How-To Example Code

sprite_explosion_particles.html
sound_demo.html

Python Arcade Library, Release 3.0.0.dev26

Fig. 51: sound_speed_demo

Music Demo
[+
L+
aﬂ
Vialume; 1.0
Time: 0:07

Fig. 52: music_control_demo

‘e g st iimpin
T
2]
rZ"‘ul?l
]

L0

o L] B0 A0 RO JRO B3 BED 403 45D

Fig. 53: resizable_window

Fig. 54: full_screen_example

5.4.

Audio

39

sound_speed_demo.html
music_control_demo.html
resizable_window.html
full_screen_example.html

Python Arcade Library, Release 3.0.0.dev26

Fig. 55: sprite_collect_coins_background

Fig. 56: background_parallax

5.4.2 Music
5.5 Display Management

5.5.1 Resizable Windows
5.5.2 Backgrounds

5.5.3 Cameras

Baroll waksa: (284.0, 457.0)

Fig. 57: sprite_move_scrolling

40 Chapter 5. How-To Example Code

sprite_collect_coins_background.html
background_parallax.html
sprite_move_scrolling.html

Python Arcade Library, Release 3.0.0.dev26

[TS ——

| Beoroll value: (1828, 432.8)

Fig. 58: sprite_move_scrolling_box

[e ————

| Beoroll walue: (284.0, 457.0)

Fig. 59: sprite_move_scrolling_shake

Fig. 60: camera_platform

5.5. Display Management 41

sprite_move_scrolling_box.html
sprite_move_scrolling_shake.html
camera_platform.html

Python Arcade Library, Release 3.0.0.dev26

5.6 View Management

5.6.1 Instruction and Game Over Screens

[S ——"

Mienu Soreen - click to advande

Fig. 61: view_screens_minimal

Menu Screen

Tk io sdvanon

Fig. 62: view_instructions_and_game_over

Fig. 63: view_pause_screen

42 Chapter 5.

How-To Example Code

view_screens_minimal.html
view_instructions_and_game_over.html
view_pause_screen.html

Python Arcade Library, Release 3.0.0.dev26

[TS ——

Menu Screen - click 1o advance

Fig. 64: transitions

5.6.2 Sectioning a View

L ke ek

Fig. 65: sections_demo_1

s e oy P e L
i]

Fig. 66: sections_demo_2

5.7. Platformers 43

transitions.html
sections_demo_1.html
sections_demo_2.html

Python Arcade Library, Release 3.0.0.dev26

Fig. 67: sections_demo_3

Fig. 68: sprite_move_walls

Fig. 69: sprite_no_coins_on_walls

Fig. 70: sprite_move_animation

Fig. 71: sprite_moving_platforms

44 Chapter 5. How-To Example Code

sections_demo_3.html
sprite_move_walls.html
sprite_no_coins_on_walls.html
sprite_move_animation.html
sprite_moving_platforms.html

Python Arcade Library, Release 3.0.0.dev26

Fig. 72: sprite_enemies_in_platformer

Fig. 73: Simple Platformer

Fig. 74: sprite_tiled_map

e

Fig. 75: sprite_tiled_map_with_levels

5.7. Platformers

45

sprite_enemies_in_platformer.html
platformer_tutorial.html
sprite_tiled_map.html
sprite_tiled_map_with_levels.html

Python Arcade Library, Release 3.0.0.dev26

Fig. 76: maze_recursive

Fig. 77: maze_depth_first

Fig. 78: procedural_caves_cellular

Fig. 79: procedural_caves_bsp

46

Chapter 5. How-To Example Code

maze_recursive.html
maze_depth_first.html
procedural_caves_cellular.html
procedural_caves_bsp.html

Python Arcade Library, Release 3.0.0.dev26

5.7 Platformers

5.7.1 Basic Platformers
5.7.2 Tiled Map Editor

5.7.3 Procedural Generation

5.8 Graphical User Interface

Fig. 80: gui_flat_button

Fig. 81: gui_flat_button_styled

THISISA TEHT WIDGET

Fig. 82: gui_widgets

5.7. Platformers

47

gui_flat_button.html
gui_flat_button_styled.html
gui_widgets.html

Python Arcade Library, Release 3.0.0.dev26

Fig. 83: gui_ok_messagebox

Fig. 84: gui_scrollable_text

Fig. 85: gui_slider

48

Chapter 5. How-To Example Code

gui_ok_messagebox.html
gui_scrollable_text.html
gui_slider.html

Python Arcade Library, Release 3.0.0.dev26

5.9 Grid-Based Games

@ Arcide Windew —— b

Fig. 86: array_backed_grid

. Arcide Wisdew — S

Fig. 87: array_backed_grid_buffered

' Arcade Window — S

Fig. 88: array_backed_grid_sprites_1

5.9.

Grid-Based Games

49

array_backed_grid.html
array_backed_grid_buffered.html
array_backed_grid_sprites_1.html

Python Arcade Library, Release 3.0.0.dev26

' Arcade Window — S

Fig. 89: array_backed_grid_sprites_2

Fig. 90: tetris

Fig. 91: conway_alpha

Fig. 92: pymunk_box_stacks

50

Chapter 5. How-To Example Code

array_backed_grid_sprites_2.html
tetris.html
conway_alpha.html
pymunk_box_stacks.html

Python Arcade Library, Release 3.0.0.dev26

Fig. 93: pymunk_pegboard

Fig. 94: pymunk_demo_top_down

Fig. 95: pymunk_joint_builder

Fig. 96: Pymunk Platformer

5.9.

Grid-Based Games

51

pymunk_pegboard.html
pymunk_demo_top_down.html
pymunk_joint_builder.html
pymunk_platformer_tutorial.html

Python Arcade Library, Release 3.0.0.dev26

Seoroll walua: -144,0, 213.0

Fig. 97: minimap

Fig. 98: light_demo

Fig. 99: transform_feedback

Fig. 100: game_of_life_fbo

52 Chapter 5. How-To Example Code

minimap.html
light_demo.html
transform_feedback.html
game_of_life_fbo.html

Python Arcade Library, Release 3.0.0.dev26

Fig. 101: perspective

Fig. 102: normal_mapping

Fig. 103: spritelist_interaction_visualize_dist_los

5.9.

Grid-Based Games

53

perspective.html
normal_mapping.html
spritelist_interaction_visualize_dist_los.html

Python Arcade Library, Release 3.0.0.dev26

5.10 Advanced

5.10.1 Using PyMunk for Physics
5.10.2 Frame Buffers

5.10.3 OpenGL

5.11 Concept Games

Fig. 104: asteroid_smasher

Fig. 105: Asteroids with Shaders

54 Chapter 5. How-To Example Code

asteroid_smasher.html
https://github.com/pythonarcade/asteroids
https://github.com/pythonarcade/asteroids

Python Arcade Library, Release 3.0.0.dev26

Fig. 106: slime_invaders

Fig. 107: Community RPG

4 | 2
2]
an -

Fig. 108: 2048

Fig. 109: Rogue-Like

5.11.

Concept Games

55

slime_invaders.html
https://github.com/pythonarcade/community-rpg
https://github.com/pythonarcade/community-rpg
https://github.com/pvcraven/2048
https://github.com/pvcraven/2048
https://github.com/pythonarcade/roguelike
https://github.com/pythonarcade/roguelike

Python Arcade Library, Release 3.0.0.dev26

5.12 Odds and Ends

Time: 01:02

Fig. 110: timer

Fig. 111: performance_statistics_example

o e s]

Fig. 112: text_loc_example

5.12.1 Particle System

5.13 Tutorials

5.14 Stress Tests

56 Chapter 5. How-To Example Code

timer.html
performance_statistics_example.html
text_loc_example.html

Python Arcade Library, Release 3.0.0.dev26

Fig. 113: particle_fireworks

Fig. 114: particle_systems

Fig. 115: Simple Platformer

w1

o

Fig. 116: Solitaire

5.14. Stress Tests

57

particle_fireworks.html
particle_systems.html
platformer_tutorial.html
solitaire_tutorial.html

Python Arcade Library, Release 3.0.0.dev26

Fig. 117: CRT Filter

Fig. 118: Ray-casting Shadows

Fig. 119: Pymunk Platformer

Fig. 120: Shader Toy - Glow

58

Chapter 5.

How-To Example Code

crt_filter.html
raycasting_tutorial.html
pymunk_platformer_tutorial.html
shader_toy_tutorial_glow.html

Python Arcade Library, Release 3.0.0.dev26

Fig. 121: stress_test_draw_moving

Fig. 122: stress_test_collision

5.14. Stress Tests 59

stress_test_draw_moving.html
stress_test_collision.html

Python Arcade Library, Release 3.0.0.dev26

60

Chapter 5. How-To Example Code

CHAPTER
SIX

PYTHON DISCORD GAMEJAM 2020

The Python Discord 2020 Game Jam finished on April 26, 2020. Participants completed a game in one week. Twenty-
three teams completed games, all of which are on the Game Jam 2020 GitHub.

We played the top 10 games on the Game Jam live-stream, which is available for replay.

Here are the games that made it to the top 10:

L 3 Keys on the Run - O

eeees =y |

Fig. 1: 1st Place: 3 Keys on the Run

61

https://pythondiscord.com/
https://github.com/python-discord/game-jam-2020
https://youtu.be/KkLXMvKfEgs
https://github.com/python-discord/game-jam-2020/tree/master/Finalists/Score_AAA
https://github.com/python-discord/game-jam-2020/tree/master/Finalists/Score_AAA

Python Arcade Library, Release 3.0.0.dev26

STARS COLLECTED: 1 0UT OF 6

lju.ﬁ

Fig. 2: 2nd Place: Triple Blocks

Hatchlings

Fig. 4: Honourable Mention: Hatchlings

Fig. 5: Honourable Mention: Gem Matcher

62 Chapter 6. Python Discord GameJam 2020

https://github.com/python-discord/game-jam-2020/tree/master/Finalists/gamer_gang
https://github.com/python-discord/game-jam-2020/tree/master/Finalists/gamer_gang
https://github.com/python-discord/game-jam-2020/tree/master/Finalists/monkeys-and-frogs-on-fire
https://github.com/python-discord/game-jam-2020/tree/master/Finalists/monkeys-and-frogs-on-fire
https://github.com/python-discord/game-jam-2020/tree/master/Finalists/KTGames
https://github.com/python-discord/game-jam-2020/tree/master/Finalists/KTGames
https://github.com/python-discord/game-jam-2020/tree/master/Finalists/artemis
https://github.com/python-discord/game-jam-2020/tree/master/Finalists/artemis

Python Arcade Library, Release 3.0.0.dev26

FRIT
VYYYYVY
YYVYVVVVY

Fig. 6: Tri-Chess

Wave number: 42

Fig. 7: Insane Irradiated Insectz

Time: 18

il
T+

Fig. 8: Flimsy Billy’s Coin Dash 3: Super Tag 3 Electric Tree

63

https://github.com/python-discord/game-jam-2020/tree/master/Finalists/TriChess
https://github.com/python-discord/game-jam-2020/tree/master/Finalists/TriChess
https://github.com/python-discord/game-jam-2020/tree/master/Finalists/beanoculars
https://github.com/python-discord/game-jam-2020/tree/master/Finalists/beanoculars
https://github.com/python-discord/game-jam-2020/tree/master/Finalists/the-friendly-snakes
https://github.com/python-discord/game-jam-2020/tree/master/Finalists/the-friendly-snakes

Python Arcade Library, Release 3.0.0.dev26

- Lithium count: 0.00

Fig. 9: ZeYoughEzh

Made by Atie

Fig. 10: Coin Collector

64

Chapter 6. Python Discord GameJam 2020

https://github.com/python-discord/game-jam-2020/tree/master/Finalists/zeyoghezh
https://github.com/python-discord/game-jam-2020/tree/master/Finalists/zeyoghezh
https://github.com/python-discord/game-jam-2020/tree/master/Finalists/AtieP
https://github.com/python-discord/game-jam-2020/tree/master/Finalists/AtieP

CHAPTER
SEVEN

GAMES MADE WITH ARCADE

Here are some sample games made with Arcade. Have a game you’d like to share here? E-mail paul @cravenfamily.com.
You also might want to check out sample Arcade games from:

* Python Discord GameJam 2020

* Concept Games

» Simple Platformer

7.1 Temporum

Temporum, by DragonMoffon

7.2 SOL Defender

SOL Defender, by DragonMoffon

7.3 Binary Defense

Binary Defense by KommentatorForAll

65

mailto:paul@cravenfamily.com
https://github.com/DragonMoffon/Temporum
https://github.com/KommentatorForAll/Binary-defense

Python Arcade Library, Release 3.0.0.dev26

7.4 Space Invaders

Space Invaders

7.5 Ready or Not?

Ready or Not? a local multiplayer action RPG by Akash S Panickar.

7.6 Age of Divisiveness

Age of Divisiveness by Patryk Majewski, Krzysztof Szymaniak, Gabriel Wechta, Btazej Wrébel

Multiplayer LAN game with strong Civilization I and old Settlers vibe! Very extensive.

66 Chapter 7. Games Made With Arcade

https://github.com/pvcraven/space_invaders
https://github.com/mochatek/ReadyOrNot
https://github.com/chceswieta/age-of-divisiveness

Python Arcade Library, Release 3.0.0.dev26

7.7 Fishy-Game

Fishy Game by LiorAvrahami

7.8 Adventure

Adventure GitHub

7.9 Transcience Animation

Transcience Animation

7.10 Stellar Arena Demo

Stellar Arena Demo

7.11 Battle Bros

Battle Bros Mortal Kombat style game.

7.12 Rabbit Herder

Rabbit Herder, use carrots and potions to herd a rabbit through a maze.

7.13 The Great Skeleton War

The Great Skeleton War, an intense tower defense game, where there’s always something new to discover.

7.14 Python Knife Hit

https://github.com/akmalhakimil991/python-knife-hit

7.7. Fishy-Game

67

https://github.com/LiorAvrahami/fishy-game
https://github.com/clareHuisman/learn-arcade-work/tree/master/Lab%2012%20-%20Final%20Lab
https://github.com/SunTzunami/Transience_animation_PyArcade
https://github.com/BramCetusAlt/Stellar-Arena
https://github.com/njbittner/battle-bros-pyarcade
https://github.com/ryancollingwood/arcade-rabbit-herder
https://github.com/BlakeDalmas/Python/tree/master/The%20Great%20Skeleton%20War
https://github.com/akmalhakimi1991/python-knife-hit

Python Arcade Library, Release 3.0.0.dev26

STAGE 4

68

Chapter 7. Games Made With Arcade

Python Arcade Library, Release 3.0.0.dev26

7.15 Kayzee

Processing time: 0.002
Drawing time: 0.009
FPS: 57

Score: 0

Fig. 1: Kayzee Game

7.16 lixingqiu Games

Fig. 2: An Eight planet simulation

15556940

—_
S

|
|

4
i

b

|

éi*
.
d-
vl

Fig. 3: Midway Island War

7.15. Kayzee 69

https://github.com/wamiqurrehman093/Kayzee
https://github.com/lixingqiu/eight_planet
https://github.com/lixingqiu/python3_arcade_midway_island_war_simple_simulate

Python Arcade Library, Release 3.0.0.dev26

Fig. 4: Angry Bird
Fig. 5: Octopus
7.17 Space Typer

Space Typer

provide

neighborly

Score : 5 Lives : 2

Space Typer - A typing game

7.18 FlapPy Bird

o T e T T
LEHERaays

© g;;.a

[re o i

70 Chapter 7. Games Made With Arcade

https://github.com/lixingqiu/python_arcade_simple_angry_bird
https://github.com/lixingqiu/Python-arcade-Octopus-animation-demo
https://github.com/thecodeah/space-typer

Python Arcade Library, Release 3.0.0.dev26

FlapPy-Bird - A bird-game clone.

7.19 PyOverheadGame

PyOverheadGame!

PyOverheadGame!

Play

Score: 0, lives: 3 Welcome

PyOverheadGame, a 2D overhead game where you go through several rooms and pick up keys and other objects.

7.19. PyOverheadGame 71

https://github.com/iJohnMaged/FlapPy-Bird
https://github.com/albertz/PyOverheadGame

Python Arcade Library, Release 3.0.0.dev26

7.20 Dungeon

P The Dungeon - X

‘ .
sisSgindalsls
§ 7 AN rl]

r

Dungeon, explore a maze picking up arrows and coins.

7.21 Two Worlds

P Arcade Window - X

Sprite Count: 117
Drawing time: 0.002
Processing time: 0.008

Two Worlds, a castle adventure with a dungeon and caverns underneath it.

72 Chapter 7. Games Made With Arcade

https://github.com/BlakeDalmas/Python/tree/master/Dungeon%20Game
https://github.com/pvcraven/two_worlds

Python Arcade Library, Release 3.0.0.dev26

7.21.1 Simpson College Spring 2017 CMSC 150 Course

These games were created by first-semester programming students.

7.21. Two Worlds 73

Python Arcade Library, Release 3.0.0.dev26

74

Chapter 7. Games Made With Arcade

CHAPTER
EIGHT

SIMPLE PLATFORMER

B Platformer - X

Score: 2

This tutorial shows how to use Python and the Arcade library to create a 2D platformer game. You’ll learn to work with
Sprites and the Tiled Map Editor to create your own games. You can add coins, ramps, moving platforms, enemies,
and more.

At the end of each chapter of this tutorial you will find the full source code that chapter, as well as a command to run
that chapter directly. As long as you have Arcade installed the commands will run the exact code for that chapter, so
you can compare your game against the tutorial.

75

https://www.mapeditor.org/

20

21

22

23

24

25

26

27

Python Arcade Library, Release 3.0.0.dev26

8.1 Step 1 - Install and Open a Window

Our first step is to make sure everything is installed, and that we can at least get a window open.

8.1.1 Installation

¢ Make sure Python is installed. Download Python here if you don’t already have it.
* Make sure the Arcade library is installed.

— You should first setup a virtual environment (venv) and activate it.

— Install Arcade with pip install arcade.

— Here are the longer, official Installation.

8.1.2 Open a Window

The example below opens up a blank window. Set up a project and get the code below working.

Note: This is a fixed-size window. It is possible to have a resizable_window or a full_screen_example, but there are
more interesting things we can do first. Therefore we’ll stick with a fixed-size window for this tutorial.

Listing 1: 01_open_window.py - Open a Window

i

Platformer Game

python -m arcade.examples.platform_tutorial.®1_open_window

i

import arcade

Constants

SCREEN_WIDTH = 800
SCREEN_HEIGHT = 600
SCREEN_TITLE = "Platformer"

class MyGame(arcade.Window) :

i

Main application class.

o

def __init__(self):

Call the parent class to set up the window
super().__init__ (SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)

self.background_color = arcade.csscolor.CORNFLOWER_BLUE

def setup(self):
"""Set up the game here. Call this function to restart the game.

o

(continues on next page)

76 Chapter 8. Simple Platformer

https://www.python.org/downloads/
https://pypi.org/project/arcade/

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

.

pass

def on_draw(self):
"""Render the screen."""

The clear method should always be called at the start of on_draw.

It clears the whole screen to whatever the background color is

set to. This ensures that you have a clean slate for drawing each

frame of the game.

self.clear()

Code to draw other things will go here

def main(Q):
"""Main function
window = MyGame ()
window.setup()
arcade.run()

i

if __name__ == "__main__":
main()

You should end up with a window like this:

B platformer - X

Once you get the code working, try figuring out how to adjust the code so you can:
¢ Change the screen size(or even make the Window resizable or fullscreen)
 Change the title

* Change the background color

8.1. Step 1 - Install and Open a Window

77

Python Arcade Library, Release 3.0.0.dev26

— See the documentation for arcade.color package
— See the documentation for arcade.csscolor package

¢ Look through the documentation for the arcade. Window class to get an idea of everything it can do.

8.1.3 Run This Chapter

[python -m arcade.examples.platform_tutorial.01_open_window

8.2 Step 2 - Textures and Sprites

Our next step in this tutorial is to draw something on the Screen. In order to do that we need to cover two topics,
Textures and Sprites.

At the end of this chapter, we’ll have something that looks like this. It’s largely the same as last chapter, but now we
are drawing a character onto the screen:

8.2.1 Textures
Textures are largely just an object to contain image data. Whenever you load an image file in Arcade, for example a
.png or . jpeg file. It becomes a Texture.

To do this, internally Arcade uses Pyglet to load the image data, and the texture is responsible for keeping track of this
image data.

We can create a texture with a simple command, this can be done inside of our __init__ function. Go ahead and
create a texture that we will use to draw a player.

78 Chapter 8. Simple Platformer

Python Arcade Library, Release 3.0.0.dev26

self.player_texture = arcade.load_texture(":resources:images/animated_characters/female_
—,adventurer/femaleAdventurer_idle.png")

Note: You might be wondering where this image file is coming from? And what is :resources: about?

The :resources: section of the string above is what Arcade calls a resource handle. You can register your own
resource handles to different asset directories. For example you might want to have a : characters: anda :objects:
handle.

However, you don’t have to use a resource handle here, anywhere that you can load files in Arcade will accept resource
handles, or just strings to filepaths, or Path objects from pathlib

Arcade includes the :resources: handle with a bunch of built-in assets from kenney.

For more information checkout Built-In Resources

8.2.2 Sprites

If Textures are an instance of a particular image, then arcade. Sprite is an instance of that image on the screen. Say
we have a ground or wall texture. We only have one instance of the texture, but we can create multiple instances of
Sprite, because we want to have many walls. These will use the same texture, but draw it in different positions, or even
with different scaling, rotation, or colors/post-processing effects.

Creating a Sprite is simple, we can make one for our player in our __init__ function, and then set it’s position.

self.player_sprite = arcade.Sprite(self.player_texture)
self.player_sprite.center_x = 64
self.player_sprite.center_y = 128

Note: You can also skip arcade.load_texture from the previous step and pass the image file to arcade.Sprite
in place of the Texture object. A Texture will automatically be created for you. However, it may desirable in larger
projects to manage your textures directly.

Now we can draw the sprite by adding this to our on_draw function:

[self. player_sprite.draw()

We’re now drawing a Sprite to the screen! In the next chapter, we will introduce techniques to draw many(even hundreds
of thousands) sprites at once.

8.2.3 Source Code

Listing 2: 02_draw_sprites - Draw and Position Sprites

i

Platformer Game

python -m arcade.examples.platform_tutorial.®2_draw_sprites

i

import arcade
(continues on next page)

8.2. Step 2 - Textures and Sprites 79

https://kenney.nl

20

21

22

23

24

25

26

27

28

29

40

41

42

43

44

45

46

47

48

49

50

52

53

54

55

56

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

Constants

SCREEN_WIDTH = 800
SCREEN_HEIGHT = 600
SCREEN_TITLE = "Platformer"

class MyGame(arcade.Window) :

e

Main application class.

i

def __init__(self):

Call the parent class and set up the window
super().__init__ (SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)

Variable to hold our texture for our player

self.player_texture = arcade.load_texture(":resources:images/animated_characters/

—female_adventurer/femaleAdventurer_idle.png")

Separate variable that holds the player sprite
self.player_sprite = arcade.Sprite(self.player_texture)
self.player_sprite.center_x = 64
self.player_sprite.center_y = 128

self.background_color = arcade.csscolor.CORNFLOWER_BLUE

def setup(self):
"""Set up the game here. Call this function to restart the game.
pass

def on_draw(self):
"""Render the screen."""

Clear the screen to the background color

self.clear()

Draw our sprites
self.player_sprite.draw()

def main(Q:
"""Main function
window = MyGame()
window.setup()
arcade.run()

mirn

if __name__ == "__main__":
main()

i

Running this code should result in a character being drawn on the screen, like in the image at the start of the chapter.

80 Chapter 8.

Simple Platformer

Python Arcade Library, Release 3.0.0.dev26

¢ Documentation for the arcade. Texture class

¢ Documentation for the arcade. Sprite class

Note: Once you have the code up and working, try adjusting the code for the following:

* Adjust the code and try putting the sprite in new positions(Try setting the positions using other attributes of
Sprite)

¢ Use different images for the texture (see Built-In Resources for the built-in images, or try using your own images.)

* Practice placing more sprites in different ways(like placing many with a loop)

8.2.4 Run This Chapter

[python -m arcade.examples.platform_ tutorial.02_draw_sprites

8.3 Step 3 - Many Sprites with SpriteList

So far our game is coming along nicely, we have a character on the screen! Wouldn’t it be nice if our character had a
world to live in? In order to do that we’ll need to draw a lot more sprites. In this chapter we will explore SpriteList, a
class Arcade provides to draw tons of Sprites at once.

At the end, we’ll have something like this:

8.3. Step 3 - Many Sprites with SpriteList 81

Python Arcade Library, Release 3.0.0.dev26

8.3.1 SpriteList

arcade. SpriteList exists to draw a collection of Sprites all at once. Let’s say for example that you have 100,000
box Sprites that you want to draw. Without SpriteList you would have to put all of your sprites into a list, and then run
a for loop over that which calls draw() on every sprite.

This approach is extremely un-performant. Instead, you can add all of your boxes to a arcade. SpritelList and then
draw the SpriteList. Doing this, you are able to draw all 100,000 sprites for approximately the exact same cost as
drawing one sprite.

Note: This is due to Arcade being a heavily GPU based library. GPUs are really good at doing things in batches. This
means we can send all the information about our sprites to the GPU, and then tell it to draw them all at once. However
if we just draw one sprite at a time, then we have to go on a round trip from our CPU to our GPU every time.

Even if you are only drawing one Sprite, you should still create a SpriteList for it. Outside of small debugging it is
never better to draw an individual Sprite than it is to add it to a SpriteList. In fact, calling draw() on a Sprite just
creates a SpriteList internally to draw that Sprite with.

Let’s go ahead and create one for our player inside our __init__ function, and add the player to it.

self.player_list = arcade.SpriteList()
self.player_list.append(self.player_sprite)

Then in our on_draw function, we can draw the SpriteList for the character instead of drawing the Sprite directly:

[self.player_list.draw()]

Now let’s try and build a world for our character. To do this, we’ll create a new SpriteList for the objects we’ll draw,
we can do this in our __init__ function.

[sel f.wall_list = arcade.SpritelList(use_spatial_hash=True) J

There’s a little bit to unpack in this snippet of code. Let’s address each issue:
1. Why not just use the same SpriteList we used for our player, and why is it named walls?

Eventually we will want to do collision detection between our character and these objects. In addition
to drawing, SpriteLists also serve as a utility for collision detection. You can for example check for
collisions between two SpriteLists, or pass SpriteLists into several physics engines. We will explore
these topics in later chapters.

2. What is use_spatial_hash?

This is also for collision detection. Spatial Hashing is a special algorithm which will make it much
more performant, at the cost of being more expensive to move sprites. You will often see this option
enabled on SpriteLists which are not expected to move much, such as walls or a floor.

With our newly created SpriteList, let’s go ahead and add some objects to it. We can add these lines to our __init__
function.

for x in range(®, 1250, 64):
wall = arcade.Sprite(":resources:images/tiles/grassMid.png", TILE_SCALING)
wall.center_x = x
wall.center_y = 32
self.wall_list.append(wall)

(continues on next page)

82 Chapter 8. Simple Platformer

20

21

22

23

24

25

26

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

coordinate_list = [[512, 96], [256, 96], [768, 96]1]
for coordinate in coordinate_list:
wall = arcade.Sprite(
":resources:images/tiles/boxCrate_double.png", scale=0.5

)

wall.position = coordinate

self.wall_list.append(wall)

In these lines, we’re adding some grass and some crates to our SpriteList.

For the ground we’re using Python’s range function to iterate on a list of X positions, which will give us a horizontal
line of Sprites. For the boxes, we’re inserting them at specified coordinates from a list.

We’re also doing a few new things in the arcade. Sprite creation. First off we are passing the image file directly
instead of creating a texture first. This is ultimately doing the same thing, we’re just not managing the texture ourselves,
and letting Arcade handle it. We are also adding a scale to these sprites. For fun you can remove the scale, and see how
the images will be much larger.

Finally all we need to do in order to draw our new world, is draw the SpriteList for walls in on_draw:

[self.wall_list .draw()]

8.3.2 Source Code

Listing 3: 03_more_sprites - Many Sprites with a SpriteList

i

Platformer Game

python -m arcade.examples.platform_tutorial.®3_more_sprites

i

import arcade

Constants

SCREEN_WIDTH = 800
SCREEN_HEIGHT = 600
SCREEN_TITLE = "Platformer"

Constants used to scale our sprites from their original size
TILE_SCALING = 0.5

class MyGame(arcade.Window) :

e

Main application class.

o

def __init__(self):

Call the parent class and set up the window
super().__init__ (SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)

(continues on next page)

8.3. Step 3 - Many Sprites with SpriteList 83

27

28

29

30

31

32

33

35

36

37

39

40

41

42

43

44

45

46

47

48

49

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

3

74

75

76

77

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

Variable to hold our texture for our player
self.player_texture = arcade.load_texture(":resources:images/animated_characters/

- female_adventurer/femaleAdventurer_idle.png")

def

def

Separate variable that holds the player sprite
self.player_sprite = arcade.Sprite(self.player_texture)
self.player_sprite.center_x = 64
self.player_sprite.center_y = 128

SpriteList for our player
self.player_list = arcade.SpriteList()
self.player_list.append(self.player_sprite)

SpritelList for our boxes and ground

Putting our ground and box Sprites in the same SpritelList
will make it easier to perform collision detection against
them later on. Setting the spatial hash to True will make
collision detection much faster if the objects in this

SpritelList do not move.

self.wall_list = arcade.SpritelList(use_spatial_hash=True)

Create the ground
This shows using a loop to place multiple sprites horizontally
for x in range(®, 1250, 64):
wall = arcade.Sprite(":resources:images/tiles/grassMid.png", scale=0.5)
wall.center_x = x
wall.center_y = 32
self.wall_list.append(wall)

Put some crates on the ground
This shows using a coordinate list to place sprites
coordinate_list = [[512, 96], [256, 96], [768, 96]]

for coordinate in coordinate_list:
Add a crate on the ground
wall = arcade.Sprite(
":resources:images/tiles/boxCrate_double.png", scale=0.5
)
wall.position = coordinate
self.wall_list.append(wall)

self.background_color = arcade.csscolor.CORNFLOWER_BLUE
setup(self):

"""Set up the game here. Call this function to restart the game.
pass

i

on_draw(self):
"""Render the screen.

i

Clear the screen to the background color
self.clear()

(continues on next page)

84

Chapter 8. Simple Platformer

Python Arcade Library, Release 3.0.0.dev26

Draw our sprites
self.player_list.draw()
self.wall_list.draw()

def main(Q:
"""Main function
window = MyGame()
window.setup()
arcade.run()

i

if __name__ == "__main__":
main()

(continued from previous page)

¢ Documentation for the arcade. SpriteList class

Note: Once you have the code up and working, try-out the following:
 See if you can change the colors of all the boxes and ground using the SpriteList

* Try and make a SpriteList invisible

8.3.3 Run This Chapter

[python -m arcade.examples.platform_tutorial.®3_more_sprites

8.4 Step 4 - Add User Control

Now we’ve got a character and a world for them to exist in, but what fun is a game if you can’t control the character

and move around? In this Chapter we’ll explore adding keyboard input in Arcade.

First, at the top of our program, we’ll want to add a new constant that controls how many pixels per update our character

travels:

[PLAYER_MOVEMENT_SPEED =5

)

In order to handle the keyboard input, we need to add to add two new functions to our Window class, on_key_press
and on_key_release. These functions will automatically be called by Arcade whenever a key on the keyboard is
pressed or released. Inside these functions, based on the key that was pressed or released, we will move our character.

def on_key_press(self, key, modifiers):
"""Called whenever a key is pressed."""

if key == arcade.key.UP or key == arcade.key.W:
self.player_sprite.change_y = PLAYER_MOVEMENT_SPEED

elif key == arcade.key.DOWN or key == arcade.key.S:
self.player_sprite.change_y = -PLAYER_MOVEMENT_SPEED

(continues on next page)

8.4. Step 4 - Add User Control

85

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

elif key == arcade.key.LEFT or key == arcade.key.A:
self.player_sprite.change_x = -PLAYER_MOVEMENT_SPEED

elif key == arcade.key.RIGHT or key == arcade.key.D:
self.player_sprite.change_x = PLAYER_MOVEMENT_SPEED

def on_key_release(self, key, modifiers):
"""Called whenever a key is released."""

if key == arcade.key.UP or key == arcade.key.W:
self.player_sprite.change_y = 0

elif key == arcade.key.DOWN or key == arcade.key.S:
self.player_sprite.change_y = 0

elif key == arcade.key.LEFT or key == arcade.key.A:
self.player_sprite.change_x = 0

elif key == arcade.key.RIGHT or key == arcade.key.D:
self.player_sprite.change_x = 0

In these boxes, we are modifying the change_x and change_y attributes on our player Sprite. Changing these values
will not actually perform the move on the Sprite. In order to apply this change, we need to create a physics engine with
our Sprite, and update the physics engine every frame. The physics engine will then be responsible for actually moving
the sprite.

The reason we give the physics engine this responsibility instead of doing it ourselves, is so that we can let the physics
engine do collision detections, and allow/disallow a movement based on the result. In later chapters, we’ll use more
advanced physics engines which can do things like allow jumping with gravity, or climbing on ladders for example.

Note: This method of tracking the speed to the key the player presses is simple, but isn’t perfect. If the player hits both
left and right keys at the same time, then lets off the left one, we expect the player to move right. This method won’t
support that. If you want a slightly more complex method that does, see sprite_move_keyboard_better.

Let’s create a simple physics engine in our __init__ function. We will do this by passing it our player sprite, and the
SpriteList containing our walls.

self.physics_engine = arcade.PhysicsEngineSimple(
self.player_sprite, self.wall_list
)

Now we have a physics engine, but we still need to update it every frame. In order to do this we will add a new function
to our Window class, called on_update. This function is similar to on_draw, it will be called by Arcade at a default
of 60 times per second. It will also give us a delta_time parameter that tells the amount of time between the last
call and the current one. This value will be used in some calculations in future chapters. Within this function, we will
update our physics engine. Which will process collision detections and move our player based on it’s change_x and
change_y values.

def on_update(self, delta_time):
"""Movement and Game Logic"""

self.physics_engine.update()

At this point you should be able to run the game, and move the character around with the keyboard. If the physics
engine is working properly, the character should not be able to move through the ground or the boxes.

For more information about the physics engine we are using in this tutorial, see arcade.PhysicsEngineSimple.

86 Chapter 8. Simple Platformer

20

21

22

23

24

25

26

27

28

29

30

Python Arcade Library, Release 3.0.0.dev26

Note: It is possible to have multiple physics engines, one per moving sprite. These are very simple, but easy physics
engines. See Pymunk Platformer for a more advanced physics engine.

Note: If you want to see how the collisions are checked, try using the draw_hit_boxes () function on the player and
wall SpriteLists inside the on_draw function. This will show you what the hitboxes that the physics engine uses look
like.

8.4.1 Source Code

Listing 4: 04_user_control.py - User Control

i

Platformer Game

python -m arcade.examples.platform_tutorial.®4_user_control

i

import arcade

Constants

SCREEN_WIDTH = 800
SCREEN_HEIGHT = 600
SCREEN_TITLE = "Platformer"

Constants used to scale our sprites from their original size
TILE_SCALING = 0.5

Movement speed of player, in pixels per frame
PLAYER_MOVEMENT_SPEED = 5

class MyGame(arcade.Window) :

o

Main application class.

i

def __init__(self):

Call the parent class and set up the window
super().__init__ (SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)

Variable to hold our texture for our player
self.player_texture = arcade.load_texture('":resources:images/animated_characters/
—female_adventurer/femaleAdventurer_idle.png")

Separate variable that holds the player sprite
self.player_sprite = arcade.Sprite(self.player_texture)
self.player_sprite.center_x = 64
self.player_sprite.center_y = 128

(continues on next page)

8.4. Step 4 - Add User Control 87

38

39

40

41

42

43

44

45

46

47

48

49

50

52

53

54

55

56

57

58

59

60

61

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)
SpriteList for our player
self.player_list = arcade.SpriteList()
self.player_list.append(self.player_sprite)

SpriteList for our boxes and ground

Putting our ground and box Sprites in the same SpriteList
will make it easier to perform collision detection against
them later on. Setting the spatial hash to True will make
collision detection much faster if the objects in this

SpriteList do not move.

self.wall_list = arcade.SpritelList(use_spatial_hash=True)

Create the ground
This shows using a loop to place multiple sprites horizontally
for x in range(®, 1250, 64):
wall = arcade.Sprite(":resources:images/tiles/grassMid.png", scale=TILE_
—SCALING)

wall.center_x = x
wall.center_y = 32
self.wall_list.append(wall)

Put some crates on the ground
This shows using a coordinate list to place sprites
coordinate_list = [[512, 96], [256, 96], [768, 96]]

for coordinate in coordinate_list:
Add a crate on the ground
wall = arcade.Sprite(
":resources:images/tiles/boxCrate_double.png", scale=TILE_SCALING
)
wall.position = coordinate
self.wall_list.append(wall)

Create a Simple Physics Engine, this will handle moving our

player as well as collisions between the player sprite and

whatever SpritelList we specify for the walls.

self.physics_engine = arcade.PhysicsEngineSimple(
self.player_sprite, self.wall_list

)

self.background_color = arcade.csscolor.CORNFLOWER_BLUE
def setup(self):

"""Set up the game here. Call this function to restart the game.
pass

i

def on_draw(self):
"""Render the screen.

i

Clear the screen to the background color
self.clear()

(continues on next page)

88 Chapter 8. Simple Platformer

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

Python Arcade Library, Release 3.0.0.dev26

Draw our sprites
self.player_list.draw()
self.wall_list.draw()

def on_update(self, delta_time):
"""Movement and Game Logic"""

Move the player using our physics engine
self.physics_engine.update()

def on_key_press(self, key, modifiers):
"""Called whenever a key is pressed."""

if key == arcade.key.UP or key == arcade.key.W:
self.player_sprite.change_y = PLAYER_MOVEMENT_SPEED
elif key == arcade.key.DOWN or key == arcade.key.S:
self.player_sprite.change_y = -PLAYER_MOVEMENT_SPEED
elif key == arcade.key.LEFT or key == arcade.key.A:
self.player_sprite.change_x = -PLAYER_MOVEMENT_SPEED
elif key == arcade.key.RIGHT or key == arcade.key.D:
self.player_sprite.change_x = PLAYER_MOVEMENT_SPEED

def on_key_release(self, key, modifiers):
"""Called whenever a key is released."""

if key == arcade.key.UP or key == arcade.key.W:
self.player_sprite.change_y = 0

elif key == arcade.key.DOWN or key == arcade.key.S:
self.player_sprite.change_y = 0

elif key == arcade.key.LEFT or key == arcade.key.A:
self.player_sprite.change_x = 0

elif key == arcade.key.RIGHT or key == arcade.key.D:
self.player_sprite.change_x = 0

def main(Q:
"""Main function
window = MyGame()
window.setup()
arcade.run()

i

if __name__ == "__main__":
main()

(continued from previous page)

8.4. Step 4 - Add User Control

89

Python Arcade Library, Release 3.0.0.dev26

8.4.2 Run This Chapter

[python -m arcade.examples.platform_tutorial.®4_user_control

8.5 Step 5 - Add Gravity

The previous example is great for top-down games, but what if it is a side view with jumping like our platformer? We
need to add gravity. First, let’s define a constant to represent the acceleration for gravity, and one for a jump speed.

GRAVITY = 1
PLAYER_JUMP_SPEED = 20

Now, let’s change the Physics Engine we created in the __init__ functionto a arcade.PhysicsEnginePlatformer
instead of a arcade.PhysicsEngineSimple. This new physics engine will handle jumping and gravity for us, and
will do even more in later chapters.

self.physics_engine = arcade.PhysicsEnginePlatformer (
self.player_sprite, walls=self.wall_list, gravity_constant=GRAVITY
)

This is very similar to how we created the original simple physics engine, with two exceptions. The first being that
we have sent it our gravity constant. The second being that we have explicitly sent our wall SpriteList to the walls
parameter. This is a very important step. The platformer physics engine has two parameters for collidable objects, one
named platforms and one named walls.

The difference is that objects sent to platforms are intended to be moved. They are moved in the same way the player
is, by modifying their change_x and change_y values. Objects sent to the walls parameter will not be moved. The
reason this is so important is that non-moving walls have much faster performance than movable platforms.

Adding static sprites via the platforms parameter is roughly an O(n) operation, meaning performance will linearly
get worse as you add more sprites. If you add your static sprites via the walls parameter, then it is nearly O(1) and
there is essentially no difference between for example 100 and 50,000 non-moving sprites.

Lastly we will give our player the ability to jump. Modify the on_key_press and on_key_release functions. We’ll
remove the up/down statements we had before, and make UP jump when pressed.

if key == arcade.key.UP or key == arcade.key.W:
if self.physics_engine.can_jump():
self.player_sprite.change_y = PLAYER_JUMP_SPEED

The can_jump () check from our physics engine will make it so that we can only jump if we are touching the ground.
You can remove this function to allow jumping in mid-air for some interesting results. Think about how you might
implement a double-jump system using this.

Note: You can change how the user jumps by changing the gravity and jump constants. Lower values for both will
make for a more “floaty” character. Higher values make for a faster-paced game.

90 Chapter 8. Simple Platformer

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

40

41

42

43

44

45

46

47

48

Python Arcade Library, Release 3.0.0.dev26

8.5.1 Source Code

Listing 5: 05_add_gravity.py - Add Gravity

i

Platformer Game

python -m arcade.examples.platform_tutorial.®5_add _gravity

i

import arcade

Constants

SCREEN_WIDTH = 800
SCREEN_HEIGHT = 600
SCREEN_TITLE = "Platformer"

Constants used to scale our sprites from their original size
TILE_SCALING = 0.5

Movement speed of player, in pixels per frame
PLAYER_MOVEMENT_SPEED = 5

GRAVITY = 1

PLAYER_JUMP_SPEED = 20

class MyGame(arcade.Window) :

min

Main application class.

i

def __init__(self):

Call the parent class and set up the window
super().__init__ (SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)

Variable to hold our texture for our player
self.player_texture = arcade.load_texture(":resources:images/animated_characters/
—female_adventurer/femaleAdventurer_idle.png")

Separate variable that holds the player sprite
self.player_sprite = arcade.Sprite(self.player_texture)
self.player_sprite.center_x = 64
self.player_sprite.center_y = 128

SpriteList for our player
self.player_list = arcade.SpriteList()
self.player_list.append(self.player_sprite)

SpritelList for our boxes and ground
Putting our ground and box Sprites in the same SpriteList
will make it easier to perform collision detection against
them later on. Setting the spatial hash to True will make
collision detection much faster if the objects in this
(continues on next page)

8.5. Step 5 - Add Gravity 91

49

50

51

52

53

54

55

57

58

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

90

91

92

93

94

95

96

97

98

99

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

SpriteList do not move.
self.wall_list = arcade.SpriteList(use_spatial_hash=True)

Create the ground
This shows using a loop to place multiple sprites horizontally
for x in range(®, 1250, 64):
wall = arcade.Sprite(":resources:images/tiles/grassMid.png", scale=TILE_
—SCALING)
wall.center_x = x
wall.center_y = 32
self.wall_list.append(wall)

Put some crates on the ground
This shows using a coordinate list to place sprites
coordinate_list = [[512, 96], [256, 96], [768, 96]]

for coordinate in coordinate_list:
Add a crate on the ground
wall = arcade.Sprite(
":resources:images/tiles/boxCrate_double.png", scale=TILE_SCALING
)
wall.position = coordinate
self.wall_list.append(wall)

Create a Platformer Physics Engine.
This will handle moving our player as well as collisions between
the player sprite and whatever SpritelList we specify for the walls.
It is important to supply static platforms to the walls parameter. There is a
platforms parameter that is intended for moving platforms.
If a platform is supposed to move, and is added to the walls list,
it will not be moved.
self.physics_engine = arcade.PhysicsEnginePlatformer (
self.player_sprite, walls=self.wall_list, gravity_constant=GRAVITY
)

self.background_color = arcade.csscolor.CORNFLOWER_BLUE
def setup(self):

"""Set up the game here. Call this function to restart the game.
pass

i

def on_draw(self):
"""Render the screen.

i

Clear the screen to the background color
self.clear()

Draw our sprites
self.player_list.draw()
self.wall_list.draw()

def on_update(self, delta_time):

(continues on next page)

92 Chapter 8. Simple Platformer

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

124

125

126

127

128

129

130

131

132

133

134

Python Arcade Library, Release 3.0.0.dev26

i i

Movement and Game Logic

Move the player using our physics engine
self.physics_engine.update()

def on_key_press(self, key, modifiers):
"""Called whenever a key is pressed."""

if key == arcade.key.UP or key == arcade.key.W:
if self.physics_engine.can_jump():
self.player_sprite.change_y = PLAYER_JUMP_SPEED

if key == arcade.key.LEFT or key == arcade.key.A:
self.player_sprite.change_x = -PLAYER_MOVEMENT_SPEED

elif key == arcade.key.RIGHT or key == arcade.key.D:
self.player_sprite.change_x = PLAYER_MOVEMENT_SPEED

def on_key_release(self, key, modifiers):
"""Called whenever a key is released."""

if key == arcade.key.LEFT or key == arcade.key.A:
self.player_sprite.change_x = 0

elif key == arcade.key.RIGHT or key == arcade.key.D:
self.player_sprite.change_x = 0

def main(Q:
"""Main function
window = MyGame()
window.setup()
arcade.run()

i

if __name__ == "__main__":
main()

(continued from previous page)

8.5.2 Run This Chapter

[python -m arcade.examples.platform_tutorial.05_add_gravity

8.6 Step 6 - Resetting

You might have noticed that throughout this tutorial, there has been a setup function in our Window class. So far, we

haven’t used this function at all, so what is it for?

Let’s imagine that we want a way to “reset” our game to it’s initial state. This could be because the player lost, and we

want to restart the game, or perhaps we just want to give the player the option to restart.

With our current architecture of creating everything in our __init__ function, we would have to duplicate all of that
logic in another function in order to make that happen, or completely re-create our Window, which will be an unpleasent

8.6. Step 6 - Resetting

93

Python Arcade Library, Release 3.0.0.dev26

experience for a player.

In this chapter, we will do a small amount of re-organizing our existing code to make use of this setup function in a
way that allows to simply call the setup function whenever we want our game to return to it’s original state.

First off, we will change our __init__ function to look like below. We are setting values to something like None, 0,
or similar. The purpose of this step is to ensure that the attributes are created on the class. In Python, we cannot add
new attributes to a class outside of the __init__ function.

def __init__(self):
super().__init__ (SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)
self.player_texture = None

self.player_sprite = None
self.player_list = None

self.wall_list = None

Next we will move the actual creation of these objects into our setup function. This looks almost identical to our original
__init__ function. Try and move these sections of code on your own, if you get stuck you can see the setup function
in the full source code listing below.

The last thing we need to do is create a way to reset the game. For now we’ll add a simple key press to do it. Add the
following in your on_key_press function to reset the game when the Escape key is pressed.

if key == arcade.key.ESCAPE:
self.setup(

8.6.1 Source Code

Listing 6: Resetting

i

Platformer Game

python -m arcade.examples.platform_tutorial.®6_reset

i

import arcade

Constants

SCREEN_WIDTH = 800
SCREEN_HEIGHT = 600
SCREEN_TITLE = "Platformer"

Constants used to scale our sprites from their original size
TILE_SCALING = 0.5

Movement speed of player, in pixels per frame
PLAYER_MOVEMENT_SPEED = 5

GRAVITY =1

PLAYER_JUMP_SPEED = 20

(continues on next page)

94 Chapter 8. Simple Platformer

22

23

2

25

26

27

28

29

31

32

33

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

63

64

65

66

67

68

69

70

71

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

class MyGame(arcade.Window) :

i

Main application class.

min

def __init__(self):

Call the parent class and set up the window
super().__init__ (SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)

Variable to hold our texture for our player
self.player_texture = None

Separate variable that holds the player sprite
self.player_sprite = None

SpriteList for our player
self.player_list = None

SpritelList for our boxes and ground

Putting our ground and box Sprites in the same SpriteList
will make it easier to perform collision detection against
them later on. Setting the spatial hash to True will make
collision detection much faster if the objects in this

SpritelList do not move.

self.wall_list = None

def setup(self):
"""Set up the game here. Call this function to restart the game.

i

self.player_texture = arcade.load_texture(":resources:images/animated_characters/

—female_adventurer/femaleAdventurer_idle.png")

self.player_sprite = arcade.Sprite(self.player_texture)
self.player_sprite.center_x = 64
self.player_sprite.center_y = 128

self.player_list = arcade.SpriteList()
self.player_list.append(self.player_sprite)

self.wall_list = arcade.SpriteList(use_spatial_hash=True)

Create the ground
This shows using a loop to place multiple sprites horizontally
for x in range(®, 1250, 64):

wall = arcade.Sprite(":resources:images/tiles/grassMid.png",

—SCALING)

wall.center_x = x

wall.center_y = 32

self.wall_list.append(wall)

Put some crates on the ground
This shows using a coordinate list to place sprites

scale=TILE_

(continues on next page)

8.6. Step 6 - Resetting

95

72

73

74

75

76

77

78

79

90

91

92

93

9%

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

Python Arcade Library, Release 3.0.0.dev26

def

def

def

(continued from previous page)

coordinate_list = [[512, 96], [256, 96], [768, 96]]

for coordinate in coordinate_list:
Add a crate on the ground
wall = arcade.Sprite(
":resources:images/tiles/boxCrate_double.png", scale=TILE_SCALING
)
wall.position = coordinate
self.wall_list.append(wall)

Create a Platformer Physics Engine, this will handle moving our
player as well as collisions between the player sprite and

whatever SpritelList we specify for the walls.

It is important to supply static to the walls parameter. There is a
platforms parameter that is intended for moving platforms.

If a platform is supposed to move, and is added to the walls list,
it will not be moved.

self.physics_engine = arcade.PhysicsEnginePlatformer (
self.player_sprite, walls=self.wall_list, gravity_constant=GRAVITY

o R W W W W

)
self.background_color = arcade.csscolor.CORNFLOWER_BLUE

on_draw(self):
"""Render the screen."""

Clear the screen to the background color
self.clear()

Draw our sprites
self.player_list.draw()
self.wall_list.draw()

on_update(self, delta_time):
"""Movement and Game Logic"""

Move the player using our physics engine
self.physics_engine.update()

on_key_press(self, key, modifiers):
"""Called whenever a key is pressed.'"""

if key == arcade.key.ESCAPE:
self.setup()

if key == arcade.key.UP or key == arcade.key.W:
if self.physics_engine.can_jump():
self.player_sprite.change_y = PLAYER_JUMP_SPEED

if key == arcade.key.LEFT or key == arcade.key.A:
self.player_sprite.change_x = -PLAYER_MOVEMENT_SPEED
elif key == arcade.key.RIGHT or key == arcade.key.D:

(continues on next page)

96

Chapter 8. Simple Platformer

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

self.player_sprite.change_x = PLAYER_MOVEMENT_SPEED

def on_key_release(self, key, modifiers):
"""Called whenever a key is released."""

if key == arcade.key.LEFT or key == arcade.key.A:
self.player_sprite.change_x = 0

elif key == arcade.key.RIGHT or key == arcade.key.D:
self.player_sprite.change_x = 0

def main(Q:
"""Main function
window = MyGame()
window.setup()
arcade.run()

i

if __name__ == "__main__":
main()

8.6.2 Run This Chapter

[python -m arcade.examples.platform_tutorial.06_reset

8.7 Step 7 - Adding a Camera

Now that our player can move and jump around, we need to give them a way to explore the world beyond the original
window. If you’ve ever played a platformer game, you might be familiar with the concept of the screen scrolling to
reveal more of the map as the player moves.

To achieve this, we can use a Camera, Arcade provides arcade. SimpleCamera and arcade.Camera. They both do
the same base thing, but Camera has a bit of extra functionality that SimpleCamera doesn’t. For now, we will just use
the SimpleCamera.

To start with, let’s go ahead and add a variable in our __init__ function to hold it:

[self. camera = None

Next we can go to our setup function, and initialize it like so:

[self.camera = arcade.SimpleCamera(viewport=(0, 0, self.width, self.height))

The viewport parameter here defines the size of the camera. In most circumstances, you will want this to be the size
of your window. So we specify the bottom and left coordinates of our camera viewport as (0, 0), and provide it the
width and height of our window.

In order to use our camera when drawing things to the screen, we only need to add one line to our on_draw function.
This line should typically come before anything you want to draw with the camera. In later chapters, we’ll explore
using multiple cameras to draw things in different positions. Go ahead and add this line before drawing our SpriteLists

8.7. Step 7 - Adding a Camera 97

20

21

22

23

24

25

26

27

28

29

30

Python Arcade Library, Release 3.0.0.dev26

[self. camera.use()

]

If you run the game at this point, you might notice that nothing has changed, our game is still one static un-moving

screen. This is because we are never updating the camera’s position. In our platformer game,
follow the player, and keep them in the center of the screen. Arcade provides a helpful function

we want the camera to
to do this with one line

of code. In other types of games or more advanced usage you may want to set the cameras position directly in order to

create interesting effects, but for now all we need is the center () function of our camera.

If we add the following line to our on_update () function and run the game, you should now s

ee the player stay at the

center of the screen, while being able to scroll the screen around to the rest of our map. For fun, see what happens if
you fall off of the map! Later on, we’ll revisit a more advanced camera setup that will take the bounds of our world

into consideration.

[self. camera.center(self.player_sprite.position)

8.7.1 Source Code

Listing 7: Adding a Camera

i

Platformer Game

python -m arcade.examples.platform_tutorial.®7_camera

i

import arcade

Constants

SCREEN_WIDTH = 800
SCREEN_HEIGHT = 600
SCREEN_TITLE = "Platformer"

Constants used to scale our sprites from their original size
TILE_SCALING = 0.5

Movement speed of player, in pixels per frame
PLAYER_MOVEMENT_SPEED = 5

GRAVITY =1

PLAYER_JUMP_SPEED = 20

class MyGame(arcade.Window) :

o

Main application class.

e

def __init__(self):

Call the parent class and set up the window
super() .__init__ (SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)

Variable to hold our texture for our player
self.player_texture = None

(continues on next page)

98 Chapter 8

. Simple Platformer

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

Separate variable that holds the player sprite
self.player_sprite = None

SpriteList for our player
self.player_list = None

SpritelList for our boxes and ground

Putting our ground and box Sprites in the same SpritelList
will make it easier to perform collision detection against
them later on. Setting the spatial hash to True will make
collision detection much faster if the objects in this

SpriteList do not move.

self.wall_list = None

A variable to store our camera object
self.camera = None

def setup(self):
"""Set up the game here. Call this function to restart the game.

i

self.player_texture = arcade.load_texture(":resources:images/animated_characters/

—.female_adventurer/femaleAdventurer_idle.png")

self.player_sprite = arcade.Sprite(self.player_texture)
self.player_sprite.center_x = 64
self.player_sprite.center_y = 128

self.player_list = arcade.SpriteList()
self.player_list.append(self.player_sprite)

self.wall_list = arcade.SpritelList(use_spatial_hash=True)

Create the ground
This shows using a loop to place multiple sprites horizontally
for x in range(®, 1250, 64):
wall = arcade.Sprite(":resources:images/tiles/grassMid.png", scale=TILE_
—SCALING)

wall.center_x = x
wall.center_y = 32
self.wall_list.append(wall)

Put some crates on the ground
This shows using a coordinate list to place sprites
coordinate_list = [[512, 96], [256, 96], [768, 96]]

for coordinate in coordinate_list:
Add a crate on the ground
wall = arcade.Sprite(
":resources:images/tiles/boxCrate_double.png", scale=TILE_SCALING
)
wall.position = coordinate
self.wall_list.append(wall)

(continues on next page)

8.7. Step 7 - Adding a Camera

99

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

Create a Platformer Physics Engine, this will handle moving our

player as well as collisions between the player sprite and

whatever SpritelList we specify for the walls.

It is important to supply static to the walls parameter. There is a

platforms parameter that is intended for moving platforms.

If a platform is supposed to move, and is added to the walls list,

it will not be moved.

self.physics_engine = arcade.PhysicsEnginePlatformer (
self.player_sprite, walls=self.wall_list, gravity_constant=GRAVITY

)

Initialize our camera, setting a viewport the size of our window.
self.camera = arcade.SimpleCamera(viewport=(0, 0, self.width, self.height))

self.background_color = arcade.csscolor.CORNFLOWER_BLUE

def on_draw(self):
"""Render the screen."""

Clear the screen to the background color

self.clear()

Activate our camera before drawing
self.camera.use()

Draw our sprites
self.player_list.draw()
self.wall_list.draw()

def on_update(self, delta_time):
"""Movement and Game Logic"""

Move the player using our physics engine
self.physics_engine.update()

Center our camera on the player
self.camera.center(self.player_sprite.position)

def on_key_press(self, key, modifiers):
"""Called whenever a key is pressed.'"""

if key == arcade.key.ESCAPE:
self.setup()

if key == arcade.key.UP or key == arcade.key.W:
if self.physics_engine.can_jump():
self.player_sprite.change_y = PLAYER_JUMP_SPEED

if key == arcade.key.LEFT or key == arcade.key.A:
self.player_sprite.change_x = -PLAYER_MOVEMENT_SPEED
elif key == arcade.key.RIGHT or key == arcade.key.D:

(continues on next page)

100 Chapter 8. Simple Platformer

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

self.player_sprite.change_x = PLAYER_MOVEMENT_SPEED

def on_key_release(self, key, modifiers):
"""Called whenever a key is released."""

if key == arcade.key.LEFT or key == arcade.key.A:
self.player_sprite.change_x = 0

elif key == arcade.key.RIGHT or key == arcade.key.D:
self.player_sprite.change_x = 0

def main(Q:
"""Main function
window = MyGame()
window.setup()
arcade.run()

i

if __name__ == "__main__":
main()

8.7.2 Run This Chapter

[python -m arcade.examples.platform_tutorial.07_camera

8.8 Step 8 - Collecting Coins

Now that we can fully move around our game, we need to give the player an objective. A classic goal in video games
is collecting coins, so let’s go ahead and add that.

In this chapter you will learn how to check for collisions with our player, and find out exactly what they collided with
and do something with it. For now we will just remove the coin from the screen when they collect it, but in later chapters
we will give the character a score, and add to it when they collect a coin. We will also start playing sounds later.

First off we will create a new SpriteList to hold our coins. Exactly like our other spritelist for walls, go ahead and add
a variable to the __init__ function to store it, and then initialize it inside the setup function. We will want to turn
on spatial hashing for this list for now. If you decided to have moving coins, you would want to turn that off.

Inside init__

self.coin_list = None

Inside setup
self.coin_list = arcade.SpriteList(use_spatial_hash=True)

See if you can experiment with a way to add the coins to the SpriteList using what we’ve already learned. The built-in
resource for them is : resources:images/items/coinGold.png. HINT: You’ll want to scale these just like we did
with our boxes and ground. If you get stuck, you can check the full source code below to see how we’ve placed them
following the same pattern we used for the ground.

Once you have placed the coins and added them to the coin_list, don’t forget to add them to on_draw.

8.8. Step 8 - Collecting Coins 101

Python Arcade Library, Release 3.0.0.dev26

[self. coin_list.draw() J

Now that we’re drawing our coins to the screen, how do we make them interact with the player? When the player hits
one, we want to remove it from the screen. To do this we will use arcade. check_for_collision_with_list()
function. This function takes a single Sprite, in this instance our player, and a SpriteList, for us, the coins. It will return
a list containing all of the Sprites from the given SpriteList that the Sprite collided with.

We can iterate over that list with a for loop to do something with each sprite that had a collision. This means we can
detect the user hitting multiple coins at once if we had them placed close together.

In order to do this, and remove the coin sprites when the player hits them, we will add this to the on_update function.

coin_hit_list = arcade.check_for_collision_with_list(
self.player_sprite, self.coin_list

)

for coin in coin_hit_list:
coin.remove_from_sprite_lists()

We use this arcade.BasicSprite.remove_from_sprite_lists() function in order to ensure our Sprite is com-
pletely removed from all SpriteLists it was a part of.

8.8.1 Source Code

Listing 8: Collecting Coins

i

Platformer Game

python -m arcade.examples.platform_tutorial.®8_coins

i

import arcade

Constants

SCREEN_WIDTH = 800
SCREEN_HEIGHT = 600
SCREEN_TITLE = "Platformer"

Constants used to scale our sprites from their original size
TILE_SCALING 0.5
COIN_SCALING 0.5

Movement speed of player, in pixels per frame
PLAYER_MOVEMENT_SPEED = 5

GRAVITY = 1

PLAYER_JUMP_SPEED = 20

class MyGame(arcade.Window) :

e

Main application class.

e

(continues on next page)

102 Chapter 8. Simple Platformer

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

58

59

60

61

62

63

64

65

66

67

69

70

71

72

73

74

75

76

77

Python Arcade Library, Release 3.0.0.dev26

def

def

(continued from previous page)

__init__(self):

Call the parent class and set up the window
super().__init__ (SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)

Variable to hold our texture for our player
self.player_texture = None

Separate variable that holds the player sprite
self.player_sprite = None

SpritelList for our player
self.player_list = None

Spritelist for our boxes and ground

Putting our ground and box Sprites in the same SpriteList
will make it easier to perform collision detection against
them later on. Setting the spatial hash to True will make
collision detection much faster if the objects in this

SpritelList do not move.

self.wall_list = None

SpritelList for coins the player can collect
self.coin_list = None

A variable to store our camera object
self.camera = None

setup(self):
"""Set up the game here. Call this function to restart the game.

i

self.player_texture = arcade.load_texture(":resources:images/animated_characters/
—.female_adventurer/femaleAdventurer_idle.png")

self.player_sprite = arcade.Sprite(self.player_texture)
self.player_sprite.center_x = 64
self.player_sprite.center_y = 128

self.player_list = arcade.SpriteList()
self.player_list.append(self.player_sprite)

self.wall_list = arcade.SpritelList(use_spatial_hash=True)
self.coin_list = arcade.SpritelList(use_spatial_hash=True)

Create the ground
This shows using a loop to place multiple sprites horizontally
for x in range(®, 1250, 64):

wall = arcade.Sprite(":resources:images/tiles/grassMid.png",

—SCALING)

wall.center_x = x
wall.center_y = 32
self.wall_list.append(wall)

scale=TILE_

(continues on next page)

8.8. Step 8 - Collecting Coins

103

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

Put some crates on the ground
This shows using a coordinate list to place sprites
coordinate_list = [[512, 96], [256, 96], [768, 96]]

for coordinate in coordinate_list:
Add a crate on the ground
wall = arcade.Sprite(
":resources:images/tiles/boxCrate_double.png", scale=TILE_SCALING
)
wall.position = coordinate
self.wall_list.append(wall)

Add coins to the world
for x in range(128, 1250, 256):
coin = arcade.Sprite(":resources:images/items/coinGold.png", scale=COIN_

—SCALING)

def

def

coin.center_x = x
coin.center_y = 96
self.coin_list.append(coin)

Create a Platformer Physics Engine, this will handle moving our

player as well as collisions between the player sprite and

whatever SpritelList we specify for the walls.

It is important to supply static to the walls parameter. There is a

platforms parameter that is intended for moving platforms.

If a platform is supposed to move, and is added to the walls list,

it will not be moved.

self.physics_engine = arcade.PhysicsEnginePlatformer (
self.player_sprite, walls=self.wall_list, gravity_constant=GRAVITY

)

Initialize our camera, setting a viewport the size of our window.
self.camera = arcade.SimpleCamera(viewport=(0, 0, self.width, self.height))

self.background_color = arcade.csscolor.CORNFLOWER_BLUE

on_draw(self):
"""Render the screen."""

Clear the screen to the background color
self.clear()

Activate our camera before drawing
self.camera.use()

Draw our sprites
self.player_list.draw()
self.wall_list.draw()
self.coin_list.draw()

on_update(self, delta_time):
"""Movement and Game Logic"""

(continues on next page)

104

Chapter 8. Simple Platformer

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

Python Arcade Library, Release 3.0.0.dev26

Move the player using our physics engine
self.physics_engine.update()

See if we hit any coins
coin_hit_list = arcade.check_for_collision_with_list(
self.player_sprite, self.coin_list

)

Loop through each coin we hit (if any) and remove it
for coin in coin_hit_list:

Remove the coin

coin.remove_from_sprite_lists()

Center our camera on the player
self.camera.center(self.player_sprite.position)

def on_key_press(self, key, modifiers):
"""Called whenever a key is pressed.'"""

if key == arcade.key.ESCAPE:
self.setup()

if key == arcade.key.UP or key == arcade.key.W:
if self.physics_engine.can_jump():
self.player_sprite.change_y = PLAYER_JUMP_SPEED

if key == arcade.key.LEFT or key == arcade.key.A:
self.player_sprite.change_x = -PLAYER_MOVEMENT_SPEED

elif key == arcade.key.RIGHT or key == arcade.key.D:
self.player_sprite.change_x = PLAYER_MOVEMENT_SPEED

def on_key_release(self, key, modifiers):
"""Called whenever a key is released."""

if key == arcade.key.LEFT or key == arcade.key.A:
self.player_sprite.change_x = 0

elif key == arcade.key.RIGHT or key == arcade.key.D:
self.player_sprite.change_x = 0

def main(Q):
"""Main function
window = MyGame()
window.setup()
arcade.run()

mirn

if __name__ == "__main__":
main()

(continued from previous page)

8.8. Step 8 - Collecting Coins

105

Python Arcade Library, Release 3.0.0.dev26

8.8.2 Run This Chapter

[python -m arcade.examples.platform_tutorial.08_coins

8.9 Step 9 - Adding Sound

Our game has a lot of graphics so far, but doesn’t have any sound yet. Let’s change that! In this chapter we will add a
sound when the player collects the coins, as well as when they jump.

Loading and playing sounds in Arcade is very easy. We will only need two functions for this:
e arcade.load_sound()
e arcade.play_sound()

Inour __init__ function, we will add these two lines to load our coin collection and jump sounds.

self.collect_coin_sound = arcade.load_sound(":resources:sounds/coinl.wav")
self.jump_sound = arcade.load_sound(":resources:sounds/jumpl.wav")

Note: Why are we not adding empty variables to __init__ and initializing them in setup like our other objects?

This is because sounds are a static asset within our game. If we reset the game, the sounds don’t change, so it’s not
worth re-loading them.

Now we can play these sounds by simple adding the play_sound function wherever we want them to occur. Let’s add
one alongside our removal of coins in the on_update function.

Within on_update

for coin in coin_hit_list:
coin.remove_from_sprite_lists()
arcade.play_sound(self.collect_coin_sound)

This will play a sound whenever we collect a coin. We can add a jump sound by adding this to our UP block for jumping
in the on_key_press function:

Within on_key_press
if key == arcade.key.UP or key == arcade.key.W:
if self.physics_engine.can_jump():
self.player_sprite.change_y = PLAYER_JUMP_SPEED
arcade.play_sound(self. jump_sound)

Now we will also have a sound whenever we jump.

Documentation for arcade. Sound

106 Chapter 8. Simple Platformer

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Python Arcade Library, Release 3.0.0.dev26

8.9.1 Source Code

Listing 9: Load the Map

i

Platformer Game

python -m arcade.examples.platform_tutorial.®9_sound

i

import arcade

Constants

SCREEN_WIDTH = 800
SCREEN_HEIGHT = 600
SCREEN_TITLE = "Platformer"

Constants used to scale our sprites from their original size
TILE_SCALING = 0.5
COIN_SCALING = 0.5

Movement speed of player, in pixels per frame
PLAYER_MOVEMENT_SPEED = 5

GRAVITY =1

PLAYER_JUMP_SPEED = 20

class MyGame(arcade.Window) :

i

Main application class.

o

def __init__(self):

Call the parent class and set up the window
super().__init__ (SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)

Variable to hold our texture for our player
self.player_texture = None

Separate variable that holds the player sprite
self.player_sprite = None

SpriteList for our player
self.player_list = None

SpriteList for our boxes and ground

Putting our ground and box Sprites in the same SpritelList
will make it easier to perform collision detection against
them later on. Setting the spatial hash to True will make
collision detection much faster if the objects in this

SpriteList do not move.

self.wall_list = None

(continues on next page)

8.9. Step 9 - Adding Sound

107

50

51

52

53

54

55

56

57

59

60

61

62

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

90

91

92

93

94

95

96

97

98

Python Arcade Library, Release 3.0.0.dev26

def

(continued from previous page)

SpriteList for coins the player can collect
self.coin_list = None

A variable to store our camera object
self.camera = None

Load sounds
self.collect_coin_sound = arcade.load_sound(":resources:sounds/coinl.wav')
self. jump_sound = arcade.load_sound(":resources:sounds/jumpl.wav")

setup(self):
"""Set up the game here. Call this function to restart the game.
self.player_texture = arcade.load_texture(":resources:images/animated_characters/

i

—female_adventurer/femaleAdventurer_idle.png")

self.player_sprite = arcade.Sprite(self.player_texture)
self.player_sprite.center_x = 64
self.player_sprite.center_y = 128

self.player_list = arcade.SpriteList()
self.player_list.append(self.player_sprite)

self.wall_list = arcade.SpriteList(use_spatial_hash=True)
self.coin_list = arcade.SpriteList(use_spatial_hash=True)

Create the ground
This shows using a loop to place multiple sprites horizontally
for x in range(®, 1250, 64):
wall = arcade.Sprite(":resources:images/tiles/grassMid.png", scale=TILE_

—SCALING)

wall.center_x = x
wall.center_y = 32
self.wall_list.append(wall)

Put some crates on the ground
This shows using a coordinate list to place sprites
coordinate_list = [[512, 96], [256, 96], [768, 96]1]

for coordinate in coordinate_list:
Add a crate on the ground
wall = arcade.Sprite(
":resources:images/tiles/boxCrate_double.png", scale=TILE_SCALING
)
wall.position = coordinate
self.wall_list.append(wall)

Add coins to the world
for x in range(128, 1250, 256):
coin = arcade.Sprite(":resources:images/items/coinGold.png", scale=COIN_

—SCALING)

coin.center_x = X
coin.center_y = 96

(continues on next page)

108

Chapter 8. Simple Platformer

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

self.coin_list.append(coin)

Create a Platformer Physics Engine, this will handle moving our

player as well as collisions between the player sprite and

whatever SpritelList we specify for the walls.

It is important to supply static to the walls parameter. There is a

platforms parameter that is intended for moving platforms.

If a platform is supposed to move, and is added to the walls list,

it will not be moved.

self.physics_engine = arcade.PhysicsEnginePlatformer (
self.player_sprite, walls=self.wall list, gravity_constant=GRAVITY

)

Initialize our camera, setting a viewport the size of our window.
self.camera = arcade.SimpleCamera(viewport=(0, 0, self.width, self.height))

self.background_color = arcade.csscolor.CORNFLOWER_BLUE

def on_draw(self):
"""Render the screen."""

Clear the screen to the background color

self.clear()

Activate our camera before drawing
self.camera.use()

Draw our sprites
self.player_list.draw()
self.wall_list.draw()
self.coin_list.draw()

def on_update(self, delta_time):
"""Movement and Game Logic"""

Move the player using our physics engine

self.physics_engine.update()

See if we hit any coins
coin_hit_list = arcade.check_for_collision_with_list(
self.player_sprite, self.coin_list

Loop through each coin we hit (if any) and remove it
for coin in coin_hit_list:
Remove the coin
coin.remove_from_sprite_lists()
arcade.play_sound(self.collect_coin_sound)

Center our camera on the player
self.camera.center(self.player_sprite.position)

(continues on next page)

8.9. Step 9 - Adding Sound

109

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

def on_key_press(self, key, modifiers):
"""Called whenever a key is pressed.'"""

if key == arcade.key.ESCAPE:
self.setup()

if key == arcade.key.UP or key == arcade.key.W:
if self.physics_engine.can_jump():
self.player_sprite.change_y = PLAYER_JUMP_SPEED
arcade.play_sound(self. jump_sound)

if key == arcade.key.LEFT or key == arcade.key.A:
self.player_sprite.change_x = -PLAYER_MOVEMENT_SPEED

elif key == arcade.key.RIGHT or key == arcade.key.D:
self.player_sprite.change_x = PLAYER_MOVEMENT_SPEED

def on_key_release(self, key, modifiers):
"""Called whenever a key is released."""

if key == arcade.key.LEFT or key == arcade.key.A:
self.player_sprite.change_x = 0

elif key == arcade.key.RIGHT or key == arcade.key.D:
self.player_sprite.change_x = 0

def main(Q):
"""Main function
window = MyGame()
window.setup()
arcade.run()

mirn

if __name__ == "__main__":
main()

8.9.2 Run This Chapter

[python -m arcade.examples.platform_tutorial.®9_sound

8.10 Step 10 - Adding a Score

Our game is starting to take shape, but we still need to give the player a reward for their hard work collecting coins. To
do this we will add a score which will be increased everytime they collect a coin, and display that on the screen.

In this chapter we will cover using arcade. Text objects, as well as a technique for using two cameras to draw objects
in “screen space” and objects in “world space”.

Note: What is screen space and world space? Think about other games you may have played, and let’s compare it
to our game. A player moves around in the world, and we scroll a camera around based on that position. This is an

110 Chapter 8. Simple Platformer

Python Arcade Library, Release 3.0.0.dev26

example of “world space” coordinates. They can expand beyond our window and need to be positioned within the
window accordingly.

An example of “screen space” coordinates is our score indicator. We will draw this on our screen, but we don’t want
it to move around the screen when the camera scrolls around. To achieve this we will use two different cameras, and
move the world space camera, but not move the screen space camera.

In our code, we will call this screen space camera, gui_camera

Let’s go ahead and add a variable for our new camera and initialize it in setup. We will also add a variable for our
score. This will just be an integer initially set to 0. We will set this in both __init__ and setup.

Within __init__
self.gui_camera = None
self.score = 0

Within setup
self.gui_camera = arcade.SimpleCamera(viewport=(0, 0, width, height))
self.score = 0

Now we can go into our on_update function, and when the player collects a coin, we can increment our score variable.
For now we will give the player 75 points for collecting a coin. You can change this, or as an exercise try adding different
types of coins with different point values. In later chapters we’ll explore dynamically providing point values for coins
from a map editor.

Within on_update

for coin in coin_hit_list:
coin.remove_from_sprite_lists()
arcade.play_sound(self.collect_coin_sound)
self.score += 75

Now that we’re incrementing our score, how do we draw it onto the screen? Well we will be using our GUI camera,
but so far we haven’t talked about drawing Text in Arcade. There are a couple of ways we can do this in Arcade, the
first way is using the arcade. draw_text () function. This is a simple function that you can put directly in on_draw
to draw a string of text.

This function however, is not very performant, and there is a better way. We will instead use arcade. Text objects.
These have many advantages, like not needing to re-calculate the text everytime it’s drawn, and also can be batch drawn
much like how we do with Sprite and SpriteList. We will explore batch drawing Text later.

For now, let’s create an arcade. Text object to hold our score text. First create the empty variable in __init__ and
initialize in setup.

Within __init__

self.score_text = None

Within setup
self.score_text = arcade.Text(f"Score: {self.score}", start_x = 0, start_y = 5)

The first parameter we send to arcade . Text is a String containing the text we want to draw. In our example we provide
an f-string which adds our value from self.score into the text. The other parameters are defining the bottom left
point that our text will be drawn at.

I’ve set it to draw in the bottom left of our screen here. You can try moving it around.

Now we need to add this to our on_draw function in order to get it to display on the screen.

8.10. Step 10 - Adding a Score 111

20

21

22

23

24

25

26

27

28

Python Arcade Library, Release 3.0.0.dev26

Within on_draw
self.gui_camera.use()
self.score_text.draw()

This will now draw our text in the bottom left of the screen. However, we stil have one problem left, we’re not updating
the text when our user gets a new score. In order to do this we will go back to our on_update function, where we

incremented the score when the user collects a coin, and add one more line to it:

for coin in coin_hit_list:
coin.remove_from_sprite_lists()
arcade.play_sound(self.collect_coin_sound)
self.score += 75
self.score_text.text = f"Score: {self.scorel}"

In this new line we’re udpating the actual text of our Text object to contain the new score value.

8.10.1 Source Code

Listing 10: Multiple Levels

i

Platformer Game

python -m arcade.examples.platform_tutorial.l0®_score

i

import arcade

Constants

SCREEN_WIDTH = 800
SCREEN_HEIGHT = 600
SCREEN_TITLE = "Platformer"

Constants used to scale our sprites from their original size
TILE_SCALING = 0.5
COIN_SCALING = 0.5

Movement speed of player, in pixels per frame
PLAYER_MOVEMENT_SPEED = 5

GRAVITY = 1

PLAYER_JUMP_SPEED = 20

class MyGame(arcade.Window) :

e

Main application class.

i

def __init__(self):

Call the parent class and set up the window
super() .__init__ (SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)

(continues on next page)

112 Chapter 8. Simple Platformer

33

34

35

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

Variable to hold our texture for our player
self.player_texture = None

Separate variable that holds the player sprite
self.player_sprite = None

SpritelList for our player
self.player_list = None

SpriteList for our boxes and ground

Putting our ground and box Sprites in the same SpriteList
will make it easier to perform collision detection against
them later on. Setting the spatial hash to True will make
collision detection much faster if the objects in this

SpritelList do not move.

self.wall_list = None

SpriteList for coins the player can collect
self.coin_list = None

A variable to store our camera object
self.camera = None

A variable to store our gui camera object
self.gui_camera = None

This variable will store our score as an integer.
self.score = 0

This variable will store the text for score that we will draw to the screen.
self.score_text = None

Load sounds
self.collect_coin_sound = arcade.load_sound(":resources:sounds/coinl.wav")
self. jump_sound = arcade.load_sound(":resources:sounds/jumpl.wav")

def setup(self):
"""Set up the game here. Call this function to restart the game.
self.player_texture = arcade.load_texture(":resources:images/animated_characters/
- female_adventurer/femaleAdventurer_idle.png")

min

self.player_sprite = arcade.Sprite(self.player_texture)
self.player_sprite.center_x = 64
self.player_sprite.center_y = 128

self.player_list = arcade.SpriteList()
self.player_list.append(self.player_sprite)

self.wall_list = arcade.SpriteList(use_spatial_hash=True)
self.coin_list arcade.SpritelList(use_spatial_hash=True)

Create the ground

(continues on next page)

8.10. Step 10 - Adding a Score 113

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)
This shows using a loop to place multiple sprites horizontally
for x in range(®, 1250, 64):
wall = arcade.Sprite(":resources:images/tiles/grassMid.png", scale=TILE_

—SCALING)

wall.center_x = x
wall.center_y = 32
self.wall_list.append(wall)

Put some crates on the ground
This shows using a coordinate list to place sprites
coordinate_list = [[512, 96], [256, 96], [768, 96]]

for coordinate in coordinate_list:
Add a crate on the ground
wall = arcade.Sprite(
":resources:images/tiles/boxCrate_double.png", scale=TILE_SCALING
)
wall.position = coordinate
self.wall_list.append(wall)

Add coins to the world
for x in range(128, 1250, 256):
coin = arcade.Sprite(":resources:images/items/coinGold.png", scale=COIN_

—SCALING)

coin.center_x = X
coin.center_y = 96
self.coin_list.append(coin)

Create a Platformer Physics Engine, this will handle moving our

player as well as collisions between the player sprite and

whatever SpritelList we specify for the walls.

It is important to supply static to the walls parameter. There is a

platforms parameter that is intended for moving platforms.

If a platform is supposed to move, and is added to the walls list,

it will not be moved.

self.physics_engine = arcade.PhysicsEnginePlatformer (
self.player_sprite, walls=self.wall list, gravity_constant=GRAVITY

)

Initialize our camera, setting a viewport the size of our window.
self.camera = arcade.SimpleCamera(viewport=(0, 0, self.width, self.height))

Initialize our gui camera, initial settings are the same as our world camera.
self.gui_camera = arcade.SimpleCamera(viewport=(0, 0, self.width, self.height))

Reset our score to 0
self.score = 0

Initialize our arcade.Text object for score
self.score_text = arcade.Text(f"Score: {self.score}", start_x = 0, start_y = 5)

self.background_color = arcade.csscolor.CORNFLOWER_BLUE

(continues on next page)

114

Chapter 8. Simple Platformer

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

Python Arcade Library, Release 3.0.0.dev26

def on_draw(self):
"""Render the screen."""

Clear the screen to the background color

self.clear()

Activate our camera before drawing
self.camera.use()

Draw our sprites
self.player_list.draw()
self.wall_list.draw()
self.coin_list.draw()

Activate our GUI camera
self.gui_camera.use()

Draw our Score
self.score_text.draw()

def on_update(self, delta_time):
"""Movement and Game Logic"""

Move the player using our physics engine

self.physics_engine.update()

See if we hit any coins
coin_hit_list = arcade.check_for_collision_with_list(
self.player_sprite, self.coin_list

Loop through each coin we hit (if any) and remove it
for coin in coin_hit_list:
Remove the coin
coin.remove_from_sprite_lists()
arcade.play_sound(self.collect_coin_sound)
self.score += 75
self.score_text.text = f"Score: {self.score}"

Center our camera on the player
self.camera.center(self.player_sprite.position)

def on_key_press(self, key, modifiers):
"""Called whenever a key is pressed.'"""

if key == arcade.key.ESCAPE:
self.setup()

if key == arcade.key.UP or key == arcade.key.W:
if self.physics_engine.can_jump():
self.player_sprite.change_y = PLAYER_JUMP_SPEED

(continued from previous page)

(continues on next page)

8.10. Step 10 - Adding a Score

115

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

203

204

205

206

208

209

210

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

arcade.play_sound(self. jump_sound)

if key == arcade.key.LEFT or key == arcade.key.A:
self.player_sprite.change_x = -PLAYER_MOVEMENT_SPEED

elif key == arcade.key.RIGHT or key == arcade.key.D:
self.player_sprite.change_x = PLAYER_MOVEMENT_SPEED

def on_key_release(self, key, modifiers):
"""Called whenever a key is released."""

if key == arcade.key.LEFT or key == arcade.key.A:
self.player_sprite.change_x = 0

elif key == arcade.key.RIGHT or key == arcade.key.D:
self.player_sprite.change_x = 0

def main(Q:
"""Main function
window = MyGame()
window.setup()
arcade.run()

i

if __name__ == "__main_
main()

8.10.2 Run This Chapter

[python -m arcade.examples.platform_tutorial.10_score

8.11 Step 11 - Using a Scene

So far in our game, we have three SpriteLists. One for our player, one for our walls(ground and boxes), and one for our
coins. This is still manageable, but whatabout as our game grows? You can probably imagine a game could end up
with hundreds of SpriteLists. Using just our current approach, we would have to keep track of variables for each one,
and ensure we’re drawing them in the proper order.

Arcade provides a better way to handle this, with the arcade. Scene class. This class will hold all of our spritelists
for us, allow us to create new ones, change around the order they get drawn in, and more. In later chapters we will we
use a special function to load a map from a map editor tool, and automatically create a Scene based on the map.

At the end of this chapter, you will have the same result as before, but the code will be a bit different to use the Scene
object.

First-off, we can remove all of our SpriteList variables from __init__ and replace them with on variable to hold the
scene object:

[self. scene = None

Now at the very top of our setup function we can initialize the scene by doing:

116 Chapter 8. Simple Platformer

Python Arcade Library, Release 3.0.0.dev26

[self.scene = arcade.Scene() J

Next, we will remove the line in setup that initializes our Player spritelist, that line looked like this:

[self.player_list = arcade.SpriteList()]

Then, instead of adding our player to the SpriteList using self.player_sprite.append(). We will add the player
to the Scene directly:

self.player_sprite = arcade.Sprite(self.player_texture)
self.player_sprite.center_x = 64
self.player_sprite.center_y = 128
self.scene.add_sprite("Player", self.player_sprite)

Let’s analyze what happens when we do arcade. Scene.add_sprite(). The first parameter to it is a String, this
defines the layer name that we want to add a Sprite to. This can be an already existing layer or a new one. If the layer
already exists, the Sprite will be added to it, and if it doesn’t, Scene will automatically create it. Under the hood, a layer
is just a SpriteList with a name. So when we specify Player as our Layer. Scene is creating a new SpriteList, giving
it that name, and then adding our Player Sprite to it.

Next we will replace our initialization of the wall and coin SpriteLists with these functions:

self.scene.add_sprite_list("Walls", use_spatial_hash=True)
self.scene.add_sprite_list("Coins", use_spatial_hash=True)

Here we are taking a little bit different approach than we did for our Player layer. For our player, we just added a
Sprite directly. Here we are initialization new empty layers, named Walls and Coins. The advantage to this approach
is that we can specify that this layer should use spatial hashing, like we specified for those SpriteLists before.

Now when we use the add_sprite function on these lists later, those Sprites will be added into these existing layers.

In order to add Sprites to these, let’s modify the self.wall_list.append() functions within the for loops for placing
our walls and coins in the setup function. The only part we’re actually changing of these loops is the last line where
we were adding it to the SpriteList, but I’ve included the loops so you can see where all it should be changed.

Create the ground
for x in range(®, 1250, 64):
wall = arcade.Sprite(":resources:images/tiles/grassMid.png", scale=TILE_SCALING)
wall.center_x = x
wall.center_y = 32
self.scene.add_sprite("Walls", wall)

Putting Crates on the Ground
coordinate_list = [[512, 96], [256, 96], [768, 96]1]

for coordinate in coordinate_li
wall = arcade.Sprite(
":resources:images/tiles/boxCrate_double.png", scale=TILE_SCALING
)
wall.position = coordinate
self.scene.add_sprite("Walls", wall)

Add coins to the world
for x in range(128, 1250, 256):
coin = arcade.Sprite(":resources:images/items/coinGold.png", scale=COIN_SCALING)
(continues on next page)

8.11. Step 11 - Using a Scene 117

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

coin.center_x = X
coin.center_y = 96
self.scene.add_sprite("Coins", coin)

The next thing we need to do is fix our Physics Engine. If you remember back in Chapter 4, we added a physics engine
and sent our Wall spritelist to in the walls parameter.

We’ll need to modify that our PhysicsEnginePlatformer initialization to this:

self.physics_engine = arcade.PhysicsEnginePlatformer(
self.player_sprite, walls=self.scene["Walls"], gravity_constant=GRAVITY

)

This is mostly the same as before, but we are pulling the Walls SpriteList from our Scene. If you are familiar with
Python dictionaries, the arcade. Scene class can be interacted with in a very similar way. You can get any specific
SpriteList within the scene by passing the name in brackets to the scene.

We need to also change our arcade. check_for_collision_with_list() functionin on_update that we are using
to get the coins we hit to use this new syntax.

coin_hit_list = arcade.check_for_collision_with_list(
self.player_sprite, self.scene["Coins"]

The last thing that we need to do is update our on_draw function. In here we will remove all our SpriteLists draws,
and replace them with one line drawing our Scene.

[self. scene.draw() }

Note: Make sure to keep this after our world camera is activated and before our GUI camera is activated. If you draw
the scene while the GUI camera is activated, the centering on the player and scrolling will not work.

8.11.1 Source Code

Listing 11: Using a Scene

i

Platformer Game

python -m arcade.examples.platform_tutorial.11_scene

i

import arcade

Constants

SCREEN_WIDTH = 800
SCREEN_HEIGHT = 600
SCREEN_TITLE = "Platformer"

Constants used to scale our sprites from their original size
TILE_SCALING = 0.5
COIN_SCALING = 0.5

(continues on next page)

118 Chapter 8. Simple Platformer

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

38

39

40

41

42

43

44

45

46

47

48

49

50

62

63

64

65

66

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

Movement speed of player, in pixels per frame
PLAYER_MOVEMENT_SPEED = 5

GRAVITY

=1

PLAYER_JUMP_SPEED = 20

class MyGame(arcade.Window) :

i

Main application class.

i

def

def

__init__(self):

Call the parent class and set up the window
super().__init__ (SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)

Variable to hold our texture for our player
self.player_texture = None

Separate variable that holds the player sprite
self.player_sprite = None

Replacing all of our Spritelists with a Scene variable
self.scene = None

A variable to store our camera object
self.camera = None

A variable to store our gui camera object
self.gui_camera = None

This variable will store our score as an integer.
self.score = 0

This variable will store the text for score that we will draw to the screen.
self.score_text = None

Load sounds
self.collect_coin_sound = arcade.load_sound(":resources:sounds/coinl.wav')
self. jump_sound = arcade.load_sound(":resources:sounds/jumpl.wav")

setup(self):
"""Set up the game here. Call this function to restart the game.
self.scene = arcade.Scene()

min

self.player_texture = arcade.load_texture(":resources:images/animated_characters/

—.female_adventurer/femaleAdventurer_idle.png")

self.player_sprite = arcade.Sprite(self.player_texture)
self.player_sprite.center_x = 64
self.player_sprite.center_y = 128

(continues on next page)

8.11. Step 11 - Using a Scene 119

67

68

69

70

71

72

3

74

75

76

77

78

79

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

self.scene.add_sprite("Player", self.player_sprite)

self.scene.add_sprite_list("Walls", use_spatial_hash=True)
self.scene.add_sprite_list("Coins", use_spatial_hash=True)

Create the ground
This shows using a loop to place multiple sprites horizontally
for x in range(®, 1250, 64):
wall = arcade.Sprite(":resources:images/tiles/grassMid.png", scale=TILE_
—SCALING)
wall.center_x = x
wall.center_y = 32
self.scene.add_sprite("Walls", wall)

Put some crates on the ground
This shows using a coordinate list to place sprites
coordinate_list = [[512, 96], [256, 96], [768, 96]]

for coordinate in coordinate_list:
Add a crate on the ground
wall = arcade.Sprite(
":resources:images/tiles/boxCrate_double.png", scale=TILE_SCALING
)
wall.position = coordinate
self.scene.add_sprite("Walls", wall)

Add coins to the world
for x in range(128, 1250, 256):
coin = arcade.Sprite(":resources:images/items/coinGold.png", scale=COIN_
—SCALING)
coin.center_x = x
coin.center_y = 96
self.scene.add_sprite("Coins", coin)

Create a Platformer Physics Engine, this will handle moving our
player as well as collisions between the player sprite and
whatever Spritelist we specify for the walls.
It is important to supply static to the walls parameter. There is a
platforms parameter that is intended for moving platforms.
If a platform is supposed to move, and is added to the walls list,
it will not be moved.
self.physics_engine = arcade.PhysicsEnginePlatformer (
self.player_sprite, walls=self.scene["Walls"], gravity_constant=GRAVITY
)

Initialize our camera, setting a viewport the size of our window.
self.camera = arcade.SimpleCamera(viewport=(0, 0, self.width, self.height))

Initialize our gui camera, initial settings are the same as our world camera.
self.gui_camera = arcade.SimpleCamera(viewport=(0, 0, self.width, self.height))

Reset our score to 0

(continues on next page)

120 Chapter 8. Simple Platformer

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

Python Arcade Library, Release 3.0.0.dev26

self.score = 0

Initialize our arcade.Text object for score

self.score_text = arcade.Text(f"Score: {self.score}", start_x

self.background_color = arcade.csscolor.CORNFLOWER_BLUE

on_draw(self):
"""Render the screen."""

Clear the screen to the background color
self.clear()

Activate our camera before drawing
self.camera.use()

Draw our Scene
self.scene.draw()

Activate our GUI camera
self.gui_camera.use()

Draw our Score
self.score_text.draw()

on_update(self, delta_time):
"""Movement and Game Logic"""

Move the player using our physics engine
self.physics_engine.update()

See if we hit any coins
coin_hit_list = arcade.check_for_collision_with_list(
self.player_sprite, self.scene["Coins"]

Loop through each coin we hit (if any) and remove it
for coin in coin_hit_list:
Remove the coin
coin.remove_from_sprite_lists()
arcade.play_sound(self.collect_coin_sound)
self.score += 75
self.score_text.text = f"Score: {self.score}"

Center our camera on the player
self.camera.center(self.player_sprite.position)

on_key_press(self, key, modifiers):
"""Called whenever a key is pressed."""

if key == arcade.key.ESCAPE:
self.setup()

8.11. Step 11 - Using a Scene

(continued from previous page)

0, start_y = 5)

(continues on next page)

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

if key == arcade.key.UP or key == arcade.key.W:
if self.physics_engine.can_jump():
self.player_sprite.change_y = PLAYER_JUMP_SPEED
arcade.play_sound(self. jump_sound)

if key == arcade.key.LEFT or key == arcade.key.A:
self.player_sprite.change_x = -PLAYER_MOVEMENT_SPEED

elif key == arcade.key.RIGHT or key == arcade.key.D:
self.player_sprite.change_x = PLAYER_MOVEMENT_SPEED

def on_key_release(self, key, modifiers):
"""Called whenever a key is released."""

if key == arcade.key.LEFT or key == arcade.key.A:
self.player_sprite.change_x = 0

elif key == arcade.key.RIGHT or key == arcade.key.D:
self.player_sprite.change_x = 0

def main(Q):
"""Main function
window = MyGame()
window.setup()
arcade.run()

mirn

if __name__ == "__main__":
main()

8.11.2 Run This Chapter

[python -m arcade.examples.platform_tutorial.ll_scene

8.12 Step 12 - Loading a Map From a Map Editor

In this chapter we will start using a map editor called Tiled. Tiled is a popular 2D map editor, it can be used with any
game engine, but Arcade has specific integrations for working with Tiled.

We’ll explore how to load maps from Tiled in this tutorial using Arcade’s built-in arcade.TileMap class using some
maps from the built-in resources that Arcade comes with. We won’t cover actually building a map in Tiled this tutorial,
but if you want to learn more about Tiled check out the resources below:

e Download Tiled: https://www.mapeditor.org/
* Tiled’s Documentation: https://doc.mapeditor.org/en/stable/

You won’t actually need Tiled to continue following this tutorial. We will be using all pre-built maps included with
Arcade. However if you want to experiment with your own maps or changing things, I recommend getting Tiled and
getting familiar with it, it is a really useful tool for 2D Game Development.

122 Chapter 8. Simple Platformer

https://www.mapeditor.org/
https://www.mapeditor.org/
https://doc.mapeditor.org/en/stable/

Python Arcade Library, Release 3.0.0.dev26

To start off with, we’re going to remove a bunch of code. Namely we’ll remove the creation of our ground, boxes, and
coin sprites(We’ll leave the player one). Go ahead and remove the following blocks of code from the setup function.

self.scene.add_sprite_list("Walls", use_spatial_hash=True)
self.scene.add_sprite_list("Coins", use_spatial_hash=True)

for x in range(®, 1250, 64):
wall = arcade.Sprite(":resources:images/tiles/grassMid.png", scale=TILE_SCALING)
wall.center_x = x
wall.center_y = 32
self.scene.add_sprite("Walls", wall)

coordinate_list = [[512, 96], [256, 96], [768, 96]1]

for coordinate in coordinate_list:
wall = arcade.Sprite(
":resources:images/tiles/boxCrate_double.png", scale=TILE_SCALING
)
wall.position = coordinate
self.scene.add_sprite("Walls", wall)

for x in range(128, 1250, 256):
coin = arcade.Sprite(":resources:images/items/coinGold.png", scale=COIN_SCALING)
coin.center_x = Xx
coin.center_y = 96
self.scene.add_sprite("Coins", coin)

These things will now be handled by our map file automatically once we start loading it.

In order to load our map, we will first create a variable for itin __init__:

[self.tile_map = None]

Next we will load our map in our setup function, and then create a Scene from it using a built-in function Arcade
provides. This will give us a drawable scene completely based off of the map file automatically. This code will all go
at the top of the setup function.

Make sure to replace the line that sets self. scene with the new one below.

layer_options = {
"Platforms": {
"use_spatial_hash": True

}

self.tile_map = arcade.load_tilemap(
":resources:tiled_maps/map.json",
scaling=TILE_SCALING,
layer_options=layer_options

)

self.scene = arcade.Scene.from_tilemap(self.tile_map)

This code will load in our built-in Tiled Map and automatically build a Scene from it. The Scene at this stage is ready
for drawing and we don’t need to do anything else to it(other than add our player).

8.12. Step 12 - Loading a Map From a Map Editor 123

20

21

22

23

24

25

26

27

28

29

30

Python Arcade Library, Release 3.0.0.dev26

Note: What is layer_options and where are those values in it coming from?

layer_options is a special dictionary that can be provided to the load_tilemap function. This will send special
options for each layer into the map loader. In this example our map has a layer called Platforms, and we want to
enable spatial hashing on it. Much like we did for our wall SpriteList before. For more info on the layer options

dictionary and the available keys, check out :class arcade.TileMap®

At this point we only have one piece of code left to change. In switching to our new map, you may have noticed by the
layer_options dictionary that we now have a layer named Platforms. Previously in our Scene we were calling this

layer Walls. We’ll need to go update that reference when we create our Physics Engine.

In the setup function update the Physics Engine creation to use the the new Platforms layer:

self.physics_engine = arcade.PhysicsEnginePlatformer(

self.player_sprite, walls=self.scene["Platforms"], gravity_constant=GRAVITY

)

8.12.1 Source Code

Listing 12: Loading a Map From a Map Editor

i

Platformer Game

python -m arcade.examples.platform_tutorial.l12_tiled

i

import arcade

Constants

SCREEN_WIDTH = 800
SCREEN_HEIGHT = 600
SCREEN_TITLE = "Platformer"

Constants used to scale our sprites from their original size
TILE_SCALING = 0.5
COIN_SCALING = 0.5

Movement speed of player, in pixels per frame
PLAYER_MOVEMENT_SPEED = 5

GRAVITY = 1

PLAYER_JUMP_SPEED = 20

class MyGame(arcade.Window) :

e

Main application class.

i

def __init__(self):

Call the parent class and set up the window

(continues on next page)

124 Chapter 8. Simple Platformer

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

56

57

59

60

61

62

63

64

65

66

67

68

69

70

71

72

3

74

75

76

77

78

79

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

super() .__init__ (SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)

Variable to hold our texture for our player
self.player_texture = None

Separate variable that holds the player sprite
self.player_sprite = None

Variable to hold our Tiled Map
self.tile_map = None

Replacing all of our Spritelists with a Scene variable
self.scene = None

A variable to store our camera object
self.camera = None

A variable to store our gui camera object
self.gui_camera = None

This variable will store our score as an integer.
self.score = 0

This variable will store the text for score that we will draw to the screen.
self.score_text = None

Load sounds
self.collect_coin_sound = arcade.load_sound(":resources:sounds/coinl.wav'")
self. jump_sound = arcade.load_sound(":resources:sounds/jumpl.wav")

def setup(self):
"""Set up the game here. Call this function to restart the game.
layer_options = {
"Platforms": {
"use_spatial_hash": True

i

Load our TileMap
self.tile_map = arcade.load_tilemap(":resources:tiled_maps/map.json",.
—»scaling=TILE_SCALING, layer_options=layer_options)

Create our Scene Based on the TileMap
self.scene = arcade.Scene.from_tilemap(self.tile_map)

self.player_texture = arcade.load_texture(":resources:images/animated_characters/
—female_adventurer/femaleAdventurer_idle.png")

self.player_sprite = arcade.Sprite(self.player_texture)
self.player_sprite.center_x = 128
self.player_sprite.center_y = 128
self.scene.add_sprite("Player", self.player_sprite)

(continues on next page)

8.12. Step 12 - Loading a Map From a Map Editor 125

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

Python Arcade Library, Release 3.0.0.dev26

def

def

(continued from previous page)

Create a Platformer Physics Engine, this will handle moving our
player as well as collisions between the player sprite and
whatever SpritelList we specify for the walls.
It is important to supply static to the walls parameter. There is a
platforms parameter that is intended for moving platforms.
If a platform is supposed to move, and is added to the walls list,
it will not be moved.
self.physics_engine = arcade.PhysicsEnginePlatformer (
self.player_sprite, walls=self.scene["Platforms"], gravity_constant=GRAVITY
)

Initialize our camera, setting a viewport the size of our window.
self.camera = arcade.SimpleCamera(viewport=(0, 0, self.width, self.height))

Initialize our gui camera, initial settings are the same as our world camera.
self.gui_camera = arcade.SimpleCamera(viewport=(0, 0, self.width, self.height))

Reset our score to 0
self.score = 0

Initialize our arcade.Text object for score
self.score_text = arcade.Text(f"Score: {self.score}", start_x = 0, start_y = 5)

self.background_color = arcade.csscolor.CORNFLOWER_BLUE

on_draw(self):
"""Render the screen.

i

Clear the screen to the background color
self.clear()

Activate our camera before drawing
self.camera.use()

Draw our Scene
self.scene.draw()

Activate our GUI camera
self.gui_camera.use()

Draw our Score
self.score_text.draw()

on_update(self, delta_time):
"""Movement and Game Logic"""

Move the player using our physics engine
self.physics_engine.update()

See if we hit any coins
coin_hit_list = arcade.check_for_collision_with_list(

(continues on next page)

126

Chapter 8. Simple Platformer

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

Python Arcade Library, Release 3.0.0.dev26

self.player_sprite, self.scene["Coins"]

)

Loop through each coin we hit (if any) and remove it
for coin in coin_hit_list:
Remove the coin
coin.remove_from_sprite_lists()
arcade.play_sound(self.collect_coin_sound)
self.score += 75
self.score_text.text = f"Score: {self.score}"

Center our camera on the player
self.camera.center(self.player_sprite.position)

def on_key_press(self, key, modifiers):
"""Called whenever a key is pressed."""

if key == arcade.key.ESCAPE:
self.setup()

if key == arcade.key.UP or key == arcade.key.W:
if self.physics_engine.can_jump():
self.player_sprite.change_y = PLAYER_JUMP_SPEED
arcade.play_sound(self. jump_sound)

if key == arcade.key.LEFT or key == arcade.key.A:
self.player_sprite.change_x = -PLAYER_MOVEMENT_SPEED

elif key == arcade.key.RIGHT or key == arcade.key.D:
self.player_sprite.change_x = PLAYER_MOVEMENT_SPEED

def on_key_release(self, key, modifiers):
"""Called whenever a key is released."""

if key == arcade.key.LEFT or key == arcade.key.A:
self.player_sprite.change_x = 0

elif key == arcade.key.RIGHT or key == arcade.key.D:
self.player_sprite.change_x = 0

def main(Q:
"""Main function
window = MyGame()
window.setup()
arcade.run()

i

if __name__ == "__main__":
main()

(continued from previous page)

8.12. Step 12 - Loading a Map From a Map Editor

127

Python Arcade Library, Release 3.0.0.dev26

8.13 Step 13 - More Types of Layers

For this example, we’ll switch to a different built-in map that has more layers we can do things with.

In our setup function, load this map instead of the one from Chapter 12:

self.tile_map = arcade.load_tilemap(":resources:tiled_maps/map2_level_1.json",.
—»scaling=TILE_SCALING, layer_options=layer_options)

You can run this and check out the map we will be working with this chapter. You’ll notice in addition to the normal
platforms and coins we’ve had. We now have some extra signs and decoration objects, as well as a pit of lava.

Back in chapter 6 we made use of our setup function to reset the game. Let’s go ahead and use that system here to
reset the game when the player touches the lava pit. You can remove the section for resetting when the Escape key is
pressed if you want, or you can leave it in place. We can also play a game over sound when this happens.

Let’s first add a new sound to our __init__ function for this:

[sel f.gameover_sound = arcade.load_sound(":resources:sounds/gameoverl.wav'") J

In order to do this, we’ll add this code in our on_update function:

if arcade.check_for_collision_with_list(
self.player_sprite, self.scene["Don't Touch"]
):
arcade.play_sound(self.gameover_sound)
self.setup()

The map we are using here has some extra layers in it we haven’t used yet. In the code above we made use of the Don 't
Touch to reset the game when the player touches it. In this section we will make use of two other layers in our new
map, Background and Foreground.

We will use these layers as a way to separate objects that should be drawn in front of our player, and objects that should
be drawn behind the player. In our setup function, before we create the player sprite, add this code.

[sel f.scene.add_sprite_list_after("Player", "Foreground")]

This code will cause our player spritelist to be inserted at a specific point in the Scene. Causing spritelists which are in
front of it to be drawn before it, and ones behind it to be drawn after. By doing this we can make objects appear to be
in front of or behind our player like the images below:

128 Chapter 8. Simple Platformer

Python Arcade Library, Release 3.0.0.dev26

8.13. Step 13 - More Types of Layers 129

Python Arcade Library, Release 3.0.0.dev26

TR

8.13.1 Source Code

Listing 13: More Layers

~

i

Platformer Game

python -m arcade.examples.platform_tutorial.13_more_layers

i

import arcade

Constants

SCREEN_WIDTH = 800
SCREEN_HEIGHT = 600
SCREEN_TITLE = "Platformer"

Constants used to scale our sprites from their original size
TILE_SCALING = 0.5
COIN_SCALING = 0.5

Movement speed of player, in pixels per frame
PLAYER_MOVEMENT_SPEED = 5

GRAVITY =1

PLAYER_JUMP_SPEED = 20

(continues on next page)

130 Chapter 8. Simple Platformer

21

22

23

24

25

26

27

28

29

30

31

32

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

51

52

53

54

55

57

58

59

60

61

63

64

65

66

67

68

69

70

71

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

class MyGame(arcade.Window) :

e

Main application class.

i

def __init__(self):

Call the parent class and set up the window
super().__init__ (SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)

Variable to hold our texture for our player
self.player_texture = None

Separate variable that holds the player sprite
self.player_sprite = None

Variable to hold our Tiled Map
self.tile_map = None

Replacing all of our SpritelLists with a Scene variable
self.scene = None

A variable to store our camera object
self.camera = None

A variable to store our gui camera object
self.gui_camera = None

This variable will store our score as an integer.
self.score = 0

This variable will store the text for score that we will draw to the screen.
self.score_text = None

Load sounds

self.collect_coin_sound = arcade.load_sound(":resources:sounds/coinl.wav")
self. jump_sound = arcade.load_sound(":resources:sounds/jumpl.wav")
self.gameover_sound = arcade.load_sound(":resources:sounds/gameoverl.wav')

def setup(self):
"""Set up the game here. Call this function to restart the game.
layer_options = {
"Platforms": {
"use_spatial_hash": True

i

Load our TileMap
self.tile_map = arcade.load_tilemap(":resources:tiled_maps/map2_level_1.json",.
—»scaling=TILE_SCALING, layer_options=layer_options)

(continues on next page)

8.13. Step 13 - More Types of Layers 131

72

73

74

75

76

77

78

79

81

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

Create our Scene Based on the TileMap
self.scene = arcade.Scene. from_tilemap(self.tile_map)

self.player_texture = arcade.load_texture(":resources:images/animated_characters/

—.female_adventurer/femaleAdventurer_idle.png")

Add Player Spritelist before "Foreground" layer. This will make the foreground
be drawn after the player, making it appear to be in front of the Player.

Setting before using scene.add_sprite allows us to define where the SpriteList
will be in the draw order. If we just use add_sprite, it will be appended to.

—the

end of the order.
self.scene.add_sprite_list_after("Player", "Foreground™)
self.player_sprite = arcade.Sprite(self.player_texture)
self.player_sprite.center_x = 128
self.player_sprite.center_y = 128
self.scene.add_sprite("Player", self.player_sprite)
Create a Platformer Physics Engine, this will handle moving our
player as well as collisions between the player sprite and
whatever SpritelList we specify for the walls.
It is important to supply static to the walls parameter. There is a
platforms parameter that is intended for moving platforms.
If a platform is supposed to move, and is added to the walls list,
it will not be moved.
self.physics_engine = arcade.PhysicsEnginePlatformer (

self.player_sprite, walls=self.scene["Platforms"], gravity_constant=GRAVITY
)
Initialize our camera, setting a viewport the size of our window.
self.camera = arcade.SimpleCamera(viewport=(0, 0, self.width, self.height))
Initialize our gul camera, initial settings are the same as our world camera.
self.gui_camera = arcade.SimpleCamera(viewport=(0, 0, self.width, self.height))
Reset our score to 0
self.score = 0
Initialize our arcade.Text object for score
self.score_text = arcade.Text(f"Score: {self.score}", start_x = 0, start_y = 5)
self.background_color = arcade.csscolor.CORNFLOWER_BLUE

def on_draw(self):
"""Render the screen."""
Clear the screen to the background color
self.clear()
Activate our camera before drawing
(continues on next page)
132 Chapter 8. Simple Platformer

122

123

124

125

126

127

128

130

131

132

133

134

135

136

137

138

139

140

141

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

Python Arcade Library, Release 3.0.0.dev26

self.camera.use()

Draw our Scene
self.scene.draw()

Activate our GUI camera
self.gui_camera.use()

Draw our Score
self.score_text.draw()

def on_update(self, delta_time):
"""Movement and Game Logic"""

Move the player using our physics engine

self.physics_engine.update()

See if we hit any coins
coin_hit_list = arcade.check_for_collision_with_list(
self.player_sprite, self.scene["Coins"]

Loop through each coin we hit (if any) and remove it
for coin in coin_hit_list:
Remove the coin
coin.remove_from_sprite_lists()
arcade.play_sound(self.collect_coin_sound)
self.score += 75
self.score_text.text = f"Score: {self.score}"

if arcade.check_for_collision_with_list(
self.player_sprite, self.scene["Don't Touch"]

arcade.play_sound(self.gameover_sound)
self.setup()

Center our camera on the player
self.camera.center(self.player_sprite.position)

def on_key_press(self, key, modifiers):
"""Called whenever a key is pressed."""

if key == arcade.key.ESCAPE:
self.setup()

if key == arcade.key.UP or key == arcade.key.W:
if self.physics_engine.can_jump():
self.player_sprite.change_y = PLAYER_JUMP_SPEED
arcade.play_sound(self. jump_sound)

if key == arcade.key.LEFT or key == arcade.key.A:
self.player_sprite.change_x = -PLAYER_MOVEMENT_SPEED

(continued from previous page)

(continues on next page)

8.13.

Step 13 - More Types of Layers

133

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

elif key == arcade.key.RIGHT or key == arcade.key.D:
self.player_sprite.change_x = PLAYER_MOVEMENT_SPEED

def on_key_release(self, key, modifiers):
"""Called whenever a key is released."""

if key == arcade.key.LEFT or key == arcade.key.A:
self.player_sprite.change_x = 0

elif key == arcade.key.RIGHT or key == arcade.key.D:
self.player_sprite.change_x = 0

def main(Q:
"""Main function
window = MyGame()
window.setup()
arcade.run()

i

if __name__ == "__main__":
main()

8.14 Step 14 - Multiple Levels

Now we will make it so that our game has multiple levels. For now we will just have two levels, but this technique can
be easily expanded to include more.

To start off, create two new variables in the __init__ function to represent the position that marks the end of the map,
and what level we should be loading.

Where is the right edge of the map?
self.end_of_map = 0

Level number to load
self.level =1

Next in the setup function we will change the map loading call to use an f-string to load a map file depending on the
level variable we created.

Load our TileMap
self.tile_map = arcade.load_tilemap(f":resources:tiled_maps/map2_level_{self.level}.json

—", scaling=TILE_SCALING, layer_options=layer_options)

Again in the setup function, we will calculate where the edge of the currently loaded map is, in pixels. To do this we
get the width of the map, which is represented in number of tiles, and multiply it by the tile width. We also need to
consider the scaling of the tiles, because we are measuring this in pixels.

Calculate the right edge of the map in pixels
self.end_of_map = (self.tile_map.width * self.tile_map.tile_width) * self.tile_map.
—»scaling

134 Chapter 8. Simple Platformer

Python Arcade Library, Release 3.0.0.dev26

Now in the on_update function, we will add a block to check the player position against the end of the map value.
We will do this right before the center_camera_to_player function call at the end. This will increment our current
level, and leverage the setup function in order to re-load the game with the new level.

Check if the player got to the end of the level
if self.player_sprite.center_x >= self.end_of_map:
Advance to the next level
self.level += 1

Reload game with new level
self.setup(Q)

If you run the game at this point, you will be able to reach the end of the first level and have the next level load and play
through it. We have two problems at this point, did you notice them? The first problem is that the player’s score resets
in between levels, maybe you want this to happen in your game, but we will fix it here so that when switching levels
we don’t reset the score.

To do this, first add a new variable to the __init__ function which will serve as a trigger to know if the score should
be reset or not. We want to be able to reset it when the player loses, so this trigger will help us only reset the score
when we want to.

Should we reset the score?
self.reset_score = True

Now in the setup function we can replace the score reset with this block of code. We change the reset_score
variable back to True after resetting the score, because the default in our game should be to reset it, and we only turn
off the reset when we want it off.

Reset the score if we should

if self.reset_score:
self.score = 0

self.reset_score = True

Finally, in the section of on_update that we advance the level, we can add this line to turn off the score reset

Turn off score reset when advancing level
self.reset_score = False

Now the player’s score will persist between levels, but we still have one more problem. If you reach the end of the
second level, the game crashes! This is because we only actually have two levels available, but we are still trying to
advance the level to 3 when we hit the end of level 2.

There’s a few ways this can be handled, one way is to simply make more levels. Eventually you have to have a final
level though, so this probably isn’t the best solution. As an exercise, see if you can find a way to gracefully handle the
final level. You could display an end screen, or restart the game from the beginning, or anything you want.

8.14. Step 14 - Multiple Levels 135

20

21

22

23

24

25

26

27

28

29

30

31

32

33

35

36

37

39

40

41

42

43

44

45

46

47

48

49

Python Arcade Library, Release 3.0.0.dev26

8.14.1 Source Code

Listing 14: Moving the enemies

i

Platformer Game

python -m arcade.examples.platform_tutorial.14_multiple_levels

i

import arcade

Constants

SCREEN_WIDTH = 800
SCREEN_HEIGHT = 600
SCREEN_TITLE = "Platformer"

Constants used to scale our sprites from their original size
TILE_SCALING = 0.5
COIN_SCALING = 0.5

Movement speed of player, in pixels per frame
PLAYER_MOVEMENT_SPEED = 5

GRAVITY =1

PLAYER_JUMP_SPEED = 20

class MyGame(arcade.Window) :

e

Main application class.

o

def __init__(self):

Call the parent class and set up the window
super().__init__ (SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)

Variable to hold our texture for our player
self.player_texture = None

Separate variable that holds the player sprite
self.player_sprite = None

Variable to hold our Tiled Map
self.tile_map = None

Replacing all of our SpritelLists with a Scene variable
self.scene = None

A variable to store our camera object
self.camera = None

A variable to store our gui camera object
self.gui_camera = None

(continues on next page)

136 Chapter 8

. Simple Platformer

50

51

52

53

54

55

56

57

59

60

61

62

63

64

65

66

67

68

69

70

71

2

73

74

75

76

77

78

79

90

91

92

93

94

95

96

97

98

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

This variable will store our score as an integer.
self.score = 0

This variable will store the text for score that we will draw to the screen.
self.score_text = None

Where is the right edge of the map?
self.end_of_map = 0O

Level number to load
self.level =1

Should we reset the score?
self.reset_score = True

Load sounds

self.collect_coin_sound = arcade.load_sound(":resources:sounds/coinl.wav'")
self. jump_sound = arcade.load_sound(":resources:sounds/jumpl.wav")
self.gameover_sound = arcade.load_sound(":resources:sounds/gameoverl.wav')

def setup(self):
"""Set up the game here. Call this function to restart the game.
layer_options = {
"Platforms": {
"use_spatial_hash": True

i

3

Load our TileMap
self.tile_map = arcade.load_tilemap(f":resources:tiled_maps/map2_level_{self.
—level}.json", scaling=TILE_SCALING, layer_options=layer_options)

Create our Scene Based on the TileMap
self.scene = arcade.Scene. from_tilemap(self.tile_map)

self.player_texture = arcade.load_texture(":resources:images/animated_characters/
—.female_adventurer/femaleAdventurer_idle.png")

Add Player Spritelist before "Foreground" layer. This will make the foreground

be drawn after the player, making it appear to be in front of the Player.

Setting before using scene.add_sprite allows us to define where the SpritelList

will be in the draw order. If we just use add_sprite, it will be appended to.
—the

end of the order.

self.scene.add_sprite_list_after("Player", "Foreground™)

self.player_sprite = arcade.Sprite(self.player_texture)
self.player_sprite.center_x = 128
self.player_sprite.center_y = 128
self.scene.add_sprite("Player", self.player_sprite)

(continues on next page)

8.14. Step 14 - Multiple Levels 137

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

Create a Platformer Physics Engine, this will handle moving our
player as well as collisions between the player sprite and
whatever SpritelList we specify for the walls.
It is important to supply static to the walls parameter. There is a
platforms parameter that is intended for moving platforms.
If a platform is supposed to move, and is added to the walls list,
it will not be moved.
self.physics_engine = arcade.PhysicsEnginePlatformer (
self.player_sprite, walls=self.scene["Platforms"], gravity_constant=GRAVITY
)

Initialize our camera, setting a viewport the size of our window.
self.camera = arcade.SimpleCamera(viewport=(0, 0, self.width, self.height))

Initialize our gui camera, initial settings are the same as our world camera.
self.gui_camera = arcade.SimpleCamera(viewport=(0, 0, self.width, self.height))

Reset the score if we should

if self.reset_score:
self.score = 0

self.reset_score = True

Initialize our arcade.Text object for score
self.score_text = arcade.Text(f"Score: {self.score}", start_x = 0, start_y = 5)

self.background_color = arcade.csscolor.CORNFLOWER_BLUE

Calculate the right edge of the map in pixels
self.end_of map = (self.tile_map.width * self.tile_map.tile_width) * self.tile_

—.map.scaling

def

def

print(self.end_of_map)

on_draw(self):
"""Render the screen.

i

Clear the screen to the background color
self.clear()

Activate our camera before drawing
self.camera.use()

Draw our Scene
self.scene.draw()

Activate our GUI camera
self.gui_camera.use()

Draw our Score
self.score_text.draw()

on_update(self, delta_time):
"""Movement and Game Logic"""

(continues on next page)

138

Chapter 8. Simple Platformer

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

Python Arcade Library, Release 3.0.0.dev26

def

(continued from previous page)

Move the player using our physics engine
self.physics_engine.update()

See if we hit any coins
coin_hit_list = arcade.check_for_collision_with_list(
self.player_sprite, self.scene["Coins"]

)

Loop through each coin we hit (if any) and remove it
for coin in coin_hit_list:
Remove the coin
coin.remove_from_sprite_lists()
arcade.play_sound(self.collect_coin_sound)
self.score += 75
self.score_text.text = f"Score: {self.score}"

if arcade.check_for_collision_with_list(
self.player_sprite, self.scene["Don't Touch"]
):
arcade.play_sound(self.gameover_sound)
self.setup()

Check if the player got to the end of the level
if self.player_sprite.center_x >= self.end_of_map:
Advance to the next level
self.level += 1

Turn off score reset when advancing level
self.reset_score = False

Reload game with new level
self.setup()

Center our camera on the player
self.camera.center(self.player_sprite.position)

on_key_press(self, key, modifiers):
"""Called whenever a key is pressed."""

if key == arcade.key.ESCAPE:
self.setup()

if key == arcade.key.UP or key == arcade.key.W:
if self.physics_engine.can_jump():
self.player_sprite.change_y = PLAYER_JUMP_SPEED
arcade.play_sound(self. jump_sound)

if key == arcade.key.LEFT or key == arcade.key.A:
self.player_sprite.change_x = -PLAYER_MOVEMENT_SPEED

elif key == arcade.key.RIGHT or key == arcade.key.D:
self.player_sprite.change_x = PLAYER_MOVEMENT_SPEED

(continues on next page)

8.14.

Step 14 - Multiple Levels 139

203

204

205

206

208

209

210

211

212

213

214

215

216

217

219

220

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

def on_key_release(self, key, modifiers):
"""Called whenever a key is released."""

if key == arcade.key.LEFT or key == arcade.key.A:
self.player_sprite.change_x = 0

elif key == arcade.key.RIGHT or key == arcade.key.D:
self.player_sprite.change_x = 0

def main(Q:
"""Main function
window = MyGame()
window.setup()
arcade.run()

i

if __name__ == "__main__":
main()

Currently there are a few more examples that expand beyond where the tutorial leaves off. You can see the source code
for those examples as well as every chapter in the tutorial on the Arcade Github at https://github.com/pythonarcade/
arcade/tree/development/arcade/examples/platform_tutorial

140 Chapter 8. Simple Platformer

https://github.com/pythonarcade/arcade/tree/development/arcade/examples/platform_tutorial
https://github.com/pythonarcade/arcade/tree/development/arcade/examples/platform_tutorial

CHAPTER
NINE

PYMUNK PLATFORMER

This tutorial covers how to write a platformer using Arcade and its Pymunk API. This tutorial assumes the you are
somewhat familiar with Python, Arcade, and the Tiled Map Editor.

e If you aren’t familiar with programming in Python, check out https://learn.arcade.academy
e If you aren’t familiar with the Arcade library, work through the Simple Platformer.

¢ If you aren’t familiar with the Tiled Map Editor, the Simple Platformer also introduces how to create a map with
the Tiled Map Editor.

9.1 Common Issues

There are a few items with the Pymunk physics engine that should be pointed out before you get started:

* Object overlap - A fast moving object is allowed to overlap with the object it collides with, and Pymunk will push
them apart later. See collision bias for more information.

 Pass-through - A fast moving object can pass through another object if its speed is so quick it never overlaps the
other object between frames. See object tunneling.

* When stepping the physics engine forward in time, the default is to move forward 1/60th of a second. Whatever
increment is picked, increments should always be kept the same. Don’t use the variable delta_time from the
update method as a unit, or results will be unstable and unpredictable. For a more accurate simulation, you
can step forward 1/120th of a second twice per frame. This increases the time required, but takes more time to
calculate.

* A sprite moving across a floor made up of many rectangles can get “caught” on the edges. The corner of the
player sprite can get caught the corner of the floor sprite. To get around this, make sure the hit box for the bottom
of the player sprite is rounded. Also, look into the possibility of merging horizontal rows of sprites.

9.2 Open a Window

To begin with, let’s start with a program that will use Arcade to open a blank window. It also has stubs for methods
we’ll fill in later. Try this code and make sure you can run it. It should pop open a black window.

Listing 1: Starting Program

i

Example of Pymunk Physics Engine Platformer

i

(continues on next page)

141

https://www.mapeditor.org/
https://learn.arcade.academy
http://www.pymunk.org/en/latest/pymunk.html#pymunk.Space.collision_bias
http://www.pymunk.org/en/latest/overview.html#object-tunneling

20

21

22

23

24

25

26

27

28

29

30

31

40

41

42

43

44

45

46

47

48

49

50

51

Python Arcade Library, Release 3.0.0.dev26

import arcade

SCREEN_TITLE = "PyMunk Platformer"

Size of screen to show, in pixels
SCREEN_WIDTH = 800
SCREEN_HEIGHT = 600

class GameWindow(arcade.Window) :

def

i

i

Main Window

def __init__(self, width, height, title):
""" Create the variables """
Init the parent class
super().__init__ (width, height, title)

def setup(self):
""" Set up everything with the game """
pass

def on_key_press(self, key, modifiers):
"""Called whenever a key is pressed. """
pass

def on_key_release(self, key, modifiers):
"""Called when the user releases a key. """
pass

def on_update(self, delta_time):
""" Movement and game logic """
pass

def on_draw(self):
mrrnn Draw everything mrrn
self.clear()

main(Q):

e

i

Main function

(continued from previous page)

window = GameWindow(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)
window.setup()
arcade.run()

if __name__ == "__main__":
main()

142

Chapter 9.

Pymunk Platformer

26

27

28

29

Python Arcade Library, Release 3.0.0.dev26

9.3 Create Constants

Now let’s set up the import statements, and define the constants we are going to use. In this case, we’ve got sprite tiles
that are 128x128 pixels. They are scaled down to 50% of the width and 50% of the height (scale of 0.5). The screen
size is set to 25x15 grid.

To keep things simple, this example will not scroll the screen with the player. See Simple Platformer or
sprite_move_scrolling.

When you run this program, the screen should be larger.

Listing 2: Adding some constants

i

Example of Pymunk Physics Engine Platformer
import math

from typing import Optional

import arcade

SCREEN_TITLE = "PyMunk Platformer"

How big are our image tiles?
SPRITE_IMAGE_SIZE = 128

Scale sprites up or down
SPRITE_SCALING_PLAYER = 0.5
SPRITE_SCALING_TILES = 0.5

Scaled sprite size for tiles
SPRITE_SIZE = int(SPRITE_IMAGE_SIZE * SPRITE_SCALING_PLAYER)

Size of grid to show on screen, in number of tiles
SCREEN_GRID_WIDTH = 25
SCREEN_GRID_HEIGHT = 15

Size of screen to show, in pixels

SCREEN_WIDTH = SPRITE_SIZE * SCREEN_GRID_WIDTH
SCREEN_HEIGHT = SPRITE_SIZE * SCREEN_GRID_HEIGHT

class GameWindow(arcade.Window):

* pymunk_demo_platformer_02

* pymunk_demo_platformer_02_diff

9.3. Create Constants 143

20

21

22

23

24

Python Arcade Library, Release 3.0.0.dev26

9.4 Create Instance Variables

Next, let’s create instance variables we are going to use, and set a background color that’s green: arcade.color.
AMAZON

If you aren’t familiar with type-casting on Python, you might not be familiar with lines of code like this:

[self.player_list: Optional[arcade.SpritelList] = None J

This means the player_list attribute is going to be an instance of SpriteList or None. If you don’t want to mess
with typing, then this code also works just as well:

[self.player_list = None]

Running this program should show the same window, but with a green background.

Listing 3: Create instance variables

class GameWindow(arcade.Window):
won yain Window """

def __init__(self, width, height, title):
""" Create the variables """

Init the parent class
super().__init__(width, height, title)

Player sprite
self.player_sprite: Optional[arcade.Sprite] = None

Sprite lists we need

self.player_list: Optional[arcade.SpritelList] = None
self.wall_list: Optional[arcade.SpriteList] = None
self.bullet_list: Optional[arcade.SpriteList] = None
self.item_list: Optional[arcade.SpriteList] = None

Track the current state of what key is pressed
self.left_pressed: bool = False
self.right_pressed: bool = False

Set background color
self.background_color = arcade.color.AMAZON

e pymunk_demo_platformer_03

e pymunk_demo_platformer_03_diff

144 Chapter 9. Pymunk Platformer

Python Arcade Library, Release 3.0.0.dev26

9.5 Load and Display Map

To get started, create a map with the Tiled Map Editor. Place items that you don’t want to move, and to act as platforms
in a layer named “Platforms”. Place items you want to push around in a layer called “Dynamic Items”. Name the file
“pymunk_test_map.tmx” and place in the exact same directory as your code.

T pymunk_test map.tmx - Tiled

EPlatforms ~ [37% ~ [@News

[@0 0 23 11 emery

If you aren’t sure how to use the Tiled Map Editor, see Step 8 - Collecting Coins.

Now, in the setup function, we are going add code to:
* Create instances of SpriteList for each group of sprites we are doing to work with.
* Create the player sprite.
¢ Read in the tiled map.

* Make sprites from the layers in the tiled map.

Note: When making sprites from the tiled map layer, the name of the layer you load must match exactly with the layer
created in the tiled map editor. It is case-sensitive.

Listing 4: Creating our sprites

def setup(self):

""" Set up everything with the game """
Create the sprite lists
self.player_list = arcade.SpriteList()
self.bullet_list = arcade.SpriteList()

Map name
map_name = ":resources:/tiled_maps/pymunk_test_map.json"

Load in TileMap
tile_map = arcade.load_tilemap(map_name, SPRITE_SCALING_TILES)

Pull the sprite layers out of the tile map
(continues on next page)

9.5. Load and Display Map 145

20

21

22

23

24

25

26

27

.

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

self.wall_list = tile_map.sprite_lists["Platforms"]
self.item_list = tile_map.sprite_lists["Dynamic Items"]

Create player sprite

self.player_sprite = arcade.Sprite(":resources:images/animated_characters/female_
—person/femalePerson_idle.png",

Set player location
grid_x = 1

grid_y = 1
self.player_sprite.center_x
self.player_sprite.center_y
Add to player sprite list

SPRITE_SCALING_PLAYER)

SPRITE_SIZE * grid_x + SPRITE_SIZE / 2
SPRITE_SIZE * grid_y + SPRITE_SIZE / 2

self.player_list.append(self.player_sprite)

There’s no point in having sprites if we don’t draw them, so in the on_draw method, let’s draw out sprite lists.

Listing 5: Drawing our sprites

def on_draw(self):
""" Draw everything
self.clear()
self.wall_list.draw()
self.bullet_list.draw()
self.item_list.draw()
self.player_list.draw()

With the additions in the program below, running your program should show the tiled map you created:

¥ yhunk Platformer

e pymunk_demo_platformer_04

e pymunk_demo_platformer_04_diff

146

Chapter 9. Pymunk Platformer

Python Arcade Library, Release 3.0.0.dev26

9.6 Add Physics Engine

The next step is to add in the physics engine.
First, add some constants for our physics. Here we are setting:
* A constant for the force of gravity.

* Values for “damping”. A damping of 1.0 will cause an item to lose all it’s velocity once a force no longer applies
to it. A damping of 0.5 causes 50% of speed to be lost in 1 second. A value of 0 is free-fall.

¢ Values for friction. 0.0 is ice, 1.0 is like rubber.
e Mass. Item default to 1. We make the player 2, so she can push items around easier.
» Limits are the players horizontal and vertical speed. It is easier to play if the player is limited to a constant speed.

And more realistic, because they aren’t on wheels.

Listing 6: Add Constants for Physics

--- Physics forces. Higher number, faster accelerating.

Gravity
GRAVITY = 1500

Damping - Amount of speed lost per second
DEFAULT_DAMPING = 1.0
PLAYER_DAMPING = 0.4

Friction between objects
PLAYER_FRICTION = 1.0
WALL_FRICTION = 0.7
DYNAMIC_ITEM_FRICTION = 0.6

Mass (defaults to 1)
PLAYER_MASS = 2.0

Keep player from going too fast
PLAYER_MAX HORIZONTAL_SPEED = 450
PLAYER_MAX_VERTICAL_SPEED = 1600

Second, add the following attributer in the __init__ method to hold our physics engine:

Listing 7: Add Physics Engine Attribute

Physics engine
self.physics_engine = Optional[arcade.PymunkPhysicsEngine]

Third, in the setup method we create the physics engine and add the sprites. The player, walls, and dynamic items all
have different properties so they are added individually.

Listing 8: Add Sprites to Physics Engine in ‘setup’ Method

Add to player sprite list
self.player_list.append(self.player_sprite)

--- Pymunk Physics Engine Setup ---
(continues on next page)

9.6. Add Physics Engine 147

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

38

39

40

41

42

43

44

45

46

47

48

49

50

51

Python Arcade Library, Release 3.0.0.dev26

< from

(continued from previous page)

The default damping for every object controls the percent of velocity
the object will keep each second. A value of 1.0 is no speed loss,

0.9 is 10% per second, 0.1 is 90% per second.

For top-down games, this is basically the friction for moving objects.
For platformers with gravity, this should probably be set to 1.0.

Default value is 1.0 if not specified.

damping = DEFAULT_DAMPING

Set the gravity. (0, 0) is good for outer space and top-down.
gravity = (0, -GRAVITY)

Create the physics engine
self.physics_engine = arcade.PymunkPhysicsEngine(damping=damping,
gravity=gravity)

Add the player.

For the player, we set the damping to a lower value, which increases

the damping rate. This prevents the character from traveling too far

after the player lets off the movement keys.

Setting the moment of inertia to PymunkPhysicsEngine.MOMENT_INF prevents it.,
rotating.

Friction normally goes between 0® (no friction) and 1.0 (high friction)

Friction is between two objects in contact. It is important to remember

in top-down games that friction moving along the 'floor' is controlled

by damping.

self.physics_engine.add_sprite(self.player_sprite,
friction=PLAYER_FRICTION,
mass=PLAYER_MASS,
moment_of_inertia=arcade.PymunkPhysicsEngine.

—MOMENT_INF,

—SPEED,

collision_type="player",
max_horizontal_velocity=PLAYER_MAX_ HORIZONTAL_

max_vertical_velocity=PLAYER_MAX_VERTICAL_SPEED)

Create the walls.

By setting the body type to PymunkPhysicsEngine.STATIC the walls can't

move.

Movable objects that respond to forces are PymunkPhysicsEngine.DYNAMIC

PymunkPhysicsEngine.KINEMATIC objects will move, but are assumed to be

repositioned by code and don't respond to physics forces.

Dynamic is default.

self.physics_engine.add_sprite_list(self.wall_list,
friction=WALL_FRICTION,
collision_type="wall",
body_type=arcade.PymunkPhysicsEngine.STATIC)

Create the items

Fourth, in

the on_update method we call the physics engine’s step method.

148

Chapter 9. Pymunk Platformer

20

21

22

23

24

Python Arcade Library, Release 3.0.0.dev26

Listing 9: Add Sprites to Physics Engine in ‘setup’ Method

def on_update(self, delta_time):
""" Movement and game logic
self.physics_engine.step()

mirn

If you run the program, and you have dynamic items that are up in the air, you should see them fall when the game
starts.

* pymunk_demo_platformer_05

e pymunk_demo_platformer_05_diff

9.7 Add Player Movement

Next step is to get the player moving. In this section we’ll cover how to move left and right. In the next section we’ll
show how to jump.

The force that we will move the player is defined as PLAYER_MOVE_FORCE_ON_GROUND. We'll apply a different force
later, if the player happens to be airborne.

Listing 10: Add Player Movement - Constants and Attributes

Force applied while on the ground
PLAYER_MOVE_FORCE_ON_GROUND = 8000

class GameWindow(arcade.Window) :
win yain Window """

def __init__(self, width, height, title):
""" Create the variables """

Init the parent class

super().__init__(width, height, title)

Player sprite
self.player_sprite: Optional[arcade.Sprite] = None

Sprite lists we need

self.player_list: Optional[arcade.SpritelList] = None
self.wall_list: Optional[arcade.SpriteList] = None
self.bullet_list: Optional[arcade.SpritelList] = None
self.item_list: Optional[arcade.SpriteList] = None

Track the current state of what key is pressed
self.left_pressed: bool = False
self.right_pressed: bool = False

We need to track if the left/right keys are held down. To do this we define instance variables left_pressed and
right_pressed. These are set to appropriate values in the key press and release handlers.

9.7. Add Player Movement 149

Python Arcade Library, Release 3.0.0.dev26

Listing 11: Handle Key Up and Down Events

def on_key_press(self, key, modifiers):
"""Called whenever a key is pressed. """

if key == arcade.key.LEFT:
self.left_pressed = True

elif key == arcade.key.RIGHT:
self.right_pressed = True

def on_key_release(self, key, modifiers):
"""Called when the user releases a key. """

if key == arcade.key.LEFT:
self.left_pressed = False

elif key == arcade.key.RIGHT:
self.right_pressed = False

Finally, we need to apply the correct force in on_update. Force is specified in a tuple with horizontal force first, and

verti

cal force second.

We also set the friction when we are moving to zero, and when we are not moving to 1. This is important to get realistic
movement.

Listing 12: Apply Force to Move Player

def on_update(self, delta_time):
""" Movement and game logic """

Update player forces based on keys pressed

if self.left_pressed and not self.right_pressed:
Create a force to the left. Apply it.
force = (-PLAYER_MOVE_FORCE_ON_GROUND, 0)

self.physics_engine.apply_force(self.player_sprite, force)
Set friction to zero for the player while moving
self.physics_engine.set_friction(self.player_sprite, 0)

elif self.right_pressed and not self.left_pressed:
Create a force to the right. Apply it.
force = (PLAYER_MOVE_FORCE_ON_GROUND, 0)

self.physics_engine.apply_force(self.player_sprite, force)
Set friction to zero for the player while moving
self.physics_engine.set_friction(self.player_sprite, 0)

else:

Player's feet are not moving. Therefore up the friction so we stop.
self.physics_engine.set_friction(self.player_sprite, 1.0)

Move items in the physics engine
self.physics_engine.step()

e pymunk_demo_platformer_06

e pymunk_demo_platformer_06_diff

150

Chapter 9. Pymunk Platformer

Python Arcade Library, Release 3.0.0.dev26

9.8 Add Player Jumping

To get the player to jump we need to:
* Make sure the player is on the ground.
* Apply an impulse force to the player upward.
* Change the left/right force to the player while they are in the air.

We can see if a sprite has a sprite below it with the is_on_ground function. Otherwise we’ll be able to jump while
we are in the air. (Double-jumps would allow this once.)

If we don’t allow the player to move left-right while in the air, they player will be very hard to control. If we allow them
to move left/right with the same force as on the ground, that’s typically too much. So we’ve got a different left/right
force depending if we are in the air or not.

For the code changes, first we’ll define some constants:

Listing 13: Add Player Jumping - Constants

Force applied when moving left/right in the air
PLAYER_MOVE_FORCE_IN_ATIR = 900

Strength of a jump
PLAYER_JUMP_IMPULSE = 1800

We’ll add logic that will apply the impulse force when we jump:

Listing 14: Add Player Jumping - Jump Force

def on_key_press(self, key, modifiers):
"""Called whenever a key is pressed. """
if key == arcade.key.LEFT:
self.left_pressed = True
elif key == arcade.key.RIGHT:
self.right_pressed = True
elif key == arcade.key.UP:
find out if player is standing on ground
if self.physics_engine.is_on_ground(self.player_sprite):
She is! Go ahead and jump
impulse = (0, PLAYER_JUMP_IMPULSE)
self.physics_engine.apply_impulse(self.player_sprite, impulse)

Then we will adjust the left/right force depending on if we are grounded or not:

Listing 15: Add Player Jumping - Left/Right Force Selection

def on_update(self, delta_time):
""" Movement and game logic """
is_on_ground = self.physics_engine.is_on_ground(self.player_sprite)
Update player forces based on keys pressed
if self.left_pressed and not self.right_pressed:
Create a force to the left. Apply it.

if is_on_ground:
(continues on next page)

9.8. Add Player Jumping 151

20

21

22

23

24

25

26

27

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

force = (-PLAYER_MOVE_FORCE_ON_GROUND, 0)
else:
force = (-PLAYER_MOVE_FORCE_IN_AIR, 0)
self.physics_engine.apply_force(self.player_sprite, force)
Set friction to zero for the player while moving
self.physics_engine.set_friction(self.player_sprite, 0)
elif self.right_pressed and not self.left_pressed:
Create a force to the right. Apply it.
if is_on_ground:
force = (PLAYER_MOVE_FORCE_ON_GROUND, 0)
else:
force = (PLAYER_MOVE_FORCE_IN_AIR, 0)
self.physics_engine.apply_force(self.player_sprite, force)
Set friction to zero for the player while moving
self.physics_engine.set_friction(self.player_sprite, 0)
else:
Player's feet are not moving. Therefore up the friction so we stop.
self.physics_engine.set_friction(self.player_sprite, 1.0)

e pymunk_demo_platformer_07

e pymunk_demo_platformer_07_diff

9.9 Add Player Animation

To create a player animation, we make a custom child class of Sprite. We load each frame of animation that we need,
including a mirror image of it.

We will flip the player to face left or right. If the player is in the air, we’ll also change between a jump up and a falling
graphics.

Because the physics engine works with small floating point numbers, it often flips above and below zero by small
amounts. It is a good idea not to change the animation as the x and y float around zero. For that reason, in this code
we have a “dead zone.” We don’t change the animation until it gets outside of that zone.

We also need to control how far the player moves before we change the walking animation, so that the feet appear
in-sync with the ground.

Listing 16: Add Player Animation - Constants

DEAD_ZONE = 0.1

Constants used to track if the player is facing left or right
RIGHT_FACING = 0
LEFT_FACING = 1

How many pixels to move before we change the texture in the walking animation
DISTANCE_TO_CHANGE_TEXTURE = 20

Next, we create a Player class that is a child to arcade. Sprite. This class will update the player animation.

152 Chapter 9. Pymunk Platformer

20

21

22

23

24

25

26

27

28

29

30

31

Python Arcade Library, Release 3.0.0.dev26

The __init__ method loads all of the textures. Here we use Kenney.nl’s Toon Characters 1 pack. It has six different
characters you can choose from with the same layout, so it makes changing as simple as changing which line is enabled.
There are eight textures for walking, and textures for idle, jumping, and falling.

As the character can face left or right, we use arcade.load_texture_pair which will load both a regular image,
and one that’s mirrored.

For the multi-frame walking animation, we use an “odometer.” We need to move a certain number of pixels before
changing the animation. If this value is too small our character moves her legs like Fred Flintstone, too large and it
looks like you are ice skating. We keep track of the index of our current texture, 0-7 since there are eight of them.

Any sprite moved by the Pymunk engine will have its pymunk_moved method called. This can be used to update the
animation.

Listing 17: Add Player Animation - Player Class

class PlayerSprite(arcade.Sprite):
Player Sprite """
def __init__(self):
"t Init "M
Let parent initialize
super().__init__Q)

i

Set our scale
self.scale = SPRITE_SCALING_PLAYER

Images from Kenney.nl's Character pack

main_path = ":resources:images/animated_characters/female_adventurer/
-, femaleAdventurer"
main_path = ":resources:images/animated_characters/female_person/femalePerson"
main_path = ":resources:images/animated_characters/male_person/malePerson"
main_path = ":resources:images/animated_characters/male_adventurer/
—.maleAdventurer"
main_path = ":resources:images/animated_characters/zombie/zombie"
main_path = ":resources:images/animated_characters/robot/robot"

Load textures for idle standing

self.idle_texture_pair = arcade.load_texture_pair(f"{main_path}_idle.png")
self. jump_texture_pair = arcade.load_texture_pair(f"{main_path}_jump.png")
self.fall_texture_pair = arcade.load_texture_pair(f"{main_path}_fall.png")

Load textures for walking

self.walk_textures = []

for i in range(8):
texture = arcade.load_texture_pair(f"{main_path}_walk{i}.png")
self.walk_textures.append(texture)

Set the initial texture
self.texture = self.idle_texture_pair[0]

Default to face-right
self.character_face_direction = RIGHT_FACING

Index of our current texture
self.cur_texture = 0
(continues on next page)

9.9. Add Player Animation 153

https://www.kenney.nl/assets/toon-characters-1

38

40

41

42

43

44

45

46

47

48

49

50

52

53

54

55

56

58

59

60

61

62

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

How far have we traveled horizontally since changing the texture
self.x_odometer = 0

def pymunk_moved(self, physics_engine, dx, dy, d_angle):
""" Handle being moved by the pymunk engine """
Figure out if we need to face left or right
if dx < -DEAD_ZONE and self.character_face_direction == RIGHT_FACING:
self.character_face_direction = LEFT_FACING
elif dx > DEAD_ZONE and self.character_face_direction == LEFT_FACING:
self.character_face_direction = RIGHT_FACING

Are we on the ground?
is_on_ground = physics_engine.is_on_ground(self)

Add to the odometer how far we've moved
self.x_odometer += dx

Jumping animation
if not is_on_ground:
if dy > DEAD_ZONE:
self.texture = self.jump_texture_pair[self.character_face_direction]
return
elif dy < -DEAD_ZONE:
self.texture = self.fall_texture_pair[self.character_face_direction]
return

Idle animation

if abs(dx) <= DEAD_ZONE:
self.texture = self.idle_texture_pair[self.character_face_direction]
return

Have we moved far enough to change the texture?
if abs(self.x_odometer) > DISTANCE_TO_CHANGE_TEXTURE:

Reset the odometer
self.x_odometer = 0

Advance the walking animation
self.cur_texture += 1
if self.cur_texture > 7:
self.cur_texture = 0
self.texture = self.walk_textures[self.cur_texture][self.character_face_
—direction]

Important! At this point, we are still creating an instance of arcade.Sprite and not PlayerSprite. We need to go
back to the setup method and replace the line that creates the player instance with:

154 Chapter 9. Pymunk Platformer

Python Arcade Library, Release 3.0.0.dev26

Listing 18: Add Player Animation - Creating the Player Class

Create player sprite
self.player_sprite = PlayerSprite()

A really common mistake I’ve seen programmers make (and made myself) is to forget that last part. Then you can
spend a lot of time looking at the player class when the error is in the setup.

We also need to go back and change the data type for the player sprite attribute in our __init__ method:

Listing 19: Add Player Animation - Creating the Player Class

Player sprite
self.player_sprite: Optional[PlayerSprite] = None

e pymunk_demo_platformer_08

e pymunk_demo_platformer_08_diff

9.10 Shoot Bullets

Getting the player to shoot something can add a lot to our game. To begin with we’ll define a few constants to use.
How much force to shoot the bullet with, the bullet’s mass, and the gravity to use for the bullet.

If we use the same gravity for the bullet as everything else, it tends to drop too fast. We could set this to zero if we
wanted it to not drop at all.

Listing 20: Shoot Bullets - Constants

How much force to put on the bullet
BULLET_MOVE_FORCE = 4500

Mass of the bullet
BULLET_MASS = 0.1

Make bullet less affected by gravity
BULLET_GRAVITY = 300

Next, we’ll put in a mouse press handler to put in the bullet shooting code.
We need to:

* Create the bullet sprite

* We need to calculate the angle from the player to the mouse click

¢ Create the bullet away from the player in the proper direction, as spawning it inside the player will confuse the
physics engine

Add the bullet to the physics engine

* Apply the force to the bullet to make if move. Note that as we angled the bullet we don’t need to angle the force.

Warning: Does your platformer scroll?

If your window scrolls, you need to add in the coordinate off-set or else the angle calculation will be incorrect.

9.10. Shoot Bullets 155

20

21

22

23

24

25

26

27

28

29

30

31

40

41

42

43

44

45

Python Arcade Library, Release 3.0.0.dev26

Warning: Bullets don’t disappear yet!

If the bullet flies off-screen, it doesn’t go away and the physics engine still has to track it.

Listing 21: Shoot Bullets - Mouse Press

def on_mouse_press(self, x, y, button, modifiers):
""" Called whenever the mouse button is clicked.

i

bullet = arcade.SpriteSolidColor(width=20, height=5, color=arcade.color.DARK_

—YELLOW)
self.bullet_list.append(bullet)

Position the bullet at the player's current location
start_x = self.player_sprite.center_x

start_y = self.player_sprite.center_y

bullet.position = self.player_sprite.position

Get from the mouse the destination location for the bullet

IMPORTANT! If you have a scrolling screen, you will also need
to add in self.view_bottom and self.view_left.

dest_x = x

dest_y =y

Do math to calculate how to get the bullet to the destination.
Calculation the angle in radians between the start points

and end points. This is the angle the bullet will travel.
x_diff = dest_x - start_x

y_diff = dest_y - start_y

angle = math.atan2(y_diff, x_diff)

What is the 1/2 size of this sprite, so we can figure out how far
away to spawn the bullet
size = max(self.player_sprite.width, self.player_sprite.height) / 2

Use angle to to spawn bullet away from player in proper direction
bullet.center_x += size * math.cos(angle)
bullet.center_y += size * math.sin(angle)

Set angle of bullet
bullet.angle = math.degrees(angle)

Gravity to use for the bullet

If we don't use custom gravity, bullet drops too fast, or we have
to make it go too fast.

Force is in relation to bullet's angle.

bullet_gravity = (0, -BULLET_GRAVITY)

Add the sprite. This needs to be done AFTER setting the fields above.
self.physics_engine.add_sprite(bullet,

mass=BULLET_MASS,

damping=1.0,

(continues on next page)

156 Chapter 9. Pymunk Platformer

46

4

48

49

50

51

52

53

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)
friction=0.6,
collision_type="bullet",
gravity=bullet_gravity,
elasticity=0.9)

Add force to bullet
force = (BULLET_MOVE_FORCE, 0)
self.physics_engine.apply_force(bullet, force)

e pymunk_demo_platformer_09

* pymunk_demo_platformer_09_diff

9.11 Destroy Bullets and Items

This section has two goals:
* Get rid of the bullet if it flies off-screen

¢ Handle collisions of the bullet and other items

9.11.1 Destroy Bullet If It Goes Off-Screen

First, we’ll create a custom bullet class. This class will define the pymunk_moved method, and check our location each
time the bullet moves. If our y value is too low, we’ll remove the bullet.

Listing 22: Destroy Bullets - Bullet Sprite

class BulletSprite(arcade.SpriteSolidColor):
""" Bullet Sprite
def pymunk_moved(self, physics_engine, dx, dy, d_angle):
""" Handle when the sprite is moved by the physics engine.
If the bullet falls below the screen, remove it
if self.center_y < -100:
self.remove_from_sprite_lists()

o

e

And, of course, once we create the bullet we have to update our code to use it instead of the plain arcade.Sprite
class.

9.11. Destroy Bullets and ltems 157

Python Arcade Library, Release 3.0.0.dev26

Listing 23: Destroy Bullets - Bullet Sprite

bullet = BulletSprite(width=20, height=5, color=arcade.color.DARK_YELLOW)
self.bullet_list.append(bullet)

Position the bullet at the player's current location
start_x = self.player_sprite.center_x
start_y = self.player_sprite.center_y

9.11.2 Handle Collisions

To handle collisions, we can add custom collision handler call-backs. If you’ll remember when we added items to the
physics engine, we gave each item a collision type, such as “wall” or “bullet” or “item”. We can write a function and
register it to handle all bullet/wall collisions.

In this case, bullets that hit a wall go away. Bullets that hit items cause both the item and the bullet to go away. We
could also add code to track damage to a sprite, only removing it after so much damage was applied. Even changing
the texture depending on its health.

Listing 24: Destroy Bullets - Collision Handlers

def wall_hit_handler(bullet_sprite, _wall_sprite, _arbiter, _space, _data):
""" Called for bullet/wall collision """
bullet_sprite.remove_from_sprite_lists()

self.physics_engine.add_collision_handler("bullet", "wall", post_handler=wall_
—hit_handler)

def item_hit_handler(bullet_sprite, item_sprite, _arbiter, _space, _data):
""" Called for bullet/wall collision """
bullet_sprite.remove_from_sprite_lists()
item_sprite.remove_from_sprite_lists()

self.physics_engine.add_collision_handler("bullet", "item", post_handler=item_
—~hit_handler)

e pymunk_demo_platformer_10

e pymunk_demo_platformer_10_diff

9.12 Add Moving Platforms

We can add support for moving platforms. Platforms can be added in an object layer. An object layer allows platforms
to be placed anywhere, and not just on exact grid locations. Object layers also allow us to add custom properties for
each tile we place.

Once we have the tile placed, we can add custom properties for it. Click the ‘+’ icon and add properties for all or some
of:

* change_x
e change_y

e left_boundary

158 Chapter 9. Pymunk Platformer

Python Arcade Library, Release 3.0.0.dev26

Layers o
Bl Dynamic Items ® 4o
B Ladders ® o
HH Platforms ® o

© o

8’ Moving Sprites

BH Tile Layer
Image Layer
Group Layer
Layer via Copy Ctrl+)
Layer via Cut Ctrl+Shift+)

Fig. 1: Adding an object layer.

e right_boundary

¢ top_boundary

* bottom_boundary
If these are named exact matches, they’ll automatically copy their values into the sprite attributes of the same name.
Now we need to update our code. In GameWindow.__init__ add a line to create an attribute for

moving_sprites_list:

Listing 25: Moving Platforms - Adding the sprite list

[self.moving_sprites_list: Optional[arcade.SpriteList] = None]

In the setup method, load in the sprite list from the tmx layer.

Listing 26: Moving Platforms - Adding the sprite list

[self.moving_sprites_list = tile_map.sprite_lists['Moving Platforms']]

Also in the setup method, we need to add these sprites to the physics engine. In this case we’ll add the sprites as
KINEMATIC. Static sprites don’t move. Dynamic sprites move, and can have forces applied to them by other objects.
Kinematic sprites do move, but aren’t affected by other objects.

Listing 27: Moving Platforms - Loading the sprites

Add kinematic sprites
self.physics_engine.add_sprite_list(self.moving_sprites_list,
body_type=arcade.PymunkPhysicsEngine.
—KINEMATIC)

We need to draw the moving platform sprites. After adding this line, you should be able to run the program and see the
sprites from this layer, even if they don’t move yet.

9.12. Add Moving Platforms 159

Python Arcade Library, Release 3.0.0.dev26

Properties o %
Property Value
ID 1
Template =
Name
Type
Visible
X 1,40843
Y 595.09
Width 128.00
Height 128.00
Rotation 0.00
~ Flipping
Horizontal [| False
Vertical [False
boundary_bottom |300.0
boundary_top 800.0
change_y 3.0

Fig. 2: Adding custom properties.

Listing 28: Moving Platforms - Draw the sprites

def on_draw(self):

""" Draw everything
self.clear()
self.wall_list.draw()
self.moving_sprites_list.draw()
self.bullet_list.draw()
self.item_list.draw()
self.player_list.draw()

Next up, we need to get the sprites moving. First, we’ll check to see if there are any boundaries set, and if we need to
reverse our direction.

After that we’ll create a velocity vector. Velocity is in pixels per second. In this case, I'm assuming the user set the
velocity in pixels per frame in Tiled instead, so we’ll convert.

Warning: Changing center_x and center_y will not move the sprite. If you want to change a sprite’s position, use
the physics engine’s set_position method.

Also, setting an item’s position “teleports” it there. The physics engine will happily move the object right into
another object. Setting the item’s velocity instead will cause the physics engine to move the item, pushing any
dynamic items out of the way.

160 Chapter 9. Pymunk Platformer

Python Arcade Library, Release 3.0.0.dev26

Listing 29: Moving Platforms - Moving the sprites

For each moving sprite, see if we've reached a boundary and need to
reverse course.
for moving_sprite in self.moving_sprites_list:
if moving_sprite.boundary_right and \
moving_sprite.change_x > 0 and \
moving_sprite.right > moving_sprite.boundary_right:
moving_sprite.change_x *= -1
elif moving_sprite.boundary_left and \
moving_sprite.change_x < 0 and \
moving_sprite.left > moving_sprite.boundary_left:
moving_sprite.change_x *= -1
if moving_sprite.boundary_top and \
moving_sprite.change_y > 0 and \
moving_sprite.top > moving_sprite.boundary_top:
moving_sprite.change_y *= -1
elif moving_sprite.boundary_bottom and \
moving_sprite.change_y < 0 and \
moving_sprite.bottom < moving_sprite.boundary_bottom:
moving_sprite.change_y *= -1

Figure out and set our moving platform velocity.

Pymunk uses velocity is in pixels per second. If we instead have

pixels per frame, we need to convert.

velocity = (moving_sprite.change_x * 1 / delta_time, moving_sprite.change_y..
~* 1 / delta_time)

self.physics_engine.set_velocity(moving_sprite, velocity)

* pymunk_demo_platformer_11

e pymunk_demo_platformer_11_diff

9.13 Add Ladders

The first step to adding ladders to our platformer is modify the __init__ to track some more items:
» Have a reference to a list of ladder sprites
* Add textures for a climbing animation
» Keep track of our movement in the y direction

¢ Add a boolean to track if we are on/off a ladder

Listing 30: Add Ladders - PlayerSprite class

def __init__(self,
ladder_list: arcade.Spritelist,
hit_box_algorithm: arcade.hitbox.HitBoxAlgorithm) :

i o

Init
Let parent initialize
super() .__init__Q

(continues on next page)

9.13. Add Ladders 161

22

23

24

25

26

27

28

29

30

31

32

39

40

41

42

43

4

45

46

47

48

49

51

52

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

Set our scale
self.scale = SPRITE_SCALING_PLAYER

Images from Kenney.nl's Character pack

main_path = ":resources:images/animated_characters/female_adventurer/
-, femaleAdventurer"
main_path = ":resources:images/animated_characters/female_person/femalePerson"
main_path = ":resources:images/animated_characters/male_person/malePerson"
main_path = ":resources:images/animated_characters/male_adventurer/
—.maleAdventurer"
main_path = ":resources:images/animated_characters/zombie/zombie"
main_path = ":resources:images/animated_characters/robot/robot"

Load textures for idle standing
self.idle_texture_pair = arcade.load_texture_pair(f"{main_path}_idle.png",
hit_box_algorithm=hit_box_
—algorithm)
self. jump_texture_pair = arcade.load_texture_pair(f"{main_path}_jump.png")
self.fall_texture_pair = arcade.load_texture_pair(f"{main_path}_fall.png")

Load textures for walking

self.walk_textures = []

for i in range(8):
texture = arcade.load_texture_pair(f"{main_path}_walk{i}.png")
self.walk_textures.append(texture)

Load textures for climbing

self.climbing_ textures = []

texture = arcade.load_texture(f"{main_path}_climb0.png")
self.climbing_textures.append(texture)

texture = arcade.load_texture(f"{main_path}_climbl.png")
self.climbing textures.append(texture)

Set the initial texture
self.texture = self.idle_texture_pair[0]

Default to face-right
self.character_face_direction = RIGHT_FACING

Index of our current texture
self.cur_texture = 0

How far have we traveled horizontally since changing the texture
self.x_odometer = 0
self.y_odometer = 0

self.ladder_list = ladder_list
self.is_on_ladder = False

Next, in our pymunk_moved method we need to change physics when we are on a ladder, and to update our player
texture.

When we are on a ladder, we’ll turn off gravity, turn up damping, and turn down our max vertical velocity. If we are

162 Chapter 9. Pymunk Platformer

20

21

22

23

24

25

26

27

28

29

30

40

41

42

43

44

45

46

47

48

Python Arcade Library, Release 3.0.0.dev26

off the ladder, reset those attributes.

When we are on a ladder, but not on the ground, we’ll alternate between a couple climbing textures.

Listing 31: Add Ladders - PlayerSprite class

def pymunk_moved(self, physics_engine, dx, dy, d_angle):
""" Handle being moved by the pymunk engine """
Figure out if we need to face left or right
if dx < -DEAD_ZONE and self.character_face_direction == RIGHT_FACING:
self.character_face_direction = LEFT_FACING
elif dx > DEAD_ZONE and self.character_face_direction == LEFT_FACING:
self.character_face_direction = RIGHT_FACING

Are we on the ground?
is_on_ground = physics_engine.is_on_ground(self)

Are we on a ladder?
if len(arcade.check_for_collision_with_list(self, self.ladder_list)) > 0:
if not self.is_on_ladder:
self.is_on_ladder = True
self.pymunk.gravity = (0, 0)
self.pymunk.damping = 0.0001
self.pymunk.max_vertical_velocity = PLAYER_MAX_HORIZONTAL_SPEED
else:
if self.is_on_ladder:
self.pymunk.damping = 1.0
self.pymunk.max_vertical_velocity
self.is_on_ladder = False
self.pymunk.gravity = None

PLAYER_MAX_VERTICAL_SPEED

Add to the odometer how far we've moved
self.x_odometer += dx
self.y_odometer += dy

if self.is_on_ladder and not is_on_ground:
Have we moved far enough to change the texture?
if abs(self.y_odometer) > DISTANCE_TO_CHANGE_TEXTURE:

Reset the odometer
self.y_odometer = 0

Advance the walking animation
self.cur_texture += 1

if self.cur_texture > 1:

self.cur_texture = 0
self.texture = self.climbing_textures[self.cur_texture]
return

Jumping animation
if not is_on_ground:
if dy > DEAD_ZONE:
self.texture = self.jump_texture_pair[self.character_face_direction]
(continues on next page)

9.13. Add Ladders 163

49

50

53

54

55

56

58

59

60

61

62

64

65

66

67

68

69

20

21

22

23

24

25

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

return

elif dy < -DEAD_ZONE:
self.texture = self.fall_texture_pair[self.character_face_direction]
return

Idle animation

if abs(dx) <= DEAD_ZONE:
self.texture = self.idle_texture_pair[self.character_face_direction]
return

Have we moved far enough to change the texture?
if abs(self.x_odometer) > DISTANCE_TO_CHANGE_TEXTURE:

Reset the odometer
self.x_odometer = 0

Advance the walking animation
self.cur_texture += 1
if self.cur_texture > 7:
self.cur_texture = 0
self.texture = self.walk_textures[self.cur_texture][self.character_face_
—direction]

Then we just need to add a few variables to the __init__ to track ladders:

Listing 32: Add Ladders - Game Window Init

def __init__(self, width, height, title):
""" Create the variables """

Init the parent class

super().__init__(width, height, title)

Player sprite
self.player_sprite: Optional[PlayerSprite] = None

Sprite lists we need

self.player_list: Optional[arcade.SpritelList] = None
self.wall_list: Optional[arcade.SpriteList] = None
self.bullet_list: Optional[arcade.SpritelList] = None
self.item_list: Optional[arcade.SpriteList] = None
self.moving_sprites_list: Optional[arcade.SpritelList] = None
self.ladder_list: Optional[arcade.SpriteList] = None

Track the current state of what key is pressed
self.left_pressed: bool = False
self.right_pressed: bool = False
self.up_pressed: bool = False

self.down_pressed: bool = False

Physics engine
self.physics_engine: Optional[arcade.PymunkPhysicsEngine] = None

(continues on next page)

164

Chapter 9. Pymunk Platformer

26

27

28

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

Set background color
self.background_color = arcade.color.AMAZON

Then load the ladder layer in setup:

Listing 33: Add Ladders - Game Window Setup

Pull the sprite layers out of the tile map

self.wall_list = tile_map.sprite_lists["Platforms"]

self.item_list = tile_map.sprite_lists["Dynamic Items"]
self.ladder_list = tile_map.sprite_lists["Ladders"]
self.moving_sprites_list = tile_map.sprite_lists['Moving Platforms']

Also, pass the ladder list to the player class:

Listing 34: Add Ladders - Game Window Setup

Create player sprite
self.player_sprite = PlayerSprite(self.ladder_list, hit_box_algorithm=arcade.
—hitbox.algo_detailed)

Then change the jump button so that we don’t jump if we are on a ladder. Also, we want to track if the up key, or down

key are pressed.

Listing 35: Add Ladders - Game Window Key Down

def on_key_press(self, key, modifiers):
"""Called whenever a key is pressed. """
if key == arcade.key.LEFT:
self.left_pressed = True
elif key == arcade.key.RIGHT:
self.right_pressed = True
elif key == arcade.key.UP:
self.up_pressed = True
find out if player is standing on ground, and not on a ladder
if self.physics_engine.is_on_ground(self.player_sprite) \
and not self.player_sprite.is_on_ladder:
She is! Go ahead and jump
impulse = (0, PLAYER_JUMP_IMPULSE)
self.physics_engine.apply_impulse(self.player_sprite, impulse)
elif key == arcade.key.DOWN:
self.down_pressed = True

Add to the key up handler tracking for which key is pressed.

Listing 36: Add Ladders - Game Window Key Up

def on_key_release(self, key, modifiers):
"""Called when the user releases a key.

i

if key == arcade.key.LEFT:

(continues on next page)

9.13. Add Ladders

165

20

21

22

23

24

25

26

27

28

29

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

self.left_pressed = False
elif key == arcade.key.RIGHT:
self.right_pressed = False
elif key == arcade.key.UP:
self.up_pressed = False
elif key == arcade.key.DOWN:
self.down_pressed = False

Next, change our update with new updates for the ladder.

Listing 37: Add Ladders - Game Window On Update

def on_update(self, delta_time):
""" Movement and game logic """
is_on_ground = self.physics_engine.is_on_ground(self.player_sprite)
Update player forces based on keys pressed
if self.left_pressed and not self.right_pressed:
Create a force to the left. Apply it.
if is_on_ground or self.player_sprite.is_on_ladder:
force = (-PLAYER_MOVE_FORCE_ON_GROUND, 0)
else:
force = (-PLAYER_MOVE_FORCE_IN_AIR, 0)
self.physics_engine.apply_force(self.player_sprite, force)
Set friction to zero for the player while moving
self.physics_engine.set_friction(self.player_sprite, 0)
elif self.right_pressed and not self.left_pressed:
Create a force to the right. Apply it.
if is_on_ground or self.player_sprite.is_on_ladder:
force = (PLAYER_MOVE_FORCE_ON_GROUND, 0)
else:
force = (PLAYER_MOVE_FORCE_IN_AIR, 0)
self.physics_engine.apply_force(self.player_sprite, force)
Set friction to zero for the player while moving
self.physics_engine.set_friction(self.player_sprite, 0)
elif self.up_pressed and not self.down_pressed:
Create a force to the right. Apply it.
if self.player_sprite.is_on_ladder:
force = (0, PLAYER_MOVE_FORCE_ON_GROUND)
self.physics_engine.apply_force(self.player_sprite, force)
Set friction to zero for the player while moving
self.physics_engine.set_friction(self.player_sprite, 0)
elif self.down_pressed and not self.up_pressed:
Create a force to the right. Apply it.
if self.player_sprite.is_on_ladder:
force = (0, -PLAYER_MOVE_FORCE_ON_GROUND)
self.physics_engine.apply_force(self.player_sprite, force)
Set friction to zero for the player while moving
self.physics_engine.set_friction(self.player_sprite, 0)

And, of course, don’t forget to draw the ladders:

166 Chapter 9. Pymunk Platformer

Python Arcade Library, Release 3.0.0.dev26

Listing 38: Add Ladders - Game Window Key Down

def on_draw(self):

""" Draw everything
self.clear()
self.wall_list.draw()
self.ladder_list.draw()
self.moving_sprites_list.draw()
self.bullet_list.draw()
self.item_list.draw()
self.player_list.draw()

i

e pymunk_demo_platformer_12

* pymunk_demo_platformer_12_diff

9.13. Add Ladders 167

Python Arcade Library, Release 3.0.0.dev26

168 Chapter 9. Pymunk Platformer

CHAPTER
TEN

USING VIEWS FOR START/END SCREENS

Views allow you to easily switch “views” for what you are showing on the window. You can use this to support adding
screens such as:

¢ Start screens

e Instruction screens
¢ Game over screens
* Pause screens

The View class is a lot like the Window class that you are already used to. The View class has methods for on_update
and on_draw just like Window. We can change the current view to quickly change the code that is managing what is
drawn on the window and handling user input.

If you know ahead of time you want to use views, you can build your code around the View Management. However,
typically a programmer wants to add these items to a game that already exists.

This tutorial steps you through how to do just that.

10.1 Change Main Program to Use a View

I imploment Views Bample x

First, we’ll start with a simple collect coins example: 01_views

Then we’ll move our game into a game view. Take the code where we define our window class:

[class MyGame (arcade.Window) :]

Change it to derive from arcade.View instead of arcade.Window. I also suggest using “View” as part of the name:

169

Python Arcade Library, Release 3.0.0.dev26

[class GameView(arcade.View):]

This will require a couple other updates. The View class does not control the size of the window, so we’ll need to take
that out of the call to the parent class. Change:

[super O .__init__(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)]
to:
[super() __init__0]

The Window class still controls if the mouse is visible or not, so to hide the mouse, we’ll need to use the window
attribute that is part of the View class. Change:

[self. set_mouse_visible(False) J
to:
[self.window. set_mouse_visible(False) J

Now in the main function, instead of just creating a window, we’ll create a window, a view, and then show that view.

Listing 1: Add views - Main function

def main(Q:
""" Main function """
window = arcade.Window(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)
start_view = GameView()
window. show_view(start_view)
start_view.setup()
arcade.run()

At this point, run your game and make sure that it still operates properly. It should run just like it did before, but now
we are set up to add additional views.

* 02_views « Full listing of where we are right now

e 02_views_diff « What we changed to get here

170 Chapter 10. Using Views for Start/End Screens

Python Arcade Library, Release 3.0.0.dev26

10.2 Add Instruction Screen

B implement Views Example x

Instructions Screen

Click to advance

Now we are ready to add in our instruction screen as a view. Create a class for it:

[class InstructionView(arcade.View):

Then we need to define the on_show_view method that will be run once when we switch to this view. In this case,
we don’t need to do much, just set the background color. If the game is one that scrolls, we’ll also need to reset the
viewport so that (0, 0) is back to the lower-left coordinate.

Listing 2: Add views - on_show_view

def on_show_view(self):
""" This is run once when we switch to this view
self.window.background_color = arcade.csscolor.DARK_SLATE_BLUE

i

Reset the viewport, necessary if we have a scrolling game and we need
to reset the viewport back to the start so we can see what we draw.
arcade.set_viewport(®, self.window.width, 0, self.window.height)

The on_draw method works just like the window class’s method, but it will only be called when this view is active.

In this case, we’ll just draw some text for the instruction screen. Another alternative is to make a graphic in a paint
program, and show that image. We’ll do that below where we show the Game Over screen.

Listing 3: Add views - on_draw

def on_draw(self):
""" Draw this view
self.clear()
arcade.draw_text("Instructions Screen", self.window.width / 2, self.window.
—height / 2,

i

arcade.color.WHITE, font_size=50, anchor_x="center")
arcade.draw_text("Click to advance", self.window.width / 2, self.window.height /.
—2-75,
arcade.color.WHITE, font_size=20, anchor_x="center")

Then we’ll put in a method to respond to a mouse click. Here we’ll create our GameView and call the setup method.

10.2. Add Instruction Screen 171

Python Arcade Library, Release 3.0.0.dev26

Listing 4: Add views - on_mouse_press

def on_mouse_press(self, _x, _y, _button, _modifiers):
""" If the user presses the mouse button, start the game.
game_view = GameView()
game_view.setup()
self.window.show_view(game_view)

i

Now we need to go back to the main function. Instead of creating a GameView it needs to now create an
InstructionView.

Listing 5: Add views - Main function

def main(Q):
""" Main function """
window = arcade.Window(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)
start_view = InstructionView()
window. show_view(start_view)
arcade.run()

¢ 03_views « Full listing of where we are right now

* 03_views_diff « What we changed to get here

10.3 Game Over Screen

Game Over

Click to Restart

Another way of doing instruction, pause, and game over screens is with a graphic. In this example, we’ve created a
separate image with the same size as our window (800x600) and saved it as game_over.png. You can use the Windows
“Paint” app or get an app for your Mac to make images in order to do this yourself.

The new GameOverView view that we are adding loads in the game over screen image as a texture in its __init__.
The on_draw method draws that texture to the screen. By using an image, we can fancy up the game over screen using
an image editor as much as we want, while keeping the code simple.

When the user clicks the mouse button, we just start the game over.

172 Chapter 10. Using Views for Start/End Screens

20

21

22

23

Python Arcade Library, Release 3.0.0.dev26

Listing 6: Add views - Game Over View

class GameOverView(arcade.View):

i

def

def

def

i

View to show when game is over

__init__(self):

""" This is run once when we switch to this view
super().__init__Q)

self.texture = arcade.load_texture(''game_over.png")

i

Reset the viewport, necessary if we have a scrolling game and we need
to reset the viewport back to the start so we can see what we draw.
arcade.set_viewport(®, SCREEN_WIDTH - 1, O, SCREEN_HEIGHT - 1)

on_draw(self):

""" Draw this view

self.clear()

self.texture.draw_sized (SCREEN_WIDTH / 2, SCREEN_HEIGHT / 2,
SCREEN_WIDTH, SCREEN_HEIGHT)

o

on_mouse_press(self, _x, _y, _button, _modifiers):

""" If the user presses the mouse button, re-start the game.
game_view = GameView()

game_view.setup()

self.window.show_view(game_view)

mirn

The last thing we need, is to trigger the “Game Over” view. In our GameView.on_update method, we can check the
list length. As soon as it hits zero, we’ll change our view.

Listing 7: Add views - Game Over View

def on_update(self, delta_time):

o o

Movement and game logic
Call update on all sprites (The sprites don't do much in this
example though.)

self.coin_list.update()

Generate a list of all sprites that collided with the player.

coins_hit_list = arcade.check_for_collision_with_list(self.player_sprite, self.
—coin_list)

Loop through each colliding sprite, remove it, and add to the score.
for coin in coins_hit_list:

coin.remove_from_sprite_lists()

self.score += 1

Check length of coin list. If it is zero, flip to the
game over view.
if len(self.coin_list) == 0:

view = GameOverView()

self.window.show_view(view)

e 04_

views « Full listing of where we are right now

10.3. Game Over Screen

173

Python Arcade Library, Release 3.0.0.dev26

* 04_views_diff « What we changed to get here

174 Chapter 10. Using Views for Start/End Screens

CHAPTER
ELEVEN

SOLITAIRE

This solitaire tutorial takes you though the basics of creating a card game, and doing extensive drag/drop work.

11.1 Open a Window

To begin with, let’s start with a program that will use Arcade to open a blank window. The listing below also has stubs
for methods we’ll fill in later.

Get started with this code and make sure you can run it. It should pop open a green window.

Listing 1: Starting Program

Solitaire clone.

i

import arcade

Screen title and size
SCREEN_WIDTH = 1024

SCREEN_HEIGHT = 768

SCREEN_TITLE = "Drag and Drop Cards"

class MyGame(arcade.Window) :
""" Main application class.

i

def __init__(self):
super().__init__ (SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)

self.background_color = arcade.color.AMAZON

(continues on next page)

175

20

21

22

23

24

25

26

27

28

29

40

41

42

43

44

45

46

47

48

49

50

51

Python Arcade Library, Release 3.0.0.dev26

def

(continued from previous page)

def setup(self):
""" Set up the game here. Call this function to restart the game.

i

pass

def on_draw(self):
""" Render the screen.
Clear the screen
self.clear()

mirn

def on_mouse_press(self, x, y, button, key_modifiers):
""" Called when the user presses a mouse button. """
pass

def on_mouse_release(self, x: float, y: float, button: int,
modifiers: int):
""" Called when the user presses a mouse button.
pass

i

def on_mouse_motion(self, x: float, y: float, dx: float, dy: float):
""" User moves mouse

i

pass

main(Q):

""" Main function
window = MyGame()
window.setup()
arcade.run()

i

if __name__ == "__main__":

main()

11.2 Create Card Sprites

Our next step is the create a bunch of sprites, one for each card.

11.2.1 Constants

First, we’ll create some constants used in positioning the cards, and keeping track of what card is which.

We could just hard-code numbers, but I like to calculate things out. The “mat” will eventually be a square slightly
larger than each card that tracks where we can put cards. (A mat where we can put a pile of cards on.)

Listing 2: Create constants for positioning

Constants for sizing
CARD_SCALE = 0.6

How big are the cards?

(continues on next page)

176

Chapter 11. Solitaire

20

21

22

23

24

25

26

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

CARD_WIDTH = 140 * CARD_SCALE
CARD_HEIGHT = 190 * CARD_SCALE

How big is the mat we'll place the card on?
MAT_PERCENT_OVERSIZE = 1.25

MAT_HEIGHT = int(CARD_HEIGHT * MAT_PERCENT_OVERSIZE)
MAT_WIDTH = int(CARD_WIDTH * MAT_PERCENT_OVERSIZE)

How much space do we leave as a gap between the mats?
Done as a percent of the mat size.
VERTICAL_MARGIN_PERCENT = 0.10
HORIZONTAL_MARGIN_PERCENT = 0.10

The Y of the bottom row (2 piles)
BOTTOM_Y = MAT_HEIGHT / 2 + MAT_HEIGHT * VERTICAL_MARGIN_PERCENT

The X of where to start putting things on the left side
START_X = MAT_WIDTH / 2 + MAT_WIDTH * HORIZONTAL_MARGIN_PERCENT

Card constants
CARD_VALUES = [IlAll’ ||2ll’ ||3ll’ |l4ll’ |l5ll’ |l6ll’ |l7ll’ |l8ll’ |l9l|, " 1®ll’ llJIl’ "Q”’ lIKll]
CARD_SUITS = ["Clubs", "Hearts", "Spades", "Diamonds"]

11.2.2 Card Class

Next up, we’ll create a card class. The card class is a subclass of arcade.Sprite. It will have attributes for the suit
and value of the card, and auto-load the image for the card based on that.

We'll use the entire image as the hit box, so we don’t need to go through the time consuming hit box calculation.
Therefore we turn that off. Otherwise loading the sprites would take a long time.

11.2. Create Card Sprites 177

Python Arcade Library, Release 3.0.0.dev26

Listing 3: Create card sprites

class Card(arcade.Sprite):

i

def

mirn

Card sprite

__init__(self, suit, value, scale=1):
""" Card constructor """

Attributes for suit and value
self.suit = suit

self.value = value

Image to use for the sprite when face up
self.image_file_name = f":resources:images/cards/card{self.suit}{self.value}.png"

Call the parent
super().__init__(self.image_file_name, scale, hit_box_algorithm="None")

11.2.3 Creating Cards

We’ll start by creating an attribute for the SpriteList that will hold all the cards in the game.

Listing 4: Create card sprites

def

__init__(self):
super().__init__ (SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)

Sprite list with all the cards, no matter what pile they are in.
self.card_list = None

self.background_color = arcade.color.AMAZON

In setup we’ll create the list and the cards. We don’t do this in __init__ because by separating the creation into its
own method, we can easily restart the game by calling setup.

178

Chapter 11. Solitaire

Python Arcade Library, Release 3.0.0.dev26

Listing 5: Create card sprites

def setup(self):

""" Set up the game here. Call this function to restart the game. """
Sprite list with all the cards, no matter what pile they are in.
self.card_list = arcade.SpriteList()

Create every card
for card_suit in CARD_SUITS:
for card_value in CARD_VALUES:
card = Card(card_suit, card_value, CARD_SCALE)
card.position = START_X, BOTTOM_Y
self.card_list.append(card)

11.2.4 Drawing Cards

Finally, draw the cards:

Listing 6: Create card sprites

def on_draw(self):
""" Render the screen.
Clear the screen
self.clear()

i

Draw the cards
self.card_list.draw()

You should end up with all the cards stacked in the lower-left corner:

11.2. Create Card Sprites 179

ST

© ® 9 o w

Python Arcade Library, Release 3.0.0.dev26

P Drag and Drop Cards — X

11

* solitaire_02 « Full listing of where we are right now

* solitaire_02_diff « What we changed to get here

.3 Implement Drag and Drop

Next up, let’s add the ability to pick up, drag, and drop the cards.

11.

3.1 Track the Cards

First, let’s add attributes to track what cards we are moving. Because we can move multiple cards, we’ll keep this as a

list.

If the user drops the card in an illegal spot, we’ll need to reset the card to its original position. So we’ll also track

that.

Create the attributes:

Listing 7: Add attributes to __init__

def __init__(self):
super().__init__ (SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)

Sprite list with all the cards, no matter what pile they are in.
self.card_list = None

self.background_color = arcade.color.AMAZON

List of cards we are dragging with the mouse
(continues on next page)

180

Chapter 11. Solitaire

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

self.held_cards = None

Original location of cards we are dragging with the mouse in case
they have to go back.
self.held_cards_original_position = None

Set the initial values (an empty list):

Listing 8: Create empty list attributes

def setup(self):

mirn

""" Set up the game here. Call this function to restart the game.

List of cards we are dragging with the mouse
self.held_cards = []

Original location of cards we are dragging with the mouse in case
they have to go back.
self.held_cards_original_position = []

Sprite list with all the cards, no matter what pile they are in.
self.card_list = arcade.SpriteList()

Create every card
for card_suit in CARD_SUITS:
for card_value in CARD_VALUES:
card = Card(card_suit, card_value, CARD_SCALE)
card.position = START_X, BOTTOM_Y
self.card_list.append(card)

11.3.2 Pull Card to Top of Draw Order

When we click on the card, we’ll want it to be the last card drawn, so it appears on top of all the other cards. Otherwise
we might drag a card underneath another card, which would look odd.

11.3. Implement Drag and Drop 181

Python Arcade Library, Release 3.0.0.dev26

Listing 9: Pull card to top

def pull_to_top(self, card: arcade.Sprite):
""" pull card to top of rendering order (last to render, looks on-top) """
Remove, and append to the end
self.card_list.remove(card)
self.card_list.append(card)

11.3.3 Mouse Button Pressed

When the user presses the mouse button, we will:

¢ See if they clicked on a card

* If so, put that card in our held cards list

 Save the original position of the card

« Pull it to the top of the draw order

Listing 10: Pull card to top

def on_mouse_press(self, x, y, button, key_modifiers):
""" Called when the user presses a mouse button. """

Get list of cards we've clicked on
cards = arcade.get_sprites_at_point((x, y), self.card_list)

Have we clicked on a card?
if len(cards) > 0:

Might be a stack of cards, get the top one
primary_card = cards[-1]

All other cases, grab the face-up card we are clicking on
self.held_cards = [primary_card]

Save the position

self.held_cards_original_position = [self.held_cards[0].position]
Put on top in drawing order
self.pull_to_top(self.held_cards[0])

11.3.4 Mouse Moved

If the user moves the mouse, we’ll move any held cards with it.

Listing 11: Pull card to top

def on_mouse_motion(self, x: float, y: float, dx: float, dy: float):
""" User moves mouse """
If we are holding cards, move them with the mouse

for card in self.held_cards:
(continues on next page)

182

Chapter 11. Solitaire

Python Arcade Library, Release 3.0.0.dev26

card.center_x += dx
card.center_y += dy

(continued from previous page)

11.3.5 Mouse Released

‘When the user releases the mouse button, we’ll clear the held card list.

Listing 12: Pull card to top

def on_mouse_release(self, x: float, y: float, button: int,
modifiers: int):
""" Called when the user presses a mouse button. """
If we don't have any cards, who cares
if len(self.held_cards) == 0:
return

We are no longer holding cards
self.held_cards = []

11.3.6 Test the Program

You should now be able to pick up and move cards around the screen. Try it out!

11.3. Implement Drag and Drop

183

Python Arcade Library, Release 3.0.0.dev26

 Drag and Drop Cards - X

* solitaire_03 « Full listing of where we are right now

* solitaire_03_diff « What we changed to get here

11.4 Draw Pile Mats

Next, we’ll create sprites that will act as guides to where the piles of cards go in our game. We’ll create these as sprites,
so we can use collision detection to figure out of we are dropping a card on them or not.

11.4.1 Create Constants

First, we’ll create constants for the middle row of seven piles, and for the top row of four piles. We’ll also create a
constant for how far apart each pile should be.

Again, we could hard-code numbers, but I like calculating them so I can change the scale easily.

Listing 13: Add constants

The Y of the top row (4 piles)
TOP_Y = SCREEN_HEIGHT - MAT_HEIGHT / 2 - MAT_HEIGHT * VERTICAL_MARGIN_PERCENT

(continues on next page)

184 Chapter 11. Solitaire

Python Arcade Library, Release 3.0.0.dev26

The Y

(continued from previous page)

of the middle row (7 piles)

MIDDLE_Y = TOP_Y - MAT_HEIGHT - MAT_HEIGHT * VERTICAL_MARGIN_PERCENT

How far apart each pile goes
X_SPACING = MAT_WIDTH + MAT_WIDTH * HORIZONTAL_MARGIN_PERCENT

11.4.2 Create Mat Sprites

Create an attribute for the mat sprite list:

Listing 14: Create the mat sprites

def

__init__(self):
super().__init__ (SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)

Sprite list with all the cards, no matter what pile they are in.
self.card_list = None

self.background_color = arcade.color.AMAZON

List of cards we are dragging with the mouse
self.held_cards = None

Original location of cards we are dragging with the mouse in case
they have to go back.
self.held_cards_original_position = None

Sprite list with all the mats tha cards lay on.
self.pile_mat_list = None

Then create the mat sprites in the setup method

Listing 15: Create the mat sprites

def setup(self):

i

""" Set up the game here. Call this function to restart the game.

List of cards we are dragging with the mouse
self.held_cards = []

Original location of cards we are dragging with the mouse in case
they have to go back.
self.held_cards_original_position = []

--- C(Create the mats the cards go on.

Sprite list with all the mats tha cards lay on.
self.pile_mat_list: arcade.SpritelList = arcade.SpriteList()

Create the mats for the bottom face down and face up piles
pile = arcade.SpriteSolidColor (MAT_WIDTH, MAT_HEIGHT, arcade.csscolor.DARK_OLIVE_

(continues on next page)

11.4. Draw Pile Mats 185

20

21

22

24

25

26

27

28

29

30

39

40

41

42

43

44

45

Python Arcade Library, Release 3.0.0.dev26

—~GREEN)
pile.position = START_X, BOTTOM_Y
self.pile_mat_list.append(pile)

(continued from previous page)

pile = arcade.SpriteSolidColor (MAT_WIDTH, MAT_HEIGHT, arcade.csscolor.DARK_OLIVE_

<~GREEN)
pile.position = START_X + X_SPACING, BOTTOM_Y
self.pile_mat_list.append(pile)

Create the seven middle piles
for i in range(7):

pile = arcade.SpriteSolidColor (MAT_WIDTH, MAT_HEIGHT, arcade.csscolor.DARK_

-~OLIVE_GREEN)
pile.position = START_X + i * X_SPACING, MIDDLE_Y
self.pile_mat_list.append(pile)

Create the top "play" piles
for i in range(4):

pile = arcade.SpriteSolidColor (MAT_WIDTH, MAT_HEIGHT, arcade.csscolor.DARK_

—OLIVE_GREEN)
pile.position = START_X + i * X_SPACING, TOP_Y
self.pile_mat_list.append(pile)

Sprite list with all the cards, no matter what pile they are in.

self.card_list = arcade.SpriteList()

Create every card
for card_suit in CARD_SUITS:
for card_value in CARD_VALUES:
card = Card(card_suit, card_value, CARD_SCALE)
card.position = START_X, BOTTOM_Y
self.card_list.append(card)

11.4.3 Draw Mat Sprites

Finally, the mats aren’t going to display if we don’t draw them:

186

Chapter 11. Solitaire

Python Arcade Library, Release 3.0.0.dev26

Listing 16: Draw the mat sprites

def on_draw(self):
""" Render the screen.
Clear the screen
self.clear()

mirn

Draw the mats the cards go on to
self.pile_mat_list.draw()

Draw the cards
self.card_list.draw()

11.4.4 Test the Program

Run the program, and see if the mats appear:

P Drag and Drop Cards — X

* solitaire_04 < Full listing of where we are right now

* solitaire_04_diff « What we changed to get here

11.4. Draw Pile Mats 187

20

21

22

23

24

25

26

27

28

29

31

32

Python Arcade Library, Release 3.0.0.dev26

11.5 Snap Cards to Piles

Right now, you can drag the cards anywhere. They don’t have to go onto a pile. Let’s add code that “snaps” the card
onto a pile. If we don’t drop on a pile, let’s reset back to the original location.

Listing 17: Snap to nearest pile

def on_mouse_release(self, x: float, y: float, button: int,
modifiers: int):
Called when the user presses a mouse button.

i i

If we don't have any cards, who cares
if len(self.held_cards) == 0:
return

Find the closest pile, in case we are in contact with more than one

pile, distance = arcade.get_closest_sprite(self.held_cards[0], self.pile_mat_
—list)

reset_position = True

See if we are in contact with the closest pile
if arcade.check_for_collision(self.held_cards[0], pile):

For each held card, move it to the pile we dropped on
for i, dropped_card in enumerate(self.held_cards):
Move cards to proper position
dropped_card.position = pile.center_x, pile.center_y

Success, don't reset position of cards
reset_position = False

Release on top play pile? And only one card held?
if reset_position:
Where-ever we were dropped, it wasn't valid. Reset the each card's position
to its original spot.
for pile_index, card in enumerate(self.held_cards):
card.position = self.held_cards_original_position[pile_index]

We are no longer holding cards
self.held_cards = []

¢ solitaire_05 « Full listing of where we are right now

* solitaire_05_diff « What we changed to get here

188 Chapter 11. Solitaire

Python Arcade Library, Release 3.0.0.dev26

11.6 Shuffle the Cards

Having all the cards in order is boring. Let’s shuffle them in the setup method:

Listing 18: Shuffle Cards

Shuffle the cards

for posl in range(len(self.card_list)):
pos2 = random.randrange(len(self.card_list))
self.card_list.swap(posl, pos2)

Don’t forget to import random at the top.

Run your program and make sure you can move cards around.

P Drag and Drop Cards - X

* solitaire_06 < Full listing of where we are right now

* solitaire_06_diff « What we changed to get here

11.7 Track Card Piles

Right now we are moving the cards around. But it isn’t easy to figure out what card is in which pile. We could check
by position, but then we start fanning the cards out, that will be very difficult.

Therefore we will keep a separate list for each pile of cards. When we move a card we need to move the position, and
switch which list it is in.

11.6. Shuffle the Cards 189

Python Arcade Library, Release 3.0.0.dev26

11.7.1 Add New Constants

To start with, let’s add some constants for each pile:

Listing 19: New Constants

i |# If we fan out cards stacked on each other, how far apart to fan them?
> | CARD_VERTICAL_OFFSET = CARD_HEIGHT * CARD_SCALE * 0.3

4« |# Constants that represent "what pile is what" for the game
s |PILE_COUNT = 13

¢ |BOTTOM_FACE_DOWN_PILE = 0

7 | BOTTOM_FACE_UP_PILE = 1

s |PLAY_PILE_1 =
9 |PLAY_PILE 2 =
o |PLAY_PILE_3 =
n |PLAY_PILE_4
2 |PLAY_PILE_S5 =
5 |PLAY_PILE_ 6 =
4 |PLAY_PILE_7 =
15 | TOP_PILE_1
16 | TOP_PILE_2 10
7 | TOP_PILE_3 11
s | TOP_PILE_4 = 12

I
00 NO Vb WwN

I
O

11.7.2 Create the Pile Lists

Then in our __init__ add a variable to track the piles:

Listing 20: Init Method Additions

1 # Create a list of lists, each holds a pile of cards.
2 self.piles = None

In the setup method, create a list for each pile. Then, add all the cards to the face-down deal pile. (Later, we’ll add
support for face-down cards. Yes, right now all the cards in the face down pile are up.)

190 Chapter 11. Solitaire

Python Arcade Library, Release 3.0.0.dev26

Listing 21: Setup Method Additions

Create a list of lists, each holds a pile of cards.

self.piles = [[] for _ in range(PILE_COUNT)]

Put all the cards in the bottom face-down pile

for card in self.card_list:
self.piles[BOTTOM_FACE_DOWN_PILE] .append(card)

11.7.3 Card Pile Management Methods

Next, we need some convenience methods we’ll use elsewhere.

First, given a card, return the index of which pile that card belongs to:

Listing 22: get_pile_for_card method

def get_pile_for_card(self, card):
""" What pile is this card in? """
for index, pile in enumerate(self.piles):
if card in pile:
return index

Next, remove a card from whatever pile it happens to be in.

Listing 23: remove_card_from_pile method

def remove_card_from_pile(self, card):
""" Remove card from whatever pile it was in.
for pile in self.piles:
if card in pile:
pile.remove(card)
break

mirn

Finally, move a card from one pile to another.

11.7. Track Card Piles 191

Python Arcade Library, Release 3.0.0.dev26

Listing 24: move_card_to_new_pile method

def move_card_to_new_pile(self, card, pile_index):

mirn

""" Move the card to a new pile
self.remove_card_from_pile(card)
self.piles[pile_index] .append(card)

11.7.4 Dropping the Card

Next, we need to modify what happens when we release the mouse.

First, see if we release it onto the same pile it came from. If so, just reset the card back to its original location.

Listing 25: on_mouse_release method

def on_mouse_release(self, x: float, y: float, button: int,

—list)

modifiers: int):
Called when the user presses a mouse button.

o i

If we don't have any cards, who cares
if len(self.held_cards) == 0:
return

Find the closest pile, in case we are in contact with more than one
pile, distance = arcade.get_closest_sprite(self.held_cards[0], self.pile_mat_

reset_position = True

See if we are in contact with the closest pile
if arcade.check_for_collision(self.held_cards[0], pile):

What pile is it?
pile_index = self.pile_mat_list.index(pile)

Is it the same pile we came from?

if pile_index == self.get_pile_for_card(self.held_cards[0]):
If so, who cares. We'll just reset our position.
pass

What if it is on a middle play pile? Ugh, that’s a bit complicated. If the mat is empty, we need to place it in the middle

of the mat. If there are cards on the mat, we need to offset the card so we can see a spread of cards.

While we can only pick up one card at a time right now, we need to support dropping multiple cards for once we support

multiple card carries.

Listing 26: on_mouse_release method

Is it on a middle play pile?
elif PLAY_PILE_1 <= pile_index <= PLAY_PILE_7:
Are there already cards there?
if len(self.piles[pile_index]) > 0:
Move cards to proper position
top_card = self.piles[pile_index][-1]

(continues on next page)

192

Chapter 11. Solitaire

20

21

22

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

for i, dropped_card in enumerate(self.held_cards):
dropped_card.position = top_card.center_x, \
top_card.center_y - CARD_VERTICAL_OFFSET.
S A+ D
else:
Are there no cards in the middle play pile?
for i, dropped_card in enumerate(self.held_cards):
Move cards to proper position
dropped_card.position = pile.center_x, \
pile.center_y - CARD_VERTICAL_OFFSET * i

for card in self.held_cards:
Cards are in the right position, but we need to move them to the.
—right list
self.move_card_to_new_pile(card, pile_index)

Success, don't reset position of cards
reset_position = False

What if it is released on a top play pile? Make sure that we only have one card we are holding. We don’t want to drop
a stack up top. Then move the card to that pile.

Listing 27: on_mouse_release method

Release on top play pile? And only one card held?
elif TOP_PILE_1 <= pile_index <= TOP_PILE_4 and len(self.held_cards) == 1:
Move position of card to pile
self.held_cards[0] .position = pile.position
Move card to card list
for card in self.held_cards:
self.move_card_to_new_pile(card, pile_index)

reset_position = False

If the move is invalid, we need to reset all held cards to their initial location.

11.7. Track Card Piles 193

Python Arcade Library, Release 3.0.0.dev26

Listing 28: on_mouse_release method

if reset_position:
Where-ever we were dropped, it wasn't valid. Reset the each card's position
to its original spot.
for pile_index, card in enumerate(self.held_cards):
card.position = self.held_cards_original_position[pile_index]

We are no longer holding cards
self.held_cards = []

11.7.5 Test

Test out your program, and see if the cards are being fanned out properly.

Note: The code isn’t enforcing any game rules. You can stack cards in any order. Also, with long stacks of cards, you
still have to drop the card on the mat. This is counter-intuitive when the stack of cards extends downwards past the mat.

We leave the solutions to these issues as an exercise for the reader.

P Drag and Drop Cards - X

* solitaire_07 « Full listing of where we are right now

* solitaire_07_diff < What we changed to get here

194 Chapter 11. Solitaire

21

22

23

24

25

26

27

28

Python Arcade Library, Release 3.0.0.dev26

11.8 Pick Up Card Stacks

How do we pick up a whole stack of cards? When the mouse is pressed, we need to figure out what pile the card is in.

Next, look at where in the pile the card is that we clicked on. If there are any cards later on on the pile, we want to pick
up those cards too. Add them to the list.

Listing 29: on_mouse_release method

def on_mouse_press(self, x, y, button, key_modifiers):
""" Called when the user presses a mouse button. """

Get list of cards we've clicked on

cards = arcade.get_sprites_at_point((x, y), self.card_list)

Have we clicked on a card?
if len(cards) > 0:

Might be a stack of cards, get the top one
primary_card = cards[-1]

Figure out what pile the card is in

pile_index = self.get_pile_for_card(primary_card)

All other cases, grab the face-up card we are clicking on
self.held_cards = [primary_card]

Save the position

self.held_cards_original_position = [self.held_cards[0].position]
Put on top in drawing order
self.pull_to_top(self.held_cards[0])

Is this a stack of cards? If so, grab the other cards too

card_index = self.piles[pile_index].index(primary_card)

for i in range(card_index + 1, len(self.piles[pile_index])):
card = self.piles[pile_index][i]
self.held_cards.append(card)
self.held_cards_original_position.append(card.position)
self.pull_to_top(card)

After this, you should be able to pick up a stack of cards from the middle piles with the mouse and move them around.
* solitaire_08 <« Full listing of where we are right now

* solitaire_08_diff « What we changed to get here

11.9 Deal Out Cards

We can deal the cards into the seven middle piles by adding some code to the setup method. We need to change the
list each card is part of, along with its position.

Listing 30: Setup Method Additions

- Pull from that pile into the middle piles, all face-down
Loop for each pile

(continues on next page)

11.8. Pick Up Card Stacks 195

1

2

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

for pile_no in range(PLAY_PILE_1, PLAY PILE_7 + 1):

Deal proper number of cards for that pile

for j in range(pile_no - PLAY_PILE_1 + 1):
Pop the card off the deck we are dealing from
card = self.piles[BOTTOM_FACE_DOWN_PILE].pop()
Put in the proper pile
self.piles[pile_no].append(card)
Move card to same position as pile we just put it in
card.position = self.pile_mat_list[pile_no].position
Put on top in draw order
self.pull_to_top(card)

¢ solitaire_09 « Full listing of where we are right now

* solitaire_09_diff < What we changed to get here

11.10 Face Down Cards

We don’t play solitaire with all the cards facing up, so let’s add face-down support to our game.

11.10.1 New Constants

First define a constant for what image to use when face-down.

Listing 31: Face Down Image Constant

Face down image
FACE_DOWN_IMAGE = ":resources:images/cards/cardBack_red2.png"

11.10.2 Updates to Card Class
Next, default each card in the Card class to be face up. Also, let’s add methods to flip the card up or down.

Listing 32: Updated Card Class

class Card(arcade.Sprite):
Card sprite """

i

def __init__(self, suit, value, scale=1):
""" Card constructor """

Attributes for suit and value
self.suit = suit
self.value = value

Image to use for the sprite when face up

self.image_file_name = f":resources:images/cards/card{self.suit}{self.value}.png"
self.is_face_up = False

super() .__init__ (FACE_DOWN_IMAGE, scale, hit_box_algorithm="None")

(continues on next page)

196 Chapter 11. Solitaire

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

15

16 def face_down(self):

17 """ Turn card face-down """

18 self.texture = arcade.load_texture(FACE_DOWN_IMAGE)
19 self.is_face_up = False

20

21 def face_up(self):

2 """ Turn card face-up """

2 self.texture = arcade.load_texture(self.image_file_name)
2 self.is_face_up = True

25

2 @property

27 def is_face_down(self):

28 """ Is this card face down? """

2 return not self.is_face_up

11.10.3 Flip Up Cards On Middle Seven Piles

Right now every card is face down. Let’s update the setup method so the top cards in the middle seven piles are face
up.

Listing 33: Flip Up Cards

1 # Flip up the top cards
2 for i in range(PLAY_PILE_1, PLAY_PILE_7 + 1):
3 self.piles[i][-1].face_up()

11.10.4 Flip Up Cards When Clicked
When we click on a card that is face down, instead of picking it up, let’s flip it over:

Listing 34: Flip Up Cards

| def on_mouse_press(self, x, y, button, key_modifiers):

2 """ Called when the user presses a mouse button. """
3

4 # Get list of cards we've clicked on

5 cards = arcade.get_sprites_at_point((x, y), self.card_list)
6

7 # Have we clicked on a card?

8 if len(cards) > 0:

9

10 # Might be a stack of cards, get the top one

1" primary_card = cards[-1]

12 assert isinstance(primary_card, Card)

13

14 # Figure out what pile the card is in

5 pile_index = self.get_pile_for_card(primary_card)
16

17 if primary_card.is_face_down:

(continues on next page)

11.10. Face Down Cards 197

22

23

24

25

26

27

28

29

30

31

32

33

34

(S N S

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

Is the card face down? In one of those middle 7 piles? Then flip up
primary_card. face_up()

else:

All other cases, grab the face-up card we are clicking on
self.held_cards = [primary_card]

Save the position

self.held_cards_original_position = [self.held_cards[0].position]
Put on top in drawing order
self.pull_to_top(self.held_cards[0])

Is this a stack of cards? If so, grab the other cards too

card_index = self.piles[pile_index].index(primary_card)

for i in range(card_index + 1, len(self.piles[pile_index])):
card = self.piles[pile_index][i]
self.held_cards.append(card)
self.held_cards_original_position.append(card.position)
self.pull_to_top(card)

11.10.5 Test

Try out your program. As you move cards around, you should see face down cards as well, and be able to flip them

over.

P Drag and Drop Cards

* solitaire_10 <« Full listing of where we are right now

* solitaire_10_diff « What we changed to get here

11.11 Restart Game

We can add the ability to restart are game any type we press the ‘R’ key:

Listing 35: Flip Up Cards

def on_key_press(self, symbol: int, modifiers: int):

i

User presses key

i

if symbol == arcade.key.R:

Restart
self.setup()

198

Chapter 11. Solitaire

20

21

22

23

24

25

26

27

28

29

40

41

42

43

44

45

Python Arcade Library, Release 3.0.0.dev26

11.12 Flip Three From Draw Pile

The draw pile at the bottom of our screen doesn’t work right yet. When we click on it, we need it to flip three cards to
the bottom-right pile. Also, if the have gone through all the cards in the pile, we need to reset the pile so we can go
through it again.

Listing 36: Flipping of Bottom Deck

def on_mouse_press(self, x, y, button, key_modifiers):
""" Called when the user presses a mouse button. """

Get list of cards we've clicked on

cards = arcade.get_sprites_at_point((x, y), self.card_list)

Have we clicked on a card?
if len(cards) > 0:

Might be a stack of cards, get the top one
primary_card = cards[-1]
assert isinstance(primary_card, Card)

Figure out what pile the card is in
pile_index = self.get_pile_for_card(primary_card)

Are we clicking on the bottom deck, to flip three cards?
if pile_index == BOTTOM_FACE_DOWN_PILE:
Flip three cards
for i in range(3):
If we ran out of cards, stop
if len(self.piles[BOTTOM_FACE_DOWN_PILE]) == 0:
break
Get top card
card = self.piles[BOTTOM_FACE_DOWN_PILE][-1]
Flip face up
card. face_up()
Move card position to bottom-right face up pile
card.position = self.pile_mat_list[BOTTOM_FACE_UP_PILE].position
Remove card from face down pile
self.piles[BOTTOM_FACE_DOWN_PILE].remove(card)
Move card to face up list
self.piles[BOTTOM_FACE_UP_PILE] .append(card)
Put on top draw-order wise
self.pull_to_top(card)

elif primary_card.is_face_down:
Is the card face down? In one of those middle 7 piles? Then flip up
primary_card. face_up()
else:
All other cases, grab the face-up card we are clicking on
self.held_cards = [primary_card]
Save the position
self.held_cards_original position = [self.held_cards[0].position]
Put on top in drawing order
(continues on next page)

11.12. Flip Three From Draw Pile 199

46

4

48

49

50

51

52

53

60

61

62

63

64

65

66

67

68

69

70

71

72

73

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

self.pull_to_top(self.held _cards[0])

Is this a stack of cards? If so, grab the other cards too

card_index = self.piles[pile_index].index(primary_card)

for i in range(card_index + 1, len(self.piles[pile_index])):
card = self.piles[pile_index][i]
self.held_cards.append(card)
self.held_cards_original_position.append(card.position)
self.pull_to_top(card)

else:

Click on a mat instead of a card?
mats = arcade.get_sprites_at_point((x, y), self.pile_mat_list)

if len(mats) > O:
mat = mats[0]
mat_index = self.pile_mat_list.index(mat)

Is it our turned over flip mat? and no cards on it?
if mat_index == BOTTOM_FACE_DOWN_PILE and len(self.piles[BOTTOM_FACE_

—DOWN_PILE]) == O:

—position

Flip the deck back over so we can restart

temp_list = self.piles[BOTTOM_FACE_UP_PILE].copy()

for card in reversed(temp_list):
card. face_down()
self.piles[BOTTOM_FACE_UP_PILE] .remove(card)
self.piles[BOTTOM_FACE_DOWN_PILE].append(card)
card.position = self.pile_mat_list[BOTTOM_FACE_DOWN_PILE].

11.12.1 Test

Now we’ve got a basic working solitaire game! Try it out!

200

Chapter 11. Solitaire

Python Arcade Library, Release 3.0.0.dev26

¥ Drag and Drop Cards - X

e solitaire_11 « Full listing of where we are right now

* solitaire_11_diff « What we changed to get here

11.13 Conclusion

There’s a lot more that could be added to this game, such as enforcing rules, adding animation to ‘slide’ a dropped card
to its position, sound, better graphics, and more. Or this could be adapted to a different card game.

Hopefully this is enough to get you started on your own game.

11.13. Conclusion 201

Python Arcade Library, Release 3.0.0.dev26

202 Chapter 11. Solitaire

O N

CHAPTER
TWELVE

LIGHTS

P Lighting Demo - O X

F
-

—

Press SPACE to turn character light on/off.

This tutorial needs some documentation. Feel free to submit a PR to improve it!

Listing 1: light_demo.py

i

Show how to use lights.

. note:: This uses features from the upcoming version 2.4. The API for these
functions may still change. To use, you will need to install one of the
(continues on next page)

203

20

21

22

23

24

25

26

27

28

29

40

41

42

43

44

45

46

47

48

49

50

52

53

54

55

56

Python Arcade Library, Release 3.0.0.dev26

pre-release packages, or install via GitHub.

Artwork from http://kenney.nl

i

import arcade
from arcade.experimental.lights import Light, LightLayer

SCREEN_WIDTH = 1024
SCREEN_HETIGHT = 768
SCREEN_TITLE = "Lighting Demo"
VIEWPORT_MARGIN = 200
MOVEMENT_SPEED = 5

This is the color used for 'ambient light'. If you don't want any
ambient light, set it to black.
AMBIENT_COLOR = (10, 10, 10)

class MyGame(arcade.Window) :
""" Main Game Window """

def __init__(self, width, height, title):
Set up the class. """
super() .__init__(width, height, title, resizable=True)

i

Sprite lists
self.background_sprite_list = None
self.player_list = None
self.wall_list = None
self.player_sprite = None

Physics engine
self.physics_engine = None

Used for scrolling
self.view_left = 0
self.view_bottom = 0

--- Light related ---
List of all the lights
self.light_layer = None
Individual light we move with player, and turn on/off
self.player_light = None

def setup(self):

""" Create everything """
Create sprite lists
self.background_sprite_list = arcade.SpriteList()
self.player_list = arcade.SpriteList()
self.wall_list = arcade.SpriteList()

(continued from previous page)

(continues on next page)

204

Chapter 12. Lights

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

Create player sprite
self.player_sprite = arcade.Sprite(":resources:images/animated_characters/female_

—person/femalePerson_idle.png", 0.4)

—brick

self.player_sprite.center_x = 64
self.player_sprite.center_y = 270
self.player_list.append(self.player_sprite)

--- Light related ---

Lights must shine on something. If there is no background sprite or color,

you will just see black. Therefore, we use a loop to create a whole bunch of.

tiles to go in the

background.

for x in range(-128, 2000, 128):

for y in range(-128, 1000, 128):

sprite = arcade.Sprite(":resources:images/tiles/brickTextureWWhite.png")
sprite.position = x, y
self.background_sprite_list.append(sprite)

Create a light layer, used to render things to, then post-process and
add lights. This must match the screen size.

self.light_layer = LightLayer (SCREEN_WIDTH, SCREEN_HEIGHT)

We can also set the background color that will be 1it by lights,

but in this instance we just want a black background
self.light_layer.set_background_color(arcade.color.BLACK)

Here we create a bunch of lights.

Create a small white light

X = 100
y = 200
radius = 100
mode = 'soft'

color = arcade.csscolor.WHITE
light = Light(x, y, radius, color, mode)
self.light_layer.add(light)

Create an overlapping, large white light
x = 300

y = 150

radius = 200

color = arcade.csscolor.WHITE

mode = 'soft'

light = Light(x, y, radius, color, mode)
self.light_layer.add(light)

Create three, non-overlapping RGB lights

x = 50

y = 450

radius = 100

mode = 'soft'

color = arcade.csscolor.RED

light = Light(x, y, radius, color, mode)

(continues on next page)

205

108

109

110

111

112

113

114

115

116

117

118

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

Python Arcade Library, Release 3.0.0.dev26

self.light_layer.add(light)

x = 250
y = 450
radius = 100
mode = 'soft'

color = arcade.csscolor.GREEN
light = Light(x, y, radius, color, mode)
self.light_layer.add(light)

X = 450
y = 450
radius = 100
mode = 'soft'

color = arcade.csscolor.BLUE
light = Light(x, y, radius, color, mode)
self.light_layer.add(light)

Create three, overlapping RGB lights

X = 650
y = 450
radius = 100
mode = 'soft'

color = arcade.csscolor.RED
light = Light(x, y, radius, color, mode)
self.light_layer.add(light)

X = 750
y = 450
radius = 100
mode = 'soft'

color = arcade.csscolor.GREEN
light = Light(x, y, radius, color, mode)
self.light_layer.add(light)

x = 850
y = 450
radius = 100
mode = 'soft'

color = arcade.csscolor.BLUE
light = Light(x, y, radius, color, mode)
self.light_layer.add(light)

Create three, overlapping RGB lights
But 'hard' lights that don't fade out.
X = 650

y = 150

radius = 100

mode = 'hard'’

color = arcade.csscolor.RED
light = Light(x, y, radius, color, mode)
self.light_layer.add(light)

(continued from previous page)

(continues on next page)

206

Chapter 12. Lights

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

Python Arcade Library, Release 3.0.0.dev26

—1ist)

def

(continued from previous page)

X = 750
y = 150
radius = 100
mode = 'hard'

color = arcade.csscolor.GREEN
light = Light(x, y, radius, color, mode)
self.light_layer.add(light)

x = 850
y = 150
radius = 100
mode = 'hard'

color = arcade.csscolor.BLUE
light = Light(x, y, radius, color, mode)
self.light_layer.add(light)

Create a light to follow the player around.

We'll position it later, when the player moves.

We'll only add it to the light layer when the player turns the light
on. We start with the light off.

radius = 150

mode = 'soft'

color = arcade.csscolor.WHITE

self.player_light = Light(0, 0, radius, color, mode)

Create the physics engine

self.physics_engine = arcade.PhysicsEngineSimple(self.player_sprite, self.wall_

Set the viewport boundaries

These numbers set where we have 'scrolled' to.
self.view_left = 0

self.view_bottom = 0

on_draw(self):
""" Draw everything.
self.clear()

i

--- Light related ---

Everything that should be affected by lights gets rendered inside this
'with' statement. Nothing is rendered to the screen yet, just the light
layer.

with self.light_layer:

self.background_sprite_list.draw()

self.player_list.draw()

H R R R

Draw the light layer to the screen.

This fills the entire screen with the 1lit version
of what we drew into the light layer above.
self.light_layer.draw(ambient_color=AMBIENT_COLOR)

(continues on next page)

207

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

228

229

230

231

233

234

235

236

237

238

239

240

241

242

244

245

246

247

249

250

251

252

253

254

255

256

257

258

260

261

262

Python Arcade Library, Release 3.0.0.dev26

def

def

def

def

(continued from previous page)

Now draw anything that should NOT be affected by lighting.

arcade.draw_text("Press SPACE to turn character light on/off.",
10 + self.view_left, 10 + self.view_bottom,
arcade.color.WHITE, 20)

on_resize(self, width, height):
""" User resizes the screen. """

--- Light related ---

We need to resize the light layer to
self.light_layer.resize(width, height)

Scroll the screen so the user is visible
self.scroll_screen()

on_key_press(self, key, _):
"""Called whenever a key is pressed. """
if key == arcade.key.UP:
self.player_sprite.change_y = MOVEMENT_SPEED
elif key == arcade.key.DOWN:
self.player_sprite.change_y = -MOVEMENT_SPEED
elif key == arcade.key.LEFT:
self.player_sprite.change_x = -MOVEMENT_SPEED
elif key == arcade.key.RIGHT:
self.player_sprite.change_x = MOVEMENT_SPEED
elif key == arcade.key.SPACE:
--- Light related ---
We can add/remove lights from the light layer. If they aren't
in the light layer, the light is off.
if self.player_light in self.light_layer:
self.light_layer.remove(self.player_light)
else:
self.light_layer.add(self.player_light)

on_key_release(self, key, _):

"""Called when the user releases a key. """

if key == arcade.key.UP or key == arcade.key.DOWN:
self.player_sprite.change_y = 0

elif key == arcade.key.LEFT or key == arcade.key.RIGHT:
self.player_sprite.change_x = 0

scroll_screen(self):
""" Manage Scrolling

i

Scroll left
left_boundary = self.view_left + VIEWPORT_MARGIN
if self.player_sprite.left < left_boundary:
self.view_left -= left_boundary - self.player_sprite.left

Scroll right

(continues on next page)

208

Chapter 12. Lights

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

296

297

298

299

300

301

302

303

304

305

306

307

308

Python Arcade Library, Release 3.0.0.dev26

def

(continued from previous page)

right_boundary = self.view_left + self.width - VIEWPORT_MARGIN
if self.player_sprite.right > right_boundary:
self.view_left += self.player_sprite.right - right_boundary

Scroll up
top_boundary = self.view_bottom + self.height - VIEWPORT_MARGIN
if self.player_sprite.top > top_boundary:

self.view_bottom += self.player_sprite.top - top_boundary

Scroll down
bottom_boundary = self.view_bottom + VIEWPORT_MARGIN
if self.player_sprite.bottom < bottom_boundary:
self.view_bottom -= bottom_boundary - self.player_sprite.bottom

Make sure our boundaries are integer values. While the viewport does

support floating point numbers, for this application we want every pixel
in the view port to map directly onto a pixel on the screen. We don't want
any rounding errors.

self.view_left = int(self.view_left)

self.view_bottom = int(self.view_bottom)

arcade.set_viewport(self.view_left,
self.width + self.view_left,
self.view_bottom,
self.height + self.view_bottom)

on_update(self, delta_time):
""" Movement and game logic """

Call update on all sprites (The sprites don't do much in this
example though.)

self.physics_engine.update()

--- Light related ---

We can easily move the light by setting the position,
or by center_x, center._y.

self.player_light.position = self.player_sprite.position

Scroll the screen so we can see the player
self.scroll_screen()

if __name__ == "__main__":
window = MyGame (SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)
window.setup()
arcade.run()

209

Python Arcade Library, Release 3.0.0.dev26

210 Chapter 12. Lights

CHAPTER
THIRTEEN

BUNDLING A GAME WITH PYINSTALLER

You’ve written your game using Arcade and it is a masterpiece! Congrats! Now you want to share it with others. That
usually means helping people install Python, downloading the necessary modules, copying your code, and then getting
it all working. Sharing is not an easy task. Well, PyInstaller can change all that!

Pylnstaller is a tool for Python that lets you bundle up an entire Python application into a one-file executable bundle
that you can easily share. Thankfully, it works great with Arcade!

We will be demonstrating usage with Windows, but everything should work exactly the same across Windows, Mac,
and Linux. Note that you can only build for the system you are on. This means that in order to make a Windows build,
you must be on a Windows machine, same thing for Linux and Mac.

13.1 Bundling a Simple Arcade Script

To demonstrate how Pylnstaller works, we will:
¢ Install PyInstaller
 Create a simple example application that uses Arcade
* Bundle the application into a one-file executable
* Run the application

First, make sure both Arcade and PylInstaller are installed in your Python environment with:

[pip install arcade pyinstaller

Then we need our game. In this case, we’ll start simple. We need a one-file game that doesn’t require any additional
images or sounds. Once we have that working, we can get more complicated. Create a file called main.py that contains
the following:

Listing 1: Sample game — main.py

import arcade
arcade.open_window (400, 400, "My Game")
self.clear()

arcade.draw_circle_£filled(200, 200, 100, arcade.color.BLUE)
arcade. finish_render()

arcade.run()

211

https://pyinstaller.readthedocs.io/en/stable/
https://pyinstaller.readthedocs.io/en/stable/

Python Arcade Library, Release 3.0.0.dev26

Now, create a one-file executable bundle file by running PyInstaller from the command-line:

[pyinstaller main.py --onefile J

Pylnstaller generates the executable that is a bundle of your game. It puts it in the dist\ folder under your current
working directory. Look for a file named main.exe in dist\. Run this and see the example application start up!

You can copy this file wherever you want on your computer and run it. Or, share it with others. Everything your script
needs is inside this executable file.

For simple games, this is all you need to know! But, if your game loads any kind of data files from disk, continue
reading.

13.2 Handling Data Files

When creating a bundle, PyInstaller first examines your project and automatically identifies nearly everything your
project needs (a Python interpreter, installed modules, etc). But, it can’t automatically determine what data files your
game is loading from disk (images, sounds, maps). So, you must explicitly tell PylInstaller about these files and where
it should put them in the bundle. This is done with PyInstaller’s --add-data flag:

[pyinstaller main.py --add-data "stripes.jpg;."]

The first item passed to --add-data is the “source” file or directory (ex: stripes. jpg) identifying what PyInstaller
should include in the bundle. The item after the semicolon is the “destination” (ex: ““.”), which specifies where files
should be placed in the bundle, relative to the bundle’s root. In the example above, the stripes. jpg image is copied

to the root of the bundle (’.”).

After instructing PylInstaller to include data files in a bundle, you must make sure your code loads the data files from
the correct directory. When you share your game’s bundle, you have no control over what directory the user will run
your bundle from. This is complicated by the fact that a one-file Pylnstaller bundle is uncompressed at runtime to a
random temporary directory and then executed from there. This document describes one simple approach that allows
your code to execute and load files when running in a PyInstaller bundle AND also be able to run when not bundled.

You need to do two things. First, the snippet below must be placed at the beginning of your script:

if getattr(sys, 'frozen', False) and hasattr(sys, '_MEIPASS'):
os.chdir(sys._MEIPASS)

This snippet uses sys. frozen and sys._MEIPASS, which are both set by Pylnstaller. The sys. frozen setting indi-
cates whether code is running from a bundle (“frozen”). If the code is “frozen”, the working directory is changed to
the root of where the bundle has been uncompressed to (sys._MEIPASS). Pylnstaller often uncompresses its one-file
bundles to a directory named something like: C:\Users\user\AppData\Local\Temp_MEI123456.

Second, once the code above has set the current working directory, all file paths in your code can be relative paths
(ex: resources\images\stripes.jpg) as opposed to absolute paths (ex: C:\projects\mygame\resources\
images\stripes. jpg). If you do these two things and add data files to your package as demonstrated below, your
code will be able to run “normally” as well as running in a bundle.

Below are some examples that show a few common patterns of how data files can be included in a PyInstaller bundle.
The examples first show a code snippet that demonstrates how data is loaded (relative path names), followed by the
PylInstaller command to copy data files into the bundle. They all assume that the os.chdir () snippet of code listed
above is being used.

212 Chapter 13. Bundling a Game with Pylnstaller

Python Arcade Library, Release 3.0.0.dev26

13.2.1 One Data File

If you simply have one data file in the same directory as your script, refer to the data file using a relative path like this:

{sprite = arcade.Sprite("stripes.jpg")

)

Then, you would use a PylInstaller command like this to include the data file in the bundled executable:

pyinstaller main.py --add-data "stripes.jpg;."
...0r...
pyinstaller main.py --add-data

*.jpg; . "

13.2.2 One Data Directory

If you have a directory of data files (such as images), refer to the data directory using a relative path like this:

sprite = arcade.Sprite("images/player.jpg")
sprite = arcade.Sprite("images/enemy.jpg")

Then, you would use a Pylnstaller command like this to include the directory in the bundled executable:

[pyinstaller main.py --add-data "images;images"

13.2.3 Multiple Data Files and Directories

You can use the --add-data flag multiple times to add multiple files and directories into the bundle:

—music"

pyinstaller main.py --add-data "player.jpg;." --add-data "enemy.jpg;." --add-data "music;

13.2.4 One Directory for Everything

Although you can include every data file and directory with separate --add-data flags, it is suggested that you write
your game so that all of your data files are under one root directory, often named resources. You can use subdirectories

to help organize everything. An example directory tree could look like:

project/

| --- main.py

| --- resources/
| --- images/
| | --- enemy.jpg
| |--- player.jpg
| --- sound/
| | --- game_over.wav
| |--- laser.wav
|[--- text/

| --- names.txt

With this approach, it becomes easy to bundle all your data with just a single --add-data flag. Your code would use

relative pathnames to load resources, something like this:

13.2. Handling Data Files

213

Python Arcade Library, Release 3.0.0.dev26

sprite = arcade.Sprite(''resources/images/player.jpg")
text = open("resources/text/names.txt").read()

And, you would include this entire directory tree into the bundle like this:

[pyinstaller main.py --add-data "resources;resources"” }

It is worth spending a bit of time to plan out how you will layout and load your data files in order to keep the bundling
process simple.

The technique of handling data files described above is just one approach. If you want more control and flexibility
in handling data files, learn about the different path information that is available by reading the PyInstaller Run-Time
Information documentation.

Now that you know how to install Pylnstaller, include data files, and bundle your game into an executable, you have
what you need to bundle your game and share it with your new fans!

13.3 Troubleshooting

13.3.1 Use a One-Folder Bundle for Troubleshooting

If you are having problems getting your bundle to work properly, it may help to temporarily omit the --onefile flag
from the pyinstaller command. This will bundle your game into a one-folder bundle with an executable inside it.
This allows you to inspect the contents of the folder and make sure all of the files are where you expect them to be. The
one-file bundle produced by --onefile is simply a self-uncompressing archive of this one-folder bundle.

13.3.2 Pyinstaller Not Bundling a Needed Module

In most cases, PyInstaller is able to analyze your project and automatically determine what modules to place in the bun-
dle. But, if Pylnstaller happens to miss a module, you can use the --hidden-import MODULENAME flag to explicitly
instruct PylInstaller to include a module. See the Pylnstaller documentation for more details.

13.4 Extra Details

* You will notice that after running pyinstaller, a . spec file will appear in your directory. This file is generated
by Pylnstaller and does not need to be saved or checked into your source code repo.

» Executable one-file bundles produced by Pylnstaller’s --onefile flag will start up slower than your original
application or the one-folder bundle. This is expected because one-file bundles are ultimately just a compressed
folder, so they must take time to uncompress themselves each time the bundle is run.

* By default, when Pylnstaller creates a bundled application, the application opens a console window. You can
suppress the creation of the console window by adding the --windowed flag to the pyinstaller command.

¢ See the Pylnstaller documentation below for more details on the topics above, and much more.

* Pylnstaller 4.x was used in this tutorial.

214 Chapter 13. Bundling a Game with Pylnstaller

https://pyinstaller.readthedocs.io/en/stable/runtime-information.html
https://pyinstaller.readthedocs.io/en/stable/runtime-information.html
https://pyinstaller.readthedocs.io/en/stable/usage.html#what-to-bundle-where-to-search

Python Arcade Library, Release 3.0.0.dev26

13.5 Pylnstaller Documentation

Pylnstaller is a flexible tool that can handle a wide variety of different situations. For further reading, here are links to
the official PylInstaller documentation and GitHub page:

* Pylnstaller Manual: https://pyinstaller.readthedocs.io/en/stable/

* Pylnstaller GitHub: https://github.com/pyinstaller/pyinstaller

13.5. Pylnstaller Documentation 215

https://pyinstaller.readthedocs.io/en/stable/
https://github.com/pyinstaller/pyinstaller

Python Arcade Library, Release 3.0.0.dev26

216 Chapter 13. Bundling a Game with Pylnstaller

CHAPTER
FOURTEEN

COMPILING A GAME WITH NUITKA

So you have successfully written your dream game with Arcade and now, you want to share it with your friends and
family. Good idea! But there is a small issue. Sadly, they are not a tech geek as big as you are and don’t have any
knowledge about Python and its working :(. Though Bundling a Game with Pylnstaller is a good option, the executables
it produces can sometime take up a good amount of space and antiviruses raise false positives almost every time. But
Nuitka is here to solve all your problems!

Nuitka is a tool which compiles your Python code to machine code directly, and bundles your application’s source code
in dll files. This way, you get two benefits:

* The source code is safe in dllI files.
» The application gets a performance boosts in many cases.
* The resulting executable’s size is small.

We are using Windows for this tutorial, but most of the commands can be used as-it-is on other platforms including
Linux and Mac.

Warning: Builds are platform dependent!

For example, a Windows build will not work out-of-the-box on a different OS. The same goes for Linux and Mac
builds on other platforms.

You can use a Mac or a Linux system to compile your game for those platforms.

To compile for a different platform than your current one, you may be able to use a Virtual Machine or WINE/Proton.
However, these options are not officially supported and are not covered in this tutorial.

14.1 Compiling a Simple Arcade Script

For this tutorial, we will use the code from Simple Platformer.

* First, we have to install Nuitka with the following command:

[pip install nuitka

We will be using the code from this file.

Converting that code to a standalone executable is as easy as:

[python -m nuitka 17_views.py --standalone --enable-plugin=numpy

217

https://nuitka.net/
https://nuitka.net/
https://nuitka.net/
https://github.com/pythonarcade/arcade/blob/development/arcade/examples/platform_tutorial/17_views.py

Python Arcade Library, Release 3.0.0.dev26

Now sit back and relax. Might as well go and grab a cup of coffee since compilation takes time, sometimes maybe up to
2 hours, depending on your machine’s specs. After the process is finished, two new folders named 17_views.py.dist
and 17_views.py.build will popup. You can safely ignore the build folder for now. Just go to the dis folder and run
17_views.exe file, present in there. If there are no errors, then the application should work perfectly.

Congratulations! You have successfully compiled your Python code to a standalone executable!

Note: If you want to compile the code to a single file instead of a folder, just remove the standalone flag and add the
onefile flag!

14.2 But What About Data Files And Folders?

Sometimes, our application also uses custom data files which may include sound effects, fonts etc... In order to bundle
them with the application, just use the include-data-file or include-data-dir flag:

python -m nuitka 17_views.py --standalone --enable-plugin=numpy --include-data-file=C:/
-, Users/Hunter/Desktop/my_game/my_image.png-=.

This will copy the file named my_image. png at the specified location to the root of the executable.

To bundle a whole folder:

python -m nuitka 17_views.py --standalone --enable-plugin=numpy --include-data-dir=C:/
-, Users/Hunter/Desktop/my_game/assets=.

This will copy the whole folder named assets at the specified location to the root of the executable.

14.3 Removing The Console Window

You might have noticed that while opening the executable, a console window automatically opens. Even though it is
helpful in debugging and errors, it does look ugly. You might think, is there a way to force the console output to a logs
file? Well, thanks to Nuitka, this is also possible:

python -m nuitka 17_views.py --standalone --windows-force-stderr-spec=%PROGRAM%logs.txt -
—-windows-force-stdout-spec=%PROGRAM%output.txt

This will automatically create two files, viz 1ogs.txt and output.txt in the executable directory which will contain
the stderr and stdout output respectively!

14.4 What About A Custom Taskbar Icon?

Nuitka provides us with the windows-icon-from-ico and windows-icon-from-exe flags (varies for each OS) to
set custom icons. The first flag takes a .png or a .1ico file and sets it as the app icon:

[python -m nuitka 17_views.py --standalone --windows-icon-from-ico=icon.png]

This will set the app icon to icon.png

python -m nuitka 17_views.py --standalone --windows-icon-from-exe=C:\Users\Hunter\
—AppData\Local\Programs\Python\Python310/python. exe

This will set the app icon to Python’s icon

218 Chapter 14. Compiling a Game with Nuitka

Python Arcade Library, Release 3.0.0.dev26

14.5 Additional Information

* This tutorial was tested with Nutika 0.7.x. Later releases are likely to work.

14.5. Additional Information 219

Python Arcade Library, Release 3.0.0.dev26

220 Chapter 14. Compiling a Game with Nuitka

CHAPTER
FIFTEEN

SHADERS

Shaders are small programs which specify how graphics hardware should draw & shade objects. They offer power,
flexibility, and efficiency far beyond what you could achieve using shapes or Sprite instances alone. The tutorials
below serve as an introduction to shaders.

15.1 Ray-casting Shadows

A common effect for many games is ray-casting. Having the user only be able to see what is directly in their line-of-
sight.

221

Python Arcade Library, Release 3.0.0.dev26

This can be done quickly using shaders. These are small programs that run on the graphics card. They can take
advantage of the Graphics Processing Unit. The GPU has a lot of mini-CPUs dedicated to processing graphics much
faster than your main computer’s CPU can.

15.1.1 Starting Program

Before we start adding shadows, we need a good starting program. Let’s create some crates to block our vision, some
bombs to hide in them, and a player character:

The listing for this starting program is available at raycasting_start.

15.1.2 Step 1: Add-In the Shadertoy

What is Shadertoy?

Where does the name Shadertoy come from? This class is designed to mimic the Shadertoy website. The website

makes it easy to experiment with shaders, and those shaders can be run using the Arcade library.

Now, let’s create a shader. We can program shaders using Arcade’s Shadertoy class.

We’ll modify our prior program to import the Shadertoy class:

Listing 1: Import Shadertoy

[from arcade.experimental import Shadertoy]

Next, we’ll need some shader-related variables. In addition to a variable to hold the shader, we are also going to need
to keep track of a couple frame buffer objects (FBOs). You can store image data in an FBO and send it to the shader
program. An FBO is held on the graphics card. Manipulating an FBO there is much faster than working with one in
loaded into main memory.

Not just for images!

FBOs can hold more than just image-related data, but for now, just think of them as images.

222 Chapter 15. Shaders

https://www.shadertoy.com/

Python Arcade Library, Release 3.0.0.dev26

Shadertoy has four built-in channels that our shader programs can work with. Channels can be mapped to FBOs. This
allows us to pass image data to our shader program for it to process. The four channels are numbered O to 3.

We’ll be using two channels to cast shadows. We will use the channel® variable to hold our barriers that can cast
shadows. We will use the channell variable to hold the ground, bombs, or anything we want to be hidden by shadows.

Listing 2: Create & initialize shader variables

def __init__(self, width, height, title):
super().__init__(width, height, title)

The shader toy and 'channels' we'll be using
self.shadertoy = None

self.channel® = None

self.channell = None

self.load_shader()

Sprites and sprite lists
self.player_sprite = None
self.wall_list = arcade.SpriteList()
self.player_list = arcade.SpriteList()
self.bomb_list = arcade.SpriteList()
self.physics_engine = None

self.generate_sprites()
self.background_color = arcade.color.ARMY_GREEN

These are just empty place-holders. We’ll load our shader and create FBOs to hold the image data we send the shader
in a load_shader method: This code creates the shader and the FBOs:

Listing 3: Create the shader, and the FBOs

def load_shader(self):
Size of the window
window_size = self.get_size()

Create the shader toy, passing in a path for the shader source
self.shadertoy = Shadertoy.create_from_file(window_size, "step_01.glsl™)

Create the channels 0 and 1 frame buffers.

Make the buffer the size of the window, with 4 channels (RGBA)

self.channel® = self.shadertoy.ctx.framebuffer(
color_attachments=[self.shadertoy.ctx.texture(window_size, components=4)]

)

self.channell = self.shadertoy.ctx.framebuffer(
color_attachments=[self.shadertoy.ctx.texture(window_size, components=4)]

)

Assign the frame buffers to the channels
self.shadertoy.channel_0 = self.channel®.color_attachments[0]
self.shadertoy.channel_1 = self.channell.color_attachments[0]

As you’ll note, the method loads a “gls]” program from another file. Our ray-casting program will be made of two files.
One file will hold our Python program, and one file will hold our Shader program. Shader programs are written in a
language called OpenGL Shading Language (GLSL). This language’s syntax is similar to C, Java, or C#.

15.1. Ray-casting Shadows 223

Python Arcade Library, Release 3.0.0.dev26

Our first shader will be straight-forward. It will just take input from channel 0 and copy it to the output.

Listing 4: GLSL Program for Step 1

void mainImage(out vec4 fragColor, in vec2 fragCoord)

{

vec2 normalizedFragCoord = fragCoord/iResolution.xy;
fragColor = texture(iChannel®, normalizedFragCoord) ;

}

How does this shader work? For each point in our output, this mainImage function runs and calculates our output
color. For a window that is 800x600 pixels, this function runs 480,000 times for each frame. Modern GPUs can have
anywhere between 500-5,000 “cores” that can calculate these points in parallel for faster processing.

Our current coordinate we are calculating we’ve brought in as a parameter called fragCoord. The function needs to
calculate a color for this coordinate and store it the output variable fragColor. You can see both the input and output
variables in the parameters for the mainImage function. Note that the input data is labeled in and the output data is
labeled out. This may be a bit different than what you are used to.

The vec2 data type is an array of two numbers. Likewise there are vec3 and vec4 data types. These can be used to
store coordinates, and also colors.

Or first step is to normalize the x, y coordinate to a number between 0.0 and 1.0. This normalized two-number x/y
vector we store in normalizedFragCoord.

[vecz p =

fragCoord/iResolution.xy;

)

We need to grab the color at this point curPoint from the channel 0 FBO. We can do this with the built-in texture

function:

[texture(iChannel@, curPoint)

Then we store it to our “out” fragColor variable and we are done:

[fragColor = texture(iChannel®, normalizedCoord);

)

Now that we have our shader, a couple FBOs, and our initial GLSL program, we can flip back to our Python program
and update the drawing code to use them:

Listing 5: Drawing using the shader

def on_draw(self):

Select the channel 0 frame buffer to draw on
self.channel®.use()

self.channel®.clear()

Draw the walls

self.wall_list.draw()

Select this window to draw on
self.use()

Clear to background color

self.clear()

Run the shader and render to the window
self.shadertoy.render()

When we run self.channel®.use(), all subsequent drawing commands will draw not to the screen, but our FBO
image buffer. When we run self.use() we’ll go back to drawing on our window.

224

Chapter 15. Shaders

Python Arcade Library, Release 3.0.0.dev26

Running the program, our output should look like:

* raycasting_step_01 « Full listing of where we are right now

* raycasting_step_01_diff <~ What we changed to get here

15.1.3 Step 2: Simple Shader Experiment

How do we know our shader is really working? As it is just straight copying everything across, it is hard to tell.

We can modify our shader to get the current texture color and store it in the variable inColor. A color has four
components, red-green-blue and alpha. If the alpha is above zero, we can output a red color. If the alpha is zero, we
output a blue color.

Note: Colors in OpenGL are specified in RGB or RGBA format. But instead of numbers going from 0-255, each
component is a floating point number from 0.0 to 1.0.

15.1. Ray-casting Shadows 225

Python Arcade Library, Release 3.0.0.dev26

Listing 6: GLSL Program for Step 2

void mainImage(out vec4 fragColor, in vec2 fragCoord)

{
vec2 normalizedFragCoord = fragCoord/iResolution.xy;
vec4 inColor = texture(iChannel®, normalizedFragCoord);
if (inColor.a > 0.0)
// Set to a red color
fragColor = vec4(1.0, 0.0, 0.0, 1.0);
else
// Set to a blue color
fragColor = vec4(0.0, 0.0, 1.0, 1.0);
}

Giving us a resulting image that looks like:

15.1.4 Step 3: Creating a Light

Our next step is to create a light. We’ll be fading between no light (black) and whatever we draw in Channel 1.

In this step, we won’t worry about drawing the walls yet.

226 Chapter 15. Shaders

Python Arcade Library, Release 3.0.0.dev26

This step will require us to pass additional data into our shader. We’ll do this using uniforms. We will pass in where
the light is, and the light size.

We first declare and use the variables in our shader program.

Listing 7: GLSL Program for Step 3

// X, y position of the light
uniform vec2 lightPosition;
// Size of light in pixels
uniform float lightSize;

Next, we need to know how far away this point is from the light. We do that by subtracting this point from the light
position. We can perform mathematical operations on vectors, so we just subtract. Then we use the build-in 1length
function to get a floating point number of how long the length of this vector is.

Listing 8: GLSL Program for Step 3

// Distance in pixels to the light
float distanceToLight = length(lightPosition - fragCoord);

Next, we need to get the coordinate of the pixel we are calculating, but normalized. The coordinates will range from
0.0 to 1.0, with the left bottom of the window at (0,0), and the top right at (1,1). Normalized coordinates are used in
shaders to make scaling up and down easy.

Listing 9: GLSL Program for Step 3

// Normalize the fragment coordinate from (0.0, 0.0) to (1.0, 1.0)
vec2 normalizedFragCoord = fragCoord/iResolution.xy;

Then we need to calculate how much light is falling on this coordinate. This number will also be normalized. A number
of 0.0 will be in complete shadow, and 1.0 will be fully lit.

Linear or Squared?

The smoothstep function scales linearly. (Well, actually is uses Hermite interpolation, but mostly linear.) In reality,
the intensity of light is inversely proportional to the square of the distance in reality. The implementation of this is
left up to the reader.

We will use the built-in smoothstep function that will take how large our light size is, and how far we are from the
light. Then scale it from a number 0.0 to 1.0.

If we are 0.0 pixels from the light, we’ll get a 0.0 back. If we are halfway to the light we’ll get 0.5. If we are at the
light’s edge, we’ll get 1.0. If we are beyond the light’s edge we’ll get 1.0.

Unfortunately this is backwards from what we want. We want 1.0 at the center, and 0.0 outside the light. So a simple
subtraction from 1.0 will solve this issue.

Listing 10: GLSL Program for Step 3

// Start our mixing variable at 1.0
float lightAmount = 1.0;

// Find out how much light we have based on the distance to our light
lightAmount *= 1.0 - smoothstep(0.0, lightSize, distanceTolLight);

15.1. Ray-casting Shadows 227

Python Arcade Library, Release 3.0.0.dev26

Next, we are going to use the built-in mix function and the 1ightAmount variable to alternate between whatever is in
channel 1, and a black shadow color.

Listing 11: GLSL Program for Step 3

// We'll alternate our display between black and whatever is in channel 1
vec4 blackColor = vec4(0.0, 0.0, 0.0, 1.0);

// Our fragment color will be somewhere between black and channel 1
// dependent on the value of b.
fragColor = mix(blackColor, texture(iChannell, normalizedFragCoord), lightAmount);

Finally we’ll go back to the Python program and update our on_draw method to:
* Draw the bombs into channel 1.
* Send the player position and the size of the light using the uniform.

* Draw the player character on the window.

Listing 12: Drawing using the shader

def on_draw(self):
Select the channel 0 frame buffer to draw on
self.channel®.use()
self.channel®.clear()
Draw the walls
self.wall_list.draw()

self.channell.use()
self.channell.clear()
Draw the bombs
self.bomb_list.draw()

Select this window to draw on

self.use()

Clear to background color

self.clear()

Run the shader and render to the window
self.shadertoy.program['lightPosition'] = self.player_sprite.position
self.shadertoy.program['lightSize'] = 300

self.shadertoy.render()

Draw the player

self.player_list.draw()

Note: If you set a uniform variable using program, that variable has to exist in the glsl program, and be used or you’ll
get an error. The glsl compiler will automatically drop unused variables, causing a confusing error when the program
says a variable is missing even if you’ve declared it.

* raycasting_step_03 « Full listing of where we are right now with the Python program
* raycasting_step_03_diff « What we changed to get here
* raycasting_step_03_gl < Full listing of where we are right now with the GLSL program

* raycasting_step_03_gl_diff « What we changed to get here

228 Chapter 15. Shaders

Python Arcade Library, Release 3.0.0.dev26

15.1.5 Step 4: Make the Walls Shadowed

In addition to the light, we want the walls to show up in shadow for this step. We don’t need to change our Python
program at all for this, just the GLSL program.

First, we’ll add to our GLSL program a terrain function. This will sample channel 0. If the pixel there has an alpha
of 0.1 or greater (a barrier to our light), we’ll use the step function and get 1.0. Otherwise we’ll get 0.0. Then, since
we want this reversed, (0.0 for barriers, 1.0 for no barrier) we’ll subtract from 1.0:

Listing 13: GLSL Program for Step 4

float terrain(vec2 samplePoint)

{
float samplePointAlpha = texture(iChannel®, samplePoint).a;
float sampleStepped = step(0.1, samplePointAlpha);
float returnValue = 1.0 - sampleStepped;
return returnValue;
}

Next, we’ll factor in this barrier to our light. So our light amount will be a combination of the distance from the light,
and if there’s a barrier object on this pixel.

15.1. Ray-casting Shadows 229

Python Arcade Library, Release 3.0.0.dev26

Listing 14: GLSL Program for Step 4

// Start our mixing variable at 1.0
float lightAmount = 1.0;

float shadowAmount = terrain(normalizedFragCoord);
lightAmount *= shadowAmount;

// Find out how much light we have based on the distance to our light
lightAmount *= 1.0 - smoothstep(0.0, lightSize, distanceToLight);

* raycasting_step_04_gl « Full listing of where we are right now with the GLSL program

* raycasting_step_04_gl_diff « What we changed to get here

15.1.6 Step 5: Cast the Shadows

Now it is time to cast the shadows.

This involves a lot of “sampling”. We start at our current point and draw a line to where the light is. We will sample
“N” times along that line. If we spot a barrier, our coordinate must be in shadow.

How many times do we sample? If we don’t sample enough times, we miss barriers and end up with weird shadows.
This first image is if we only sample twice. Once where we are, and once in the middle:

230 Chapter 15. Shaders

Python Arcade Library, Release 3.0.0.dev26

If N is three, we end up with three copies of the shadow:

With an N of 10:

We can use an N of 500 to get a good quality shadow. We might need more if your barriers are small, and the light
range is large.

15.1. Ray-casting Shadows 231

Python Arcade Library, Release 3.0.0.dev26

Keep in mind there is a speed trade-off. With 800x600 pixels, we have 480,000 pixels to calculate. If each of those
pixels has a loop that does 500 samples, we are sampling 480,000x500 = 240,000 sample per frame, or 14.4 million
samples per second, still very do-able with modern graphics cards.

But what if you scale up? A 4k monitor would need 247 billion samples per second! There are optimizations that would
be done, such as exiting out of the for loop once we are in shadow, and not calculating for points beyond the light’s
range. We aren’t covering that here, but even with 2D, it will be important to understand what the shader is doing to
keep reasonable performance.

* raycasting_step_05_gl « Full listing of where we are right now with the GLSL program

* raycasting_step_05_gl_diff <~ What we changed to get here

15.1.7 Step 6: Soft Shadows and Wall Drawing

XK KK XX XX
XXX X

X
X
X
X
X
X

X XNXAXXX X XX

With one more line of code, we can soften up the shadows so they don’t have such a “hard” edge to them.

To do this, modify the terrain function in our GLSL program. Rather than return 0.0 or 1.0, we’ll return 0.0 or 0.98.
This allows edges to only partially block the light.

232 Chapter 15. Shaders

Python Arcade Library, Release 3.0.0.dev26

Listing 15: GLSL Program for Step 6

float terrain(vec2 samplePoint)

{

float samplePointAlpha = texture(iChannel®, samplePoint).a;
float sampleStepped = step(0.1, samplePointAlpha);
float returnValue = 1.0 - sampleStepped;

// Soften the shadows. Comment out for hard shadows.
// The closer the first number is to 1.0, the softer the shadows.
returnValue = mix(0.98, 1.0, returnValue);

And then we can go ahead and draw the barriers back on the screen so we can see what is casting the shadows.

Listing 16: Step 6, Draw the Barriers

def on_draw(self):

Select the channel 0 frame buffer to draw on
self.channel®.use()

self.channel®.clear()

Draw the walls

self.wall_list.draw()

self.channell.use()
self.channell.clear()
Draw the bombs
self.bomb_list.draw()

Select this window to draw on

self.use()

Clear to background color

self.clear()

Run the shader and render to the window
self.shadertoy.program['lightPosition'] = self.player_sprite.position
self.shadertoy.program['lightSize'] = 300

self.shadertoy.render()

Draw the walls
self.wall_list.draw()

Draw the player
self.player_list.draw()

* raycasting_step_06 « Full listing of where we are right now with the Python program
* raycasting_step_06_gl < Full listing of where we are right now with the GLSL program

* raycasting_step_06_gl_diff « What we changed to get here

15.1. Ray-casting Shadows

233

Python Arcade Library, Release 3.0.0.dev26

15.1.8 Step 7 - Support window resizing

What if you need to resize the window? First enable resizing:

You’ll need to enable resizing in the window’s __init__:

Listing 17: Enable resizing

def

__init__(self, width, height, title):
super().__init__ (width, height, title, resizable=True)

Then we need to override the Window.resize method to also resize the shadertoy:

Listing 18: Resizing the window

def on_resize(self, width: int, height: int):

super() .on_resize(width, height)

self.shadertoy.resize((width, height))

* raycasting_step_07 < Full listing of where we are right now with the Python program

* raycasting_step_07_diff « What we changed to get here

15.1.9 Step 8 - Support scrolling

What if we want to scroll around the screen? Have a GUI that doesn’t scroll?

First, we’ll add a camera for the scrolling parts of the screen (sprites) and another camera for the non-scrolling GUI

bits. Also, we’ll create some text to toss on the screen as something for the GUIL

Listing 19: MyGame.__init__

def

__init__(self, width, height, title):

super().__init__ (width, height, title, resizable=True)

The shader toy and 'channels' we'll be using
self.shadertoy = None

self.channel® = None

self.channell = None

self.load_shader()

Sprites and sprite lists
self.player_sprite = None
self.wall_list = arcade.SpriteList()
self.player_list = arcade.SpriteList()
self.bomb_list = arcade.SpriteList()
self.physics_engine = None

Create cameras used for scrolling
self.camera_sprites = arcade.SimpleCamera()
self.camera_gui = arcade.SimpleCamera()

self.generate_sprites()

Our sample GUI text

(continues on next page)

234

Chapter 15. Shaders

24

25

26

20

21

22

23

24

25

26

27

28

29

30

39

40

41

42

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

self.score_text = arcade.Text("Score: 0", 10, 10, arcade.color.WHITE, 24)

self.background_color = arcade.color.ARMY_GREEN

Next up, we need to draw and use the cameras. This complicates our shader as it doesn’t care about the scrolling, so
we have to pass it a position not affected by the camera position. Therefore, we subtract it out.

Listing 20: MyGame.on_draw

def on_draw(self):

Use our scrolled camera
self.camera_sprites.use()

Select the channel 0 frame buffer to draw on
self.channel®.use()

self.channel®.clear()

Draw the walls

self.wall_list.draw()

self.channell.use()
self.channell.clear()
Draw the bombs
self.bomb_list.draw()

Select this window to draw on
self.use()

Clear to background color
self.clear()

Calculate the light position. We have to subtract the camera position

from the player position to get screen-relative coordinates.

p = (self.player_sprite.position[0] - self.camera_sprites.position[0],
self.player_sprite.position[1] - self.camera_sprites.position[1])

Set the uniform data
self.shadertoy.program['lightPosition'] = p
self.shadertoy.program['lightSize'] = 300

Run the shader and render to the window
self.shadertoy.render()

Draw the walls
self.wall_list.draw()

Draw the player
self.player_list.draw()

Switch to the un-scrolled camera to draw the GUI with
self.camera_gui.use()

Draw our sample GUI text

self.score_text.draw()

When we update, we need to scroll the camera to where the user is:

15.1. Ray-casting Shadows 235

Python Arcade Library, Release 3.0.0.dev26

Listing 21: MyGame.on_update

def on_update(self, delta_time):
""" Movement and game logic """

Call update on all sprites (The sprites don't do much in this

example though.)

self.physics_engine.update()

Scroll the screen to the player

self.scroll_to_player()

We need to implement the scroll_to_player method ourselves.

First, we import pyglet’s Vec2 class to make the math faster to implement:

Listing 22: Import pyglet’s 2D vector class to help with math

import random
from pyglet.math import Vec2

import arcade
from arcade.experimental import Shadertoy

Then, we implement the MyGame . scroll_to_player method:

Listing 23: MyGame.scroll_to_player

def scroll_to_player(self, speed=CAMERA_SPEED):

i

Scroll the window to the player.

if CAMERA_SPEED is 1, the camera will immediately move to the desired position.

Anything between 0 and 1 will have the camera move to the location with a.
—smoother

pan.

i

position = Vec2(self.player_sprite.center_x - self.width / 2,
self.player_sprite.center_y - self.height / 2)
self.camera_sprites.move_to(position, speed)

Finally, when we resize the window, we have to resize our cameras:

Listing 24: MyGame.on_resize

def on_resize(self, width: int, height: int):
super() .on_resize(width, height)
self.camera_sprites.resize(width, height)
self.camera_gui.resize(width, height)
self.shadertoy.resize((width, height))

* raycasting_step_08 « Full listing of where we are right now with the Python program

* raycasting_step_08_diff « What we changed to get here

236 Chapter 15. Shaders

https://pyglet.readthedocs.io/en/latest/modules/math.html#pyglet.math.Vec2

Python Arcade Library, Release 3.0.0.dev26

15.1.10 Bibliography

Before I wrote this tutorial I did not know how these shadows were made. I found the sample code Simple 2d Ray-Cast
Shadow by jt which allowed me to very slowly figure out how to cast shadows.

15.2 CRT Filter

If you’d like an 80s feel to your games, you can use the built-in CRT filter.

¥ ShaderToy Demo — O X

e
-
-
-
=
- =

You can create a CRT filter with code like this:

15.2. CRT Filter 237

https://www.shadertoy.com/view/tddXzj
https://www.shadertoy.com/view/tddXzj

Python Arcade Library, Release 3.0.0.dev26

Create the crt filter
self.crt_filter = CRTFilter(width, height,
resolution_down_scale=6.0,
hard_scan=-8.0,
hard_pix=-3.0,
display_warp = Vec2(1.0 / 32.0, 1.0 / 24.0),
mask_dark=0.5,
mask_light=1.5)

You can play around with the parameters to get an idea of what they do. For example:

Resolution Down Sampling

Fig. 1: resolution_down_scale = 1

Fig. 2: resolution_down_scale = 6

To use the CRT Filter, your on_draw method should first draw everything to the CRT filter. At this point, nothing
draws to the screen, we are just drawing to an internal frame buffer.

Then, once everything is drawn to the CRT filter, render that filter to the screen.

Draw our stuff into the CRT filter instead of on screen
self.crt_filter.use()

self.crt_filter.clear()

self.sprite_list.draw()

Next, switch back to the screen and dump the contents of the CRT filter
to it.

self.use()

self.clear()

self.crt_filter.draw()

238 Chapter 15. Shaders

Python Arcade Library, Release 3.0.0.dev26

15.2.1 Full Example Code

The example code just animates a Pac-Man image. You can toggle the CRT filter on or off by hitting the space bar.

Images to run this example can be found here: https://github.com/pythonarcade/arcade/tree/development/doc/tutorials/
crt_filter

import arcade
from arcade.experimental.crt_filter import CRTFilter
from pyglet.math import Vec2

Store our screen dimensions & title in a convenient place
SCREEN_WIDTH = 800

SCREEN_HEIGHT = 1100

SCREEN_TITLE = "ShaderToy Demo"

class MyGame(arcade.Window) :

def __init__(self, width, height, title):
super().__init__ (width, height, title, resizable=True)

Create the crt filter
self.crt_filter = CRTFilter(width, height,
resolution_down_scale=6.0,
hard_scan=-8.0,
hard_pix=-3.0,
display_warp=Vec2(1.0 / 32.0, 1.0 / 24.0),
mask_dark=0.5,
mask_light=1.5)

self.filter_on = True

Create some stuff to draw on the screen
self.sprite_list = arcade.SpriteList()

full = arcade.Sprite("Pac-man.png")
full.center_x = width / 2
full.center_y = height / 2
full.scale = width / full.width
self.sprite_list.append(full)

my_sprite = arcade.Sprite(
"pac_man_sprite_sheet.png",
scale=5, image_x=4, image_y=65, image_width=13, image_height=15)
my_sprite.change_x = 1
self.sprite_list.append(my_sprite)
my_sprite.center_x = 100
my_sprite.center_y = 300

my_sprite = arcade.Sprite(
"pac_man_sprite_sheet.png",
scale=5, image_x=4, image_y=81, image_width=13, image_height=15)
(continues on next page)

15.2. CRT Filter 239

https://github.com/pythonarcade/arcade/tree/development/doc/tutorials/crt_filter
https://github.com/pythonarcade/arcade/tree/development/doc/tutorials/crt_filter

Python Arcade Library, Release 3.0.0.dev26

def

def

(continued from previous page)
my_sprite.change_x = -1
self.sprite_list.append(my_sprite)
my_sprite.center_x = 800
my_sprite.center_y = 200

my_sprite = arcade.AnimatedTimeBasedSprite()
texture = arcade.load_texture(
"pac_man_sprite_sheet.png", x=4, y=1, width=13, height=15)
frame = arcade.AnimationKeyframe(tile_id=0,
duration=150,
texture=texture)
my_sprite.frames.append(frame)
texture = arcade.load_texture(
"pac_man_sprite_sheet.png", x=20, y=1, width=13, height=15)
frame = arcade.AnimationKeyframe(tile_id=1,
duration=150,
texture=texture)
my_sprite.frames.append(frame)

my_sprite.change_x = 1
self.sprite_list.append(my_sprite)
my_sprite.center_x = 0
my_sprite.center_y = 300
my_sprite.texture = texture
my_sprite.scale = 5.0

on_draw(self):
if self.filter_on:
Draw our stuff into the CRT filter instead of on screen
self.crt_filter.use()
self.crt_filter.clear()
self.sprite_list.draw()

Next, switch back to the screen and dump the contents of
the CRT filter to it.
self.use()
self.clear()
self.crt_filter.draw()
else:
Draw our stuff into the screen
self.use()
self.clear()
self.sprite_list.draw()

on_update(self, dt):
Keep track of elapsed time
self.sprite_list.update()
self.sprite_list.update_animation(dt)
for sprite in self.sprite_list:
if sprite.left > self.width and sprite.change_x > 0:
sprite.right = 0
if sprite.right < 0 and sprite.change_x < 0:

(continues on next page)

240

Chapter 15. Shaders

Python Arcade Library, Release 3.0.0.dev26

sprite.left = self.width

def on_key_press(self, key, mod):
if key == arcade.key.SPACE:
self.filter_on = not self.filter_on

if __name__ == "__main__
MyGame (SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)
arcade.run()

(continued from previous page)

15.3 Shader Toy - Glow

|
\
\
.EI |
i
5

Fig. 3: cyber_fuji_2020

/
?
/

/
2

- ——
—

/

Graphics cards can run programs written in the C-like language OpenGL Shading Language, or GLSL for short. These

programs can be easily parallelized and run across the processors of the graphics card GPU.

Shaders take a bit of set-up to write. The ShaderToy website has standardized some of these and made it easier to

experiment with writing shaders. The website is at:

https://www.shadertoy.com/

Arcade includes additional code making it easier to run these ShaderToy shaders in an Arcade program. This tutorial

helps you get started.

15.3. Shader Toy - Glow

241

https://www.shadertoy.com/

Python Arcade Library, Release 3.0.0.dev26

15.3.1 PyCon 2022 Slides

This tutorial is scheduled to be presented at 2022 PyCon US. Here are the slides for that presentation:

15.3.2 Step 1: Open a window
This is simple program that just opens a basic Arcade window. We’ll add a shader in the next step.

Listing 25: Open a window

import arcade

Derive an application window from Arcade's parent Window class
class MyGame(arcade.Window) :

def __init__(self):
Call the parent constructor
super().__init__ (width=1920, height=1080)

def on_draw(self):
Clear the screen
self.clear()
if __name__ == "__main__
MyGame ()
arcade.run()

15.3.3 Step 2: Load a shader
This program will load a GLSL program and display it. We’ll write our shader in the next step.

Listing 26: Run a shader

import arcade
from arcade.experimental import Shadertoy

Derive an application window from Arcade's parent Window class
class MyGame(arcade.Window) :

def __init__(self):
Call the parent constructor
super() .__init__(width=1920, height=1080)

Load a file and create a shader from it
shader_file_path = "circle_1.glsl"
window_size = self.get_size()

self.shadertoy = Shadertoy.create_from_file(window_size, shader_file_path)
(continues on next page)

242 Chapter 15. Shaders

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

def on_draw(self):
Run the GLSL code
self.shadertoy.render()

if __name__ == "__main__":
MyGame ()
arcade.run()

Note: The proper way to read in a file to a string is using a with statement. For clarity/brevity our code isn’t doing
that in the presentation. Here’s the proper way to do it:

file_name = "circle_1.glsl"
with open(file_name) as file:
shader_source = file.read()
self.shadertoy = Shadertoy(size=self.get_size(),
main_source=shader_source)

15.3.4 Step 3: Write a shader

Next, let’s create a simple first GLSL program. Our program will:

* Normalize the coordinates. Instead of 0 to 1024, we’ll go 0.0 to 1.0. This is standard practice, and allows
us to work independently of resolution. Resolution is already stored for us in a standardized variable named
iResolution.

* Next, we’ll use a white color as default. Colors are four floating point RGBA values, ranging from 0.0 to 1.0. To
start with, we’ll set just RGB and use 1.0 for alpha.

* If we are greater that 0.2 for our coordinate (20% of screen size) we’ll use black instead.

* Set our output color, standardized with the variable name fracColor.

Listing 27: GLSL code for creating a shader.

void mainImage(out vec4 fragColor, in vec2 fragCoord) {

// Normalized pixel coordinates (from 0 to 1)
vec2 uv = fragCoord/iResolution.xy;

// How far is the current pixel from the origin (0, 0)
float distance = length(uv);

// Are we are 20% of the screen away from the origin?
if (distance > 0.2) {

// Black

fragColor = vec4(0.0, 0.0, 0.0, 1.0);
} else {

// White

fragColor = vec4(1.0, 1.0, 1.0, 1.0);

(continues on next page)

15.3. Shader Toy - Glow 243

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

The output of the program looks like this:
1.0

0.0

Other default variables you can use:

uniform vec3 iResolution;

uniform float iTime;

uniform float iTimeDelta;

uniform float iFrame;

uniform float iChannelTime[4];
uniform vec4 iMouse;

uniform vec4 iDate;

uniform float iSampleRate;

uniform vec3 iChannelResolution[4];
uniform samplerXX iChanneli;

“Uniform” means the data is the same for each pixel the GLSL program runs on.

15.3.5 Step 4: Move origin to center of screen, adjust for aspect

Next up, we’d like to center our circle, and adjust for the aspect ratio. This will give us a (0, 0) in the middle of the
screen and a perfect circle.

Listing 28: Center the origin

void mainImage(out vec4 fragColor, in vec2 fragCoord) {

// Normalized pixel coordinates (from 0 to 1)
vec2 uv = fragCoord/iResolution.xy;

// Position of fragment relative to center of screen
vec2 rpos = uv - 0.5;

// Adjust y by aspect ratio

rpos.y /= iResolution.x/iResolution.y;

// How far is the current pixel from the origin (0, 0)
(continues on next page)

244 Chapter 15. Shaders

20

21

22

23

24

25

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

float distance = length(rpos);

// Default our color to white
vec3 color = vec3(1.0, 1.0, 1.0);

// Are we are 20% of the screen away from the origin?
if (distance > 0.2) {

// Black
fragColor = vec4(0.0, 0.0, 0.0, 1.0);
} else {
// White
fragColor = vec4(1.0, 1.0, 1.0, 1.0);
1
3
+0.24
0.0
-0.24

-0.5 0.0 +0.5

15.3.6 Step 5: Add a fade effect

We can take colors, like our white (1.0, 1.0, 1.0) and adjust their intensity by multiplying them times a float. Multiplying
white times 0.5 will give us gray (0.5, 0.5, 0.5).

We can use this to create a fade effect around our circle. The inverse of the distance % gives us a good curve. However
the numbers are too large to adjust our white color. We can solve this by scaling it down. Run this, and adjust the scale
value to see how it changes.

Listing 29: Add fade effect

void mainImage(out vec4 fragColor, in vec2 fragCoord) {

// Normalized pixel coordinates (from 0 to 1)
vec2 uv = fragCoord/iResolution.xy;

// Position of fragment relative to center of screen
vec2 rpos = uv - 0.5;

// Adjust y by aspect ratio

rpos.y /= iResolution.x/iResolution.y;

// How far is the current pixel from the origin (0, 0)
(continues on next page)

15.3. Shader Toy - Glow 245

19

20

21

22

Python Arcade Library, Release 3.0.0.dev26

float distance = length(rpos);

// Use an inverse 1/distance to set the fade
float scale = 0.02;

float strength = 1.0 / distance * scale;

// Fade our white color
vec3 color = strength * vec3(1.0, 1.0, 1.0);

// Output to the screen
fragColor = vec4(color, 1.0);

(continued from previous page)

15.3.7 Step 6: Adjust how fast we fade

We can use an exponent to adjust how steep or shallow that curve is. If we use 1.0 it will be the same, 0.5 will cause it

to fade out slower, 1.5 will fade faster.

We can also change our color to orange.

Listing 30: Adjusts fade speed

void mainImage(out vec4 fragColor, in vec2 fragCoord) {

// Normalized pixel coordinates (from 0 to 1)
vec2 uv = fragCoord/iResolution.xy;

// Position of fragment relative to center of screen
vec2 rpos = uv - 0.5;

// Adjust y by aspect ratio

rpos.y /= iResolution.x/iResolution.y;

// How far is the current pixel from the origin (0, 0)
float distance = length(rpos);

// Use an inverse 1/distance to set the fade

float scale = 0.02;

float fade = 5;

1.
float strength = pow(1.0 / distance * scale, fade);

(continues on next page)

246

Chapter 15. Shaders

20

21

22

23

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

// Fade our orange color
vec3 color = strength * vec3(1.0, 0.5, 0.0);

// Output to the screen
fragColor = vec4(color, 1.0);

15.3.8 Step 7: Tone mapping

Once we add color, the glow looks a bit off. We can do “tone mapping” with a bit of math if you like the look better.

Listing 31: Tone mapping

void mainImage(out vec4 fragColor, in vec2 fragCoord) {

20

21

22

23

// Normalized pixel coordinates (from 0 to 1)
vec2 uv = fragCoord/iResolution.xy;

// Position of fragment relative to center of screen
vec2 rpos = uv - 0.5;

// Adjust y by aspect ratio

rpos.y /= iResolution.x/iResolution.y;

// How far is the current pixel from the origin (0, 0)
float distance = length(rpos);

// Use an inverse 1/distance to set the fade

float scale = 0.02;

float fade = 1.1;

float strength = pow(1.0 / distance * scale, fade);

// Fade our orange color
vec3 color = strength * vec3(1.0, 0.5, 0);

// Tone mapping
color = 1.0 - exp(-color);

(continues on next page)

15.3. Shader Toy - Glow 247

20

21

22

23

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

// Output to the screen
fragColor = vec4(color, 1.0);

15.3.9 Step 8: Positioning the glow

What if we want to position the glow at a certain spot? Send an x, y to center on? What if we want to control the color
of the glow too?

We can send data to our shader using uniforms. The data we send will be the same (uniform) for each pixel rendered
by the shader. The uniforms can easily be set in our Python program:

Listing 32: Run a shader

import arcade
from arcade.experimental import Shadertoy

Derive an application window from Arcade's parent Window class
class MyGame(arcade.Window) :

def __init__(self, width=1920, height=1080, glow_color=arcade.color.LIGHT_BLUE):
Call the parent constructor
super().__init__ (width=width, height=height)
Load a file and create a shader from it
shader_file_path = "circle_6.glsl"
window_size = self.get_size()
self.shadertoy = Shadertoy.create_from_file(window_size, shader_file_path)
Set uniform light color data to send to the GLSL shader
from the normalized RGB components of the color.
self.shadertoy.program['color'] = glow_color.normalized[:3]
def on_draw(self):
Set uniform position data to send to the GLSL shader
self.shadertoy.program['pos'] = self.mouse["x"], self.mouse["y"]
Run the GLSL code
(continues on next page)
248 Chapter 15. Shaders

24

25

26

27

28

20

21

22

23

24

25

26

27

28

29

Python Arcade Library, Release 3.0.0.dev26

self.shadertoy.render()

if __name__ == "__main__":
MyGame ()
arcade.run()

(continued from previous page)

Then we can use those uniforms in our shader:

Listing 33: Glow follows mouse, and color can be changed.

uniform vec2 pos;
uniform vec3 color;

void mainImage(out vec4 fragColor, in vec2 fragCoord) {

// Normalized pixel coordinates (from 0 to 1)
vec2 uv = fragCoord/iResolution.xy;
vec2 npos = pos/iResolution.xy;

// Position of fragment relative to specified position
vec2 rpos = npos - uv;

// Adjust y by aspect ratio

rpos.y /= iResolution.x/iResolution.y;

// How far is the current pixel from the origin (0, 0)
float distance = length(rpos);

// Use an inverse 1/distance to set the fade

float scale = 0.02;

float fade = 1.1;

float strength = pow(1.0 / distance * scale, fade);
// Fade our orange color

vec3 color = strength * color;

// Tone mapping
color = 1.0 - exp(-color);

// Output to the screen
fragColor = vec4(color, 1.0);

15.3. Shader Toy - Glow

249

Python Arcade Library, Release 3.0.0.dev26

Note: Built-in Uniforms

Shadertoy assumes some built-in values. These can be set during the Shadertoy.render () call. In this example I'm
not using those variables because I want to show how to send any value, not just built-in ones. The built-in values:

Python Variable GLSL Variable

time iTime

time_delta iTimeDelta

mouse_position iMouse

size This is set by Shadertoy.resize()
frame iFrame

An example of how they are set:

[my_shader .render (time=self.time, mouse_position=mouse_position) J

When resizing a window, make sure to always resize the shader as well.

15.3.10 Other examples

Here’s another Python program that loads a GLSL file and displays it:

Listing 34: Shader Toy Demo

import arcade
from arcade.experimental import Shadertoy

class MyGame(arcade.Window) :

def __init__(self):
Call the parent constructor
super() .__init__(width=1920, height=1080, title="Shader Demo", resizable=True)

Keep track of total run-time

self.time = 0.0
(continues on next page)

250 Chapter 15. Shaders

21

22

23

24

25

26

27

28

29

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

File name of GLSL code

file_name = "fractal_pyramid.glsl"
file_name = "cyber_fuji_2020.glsl"
file_name = "earth_planet_sky.glsl"
file_name = "flame.glsl"

file_name = "star_nest.glsl"

Create a shader from it
self.shadertoy = Shadertoy(size=self.get_size(),
main_source=open(file_name) .read())

def on_draw(self):
self.clear()
mouse_pos = self.mouse["x"], self.mouse["y"]
self.shadertoy.render(time=self.time, mouse_position=mouse_pos)

def on_update(self, dt):
Keep track of elapsed time
self.time += dt

if __name__ == "__main__":
MyGame ()
arcade.run()

You can use this demo with any of the sample code below. Click on the caption below the example shaders here to see
the source code for the shader.

Some other sample shaders:

Fig. 4: star_nest

15.3. Shader Toy - Glow 251

Python Arcade Library, Release 3.0.0.dev26

Fig. 5: flame

Fig. 6: fractal_pyramid

252 Chapter 15. Shaders

Python Arcade Library, Release 3.0.0.dev26

15.3.11 Additional learning

On this site:
¢ Learn a method of creating particles in Shader Toy - Particles.
* Learn how to ray-cast shadows in the Ray-casting Shadows.
* Make your screen look like an 80s monitor in CRT Filter.
* Read more about using OpenGL in Arcade with OpenGL.
 Learn to do a compute shader in Compute Shader.
On other sites:
» Here is a decent learn-by-example tutorial for making shaders: https://www.shadertoy.com/view/Md23DV

e Here’s a video tutorial that steps through how to do an explosion: https://www.youtube.com/watch?v=
xDxAnguEOn§

15.4 Shader Toy - Particles

Contents

» Shader Toy - Particles

— Load the shader

Initial shader with particles

Add particle movement

Fade-out

Glowing Particles

Twinkling Particles

This tutorial assumes you are already familiar with the material in Shader Toy - Glow. In this tutorial, we take a look
at adding animated particles. These particles can be used for an explosion effect.

The “trick” to this example, is the use of pseudo-random numbers to generate each particle’s angle and speed from the
initial explosion point. Why “pseudo-random”? This allows each processor on the GPU to independently calculate
each particle’s position at any point and time. We can then allow the GPU to calculate in parallel.

15.4.1 Load the shader

First, we need a program that will load a shader. This program is also keeping track of how much time has elapsed.
This is necessary for us to calculate how far along the animation sequence we are.

import arcade
from arcade.experimental import Shadertoy

Derive an application window from Arcade's parent Window class
class MyGame(arcade.Window) :

(continues on next page)

15.4. Shader Toy - Particles 253

https://www.shadertoy.com/view/Md23DV
https://www.youtube.com/watch?v=xDxAnguEOn8
https://www.youtube.com/watch?v=xDxAnguEOn8

20

21

22

23

24

25

26

27

28

29

Python Arcade Library, Release 3.0.0.dev26

def __init__(self):
Call the parent constructor
super() .__init__(width=1920, height=1080)

Used to track run-time
self.time = 0.0

Load a file and create a shader from it
file_name = "explosion.glsl"
self.shadertoy = Shadertoy(size=self.get_size(),

(continued from previous page)

main_source=open(file_name) .read())

def on_draw(self):
self.clear()
Set uniform data to send to the GLSL shader

self.shadertoy.program['pos'] = self.mouse["x"], self.mouse["y"]

Run the GLSL code
self.shadertoy.render(time=self.time)

def on_update(self, delta_time: float):
Track run time
self.time += delta_time

if __name__ == "__main__":

window = MyGame()
window.center_window()
arcade.run()

15.4.2 Initial shader with particles

// Origin of the particles
uniform vec2 pos;

// Constants

(continues on next page)

254

Chapter 15. Shaders

20

21

22

23

24

25

26

27

28

29

31

32

33

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

// Number of particles

const float PARTICLE_COUNT = 100.0;

// Max distance the particle can be from the position.
// Normalized. (So, 0.3 is 30% of the screen.)

const float MAX_PARTICLE_DISTANCE = 0.3;

// Size of each particle. Normalized.

const float PARTICLE_SIZE = 0.004;

const float TWOPI = 6.2832;

// This function will return two pseudo-random numbers given an input seed.
// The result is in polar coordinates, to make the points random in a circle
// rather than a rectangle.
vec2 Hashl12_Polar(float t) {

float angle = fract(sin(t * 674.3) * 453.2) * TWOPI;

float distance = fract(sin((t + angle) * 724.3) * 341.2);

return vec2(sin(angle), cos(angle)) * distance;

¥

void mainImage(out vec4 fragColor, in vec2 fragCoord)
{
// Normalized pixel coordinates (from 0 to 1)
// Origin of the particles
vec2 npos = (pos - .5 * iResolution.xy) / iResolution.y;
// Position of current pixel we are drawing
vec2 uv = (fragCoord- .5 * iResolution.xy) / iResolution.y;

// Re-center based on input coordinates, rather than origin.
uv -= npos;

// Default alpha is transparent.
float alpha = 0.0;

// Loop for each particle
for (float i= 0.; i < PARTICLE_COUNT; i++) {
// Direction of particle + speed
float seed = i + 1.0;
vec2 dir = Hashl2_Polar(seed);
// Get position based on direction, magnitude, and explosion size
vec2 particlePosition = dir * MAX_PARTICLE_DISTANCE;
// Distance of this pixel from that particle
float d = length(uv - particlePosition);
// If we are within the particle size, set alpha to 1.0
if (d < PARTICLE_SIZE)
alpha = 1.0;
}
// Output to screen
fragColor = vec4(1.0, 1.0, 1.0, alpha);

15.4. Shader Toy - Particles 255

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

Python Arcade Library, Release 3.0.0.dev26

15.4.3 Add particle movement

// Origin of the particles
uniform vec2 pos;

// Constants

// Number of particles

const float PARTICLE_COUNT = 100.0;

// Max distance the particle can be from the position.
// Normalized. (So, 0.3 is 30% of the screen.)

const float MAX_PARTICLE_DISTANCE = 0.3;

// Size of each particle. Normalized.

const float PARTICLE_SIZE = 0.004;

// Time for each burst cycle, in seconds.

const float BURST_TIME = 2.0;

const float TWOPI = 6.2832;

// This function will return two pseudo-random numbers given an input seed.
// The result is in polar coordinates, to make the points random in a circle
// rather than a rectangle.
vec2 Hashl2_Polar(float t) {

float angle = fract(sin(t * 674.3) * 453.2) * TWOPI;

float distance = fract(sin((t + angle) * 724.3) * 341.2);

return vec2(sin(angle), cos(angle)) * distance;

}

void mainImage(out vec4 fragColor, in vec2 fragCoord)
{
// Normalized pixel coordinates (from 0 to 1)
// Origin of the particles
vec2 npos = (pos - .5 * iResolution.xy) / iResolution.y;
// Position of current pixel we are drawing
vec2 uv = (fragCoord- .5 * iResolution.xy) / iResolution.y;

// Re-center based on input coordinates, rather than origin.
uv -= npos;

// Default alpha is transparent.
float alpha = 0.0;

// 0.0 - 1.0 normalized fraction representing how far along in the explosion we are.
// Auto resets if time goes beyond burst time. This causes the explosion to cycle.
float timeFract = fract(iTime * 1 / BURST_TIME);

// Loop for each particle
for (float i= 0.; i < PARTICLE_COUNT; i++) {
// Direction of particle + speed
float seed = i + 1.0;
vec2 dir = Hashl2_Polar(seed);
// Get position based on direction, magnitude, and explosion size
// Adjust based on time scale. (0.0-1.0)

(continues on next page)

256 Chapter 15. Shaders

51

52

53

54

55

56

57

58

60

20

21

22

23

24

25

26

27

28

29

30

31

32

33

35

36

37

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

vec2 particlePosition = dir * MAX_PARTICLE_DISTANCE * timeFract;
// Distance of this pixel from that particle
float d = length(uv - particlePosition);
// If we are within the particle size, set alpha to 1.0
if (d < PARTICLE_SIZE)
alpha = 1.0;
}
// Output to screen
fragColor = vec4(1.0, 1.0, 1.0, alpha);

15.4.4 Fade-out

// Origin of the particles
uniform vec2 pos;

// Constants

// Number of particles

const float PARTICLE_COUNT = 100.0;

// Max distance the particle can be from the position.
// Normalized. (So, 0.3 is 30% of the screen.)

const float MAX_PARTICLE_DISTANCE = 0.3;

// Size of each particle. Normalized.

const float PARTICLE_SIZE = 0.004;

// Time for each burst cycle, in seconds.

const float BURST_TIME = 2.0;

const float TWOPI = 6.2832;

// This function will return two pseudo-random numbers given an input seed.
// The result is in polar coordinates, to make the points random in a circle
// rather than a rectangle.
vec2 Hashl12_Polar(float t) {

float angle = fract(sin(t * 674.3) * 453.2) * TWOPI;

float distance = fract(sin((t + angle) * 724.3) * 341.2);

return vec2(sin(angle), cos(angle)) * distance;

}

void mainImage(out vec4 fragColor, in vec2 fragCoord)
{
// Normalized pixel coordinates (from 0 to 1)
// Origin of the particles
vec2 npos = (pos - .5 * iResolution.xy) / iResolution.y;
// Position of current pixel we are drawing
vec2 uv = (fragCoord- .5 * iResolution.xy) / iResolution.y;

// Re-center based on input coordinates, rather than origin.
uv -= npos;

// Default alpha is transparent.

(continues on next page)

15.4. Shader Toy - Particles

257

38

40

41

42

43

44

45

46

47

48

49

50

52

53

54

55

56

57

58

59

60

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

float alpha = 0.0;

// 0.0 - 1.0 normalized fraction representing how far along in the explosion we are.
// Auto resets if time goes beyond burst time. This causes the explosion to cycle.
float timeFract = fract(iTime * 1 / BURST_TIME);

// Loop for each particle
for (float i= 0.; i < PARTICLE_COUNT; i++) {
// Direction of particle + speed
float seed = i + 1.0;
vec2 dir = Hashl2_Polar(seed);
// Get position based on direction, magnitude, and explosion size
// Adjust based on time scale. (0.0-1.0)
vec2 particlePosition = dir * MAX_PARTICLE_DISTANCE * timeFract;
// Distance of this pixel from that particle
float d = length(uv - particlePosition);
// If we are within the particle size, set alpha to 1.0
if (d < PARTICLE_SIZE)
alpha = 1.0;
}
// Output to screen
fragColor = vec4(1.0, 1.0, 1.0, alpha * (1.0 - timeFract));

15.4.5 Glowing Particles

258

Chapter 15. Shaders

20

21

22

23

24

25

26

27

28

29

31

32

33

34

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

52

53

Python Arcade Library, Release 3.0.0.dev26

// Origin of the particles
uniform vec2 pos;

// Constants

// Number of particles

const float PARTICLE_COUNT = 100.0;

// Max distance the particle can be from the position.
// Normalized. (So, 0.3 is 30% of the screen.)
const float MAX_PARTICLE_DISTANCE = 0.3;

// Size of each particle. Normalized.

const float PARTICLE_SIZE = 0.004;

// Time for each burst cycle, in seconds.
const float BURST_TIME = 2.0;

// Particle brightness

const float DEFAULT_BRIGHTNESS = 0.0005;

const float TWOPI = 6.2832;

// This function will return two pseudo-random numbers given an input seed.
// The result is in polar coordinates, to make the points random in a circle
// rather than a rectangle.
vec2 Hashl12_Polar(float t) {

float angle = fract(sin(t * 674.3) * 453.2) * TWOPI;

float distance = fract(sin((t + angle) * 724.3) * 341.2);

return vec2(sin(angle), cos(angle)) * distance;

¥

void mainImage(out vec4 fragColor, in vec2 fragCoord)
{
// Normalized pixel coordinates (from 0 to 1)
// Origin of the particles
vec2 npos = (pos - .5 * iResolution.xy) / iResolution.y;
// Position of current pixel we are drawing
vec2 uv = (fragCoord- .5 * iResolution.xy) / iResolution.y;

// Re-center based on input coordinates, rather than origin.
uv -= npos;

// Default alpha is transparent.
float alpha = 0.0;

// 0.0 - 1.0 normalized fraction representing how far along in the explosion we are.
// Auto resets if time goes beyond burst time. This causes the explosion to cycle.
float timeFract = fract(iTime * 1 / BURST_TIME);

// Loop for each particle
for (float i= 0.; i < PARTICLE_COUNT; i++) {
// Direction of particle + speed
float seed = i + 1.0;
vec2 dir = Hashl2_Polar(seed);
// Get position based on direction, magnitude, and explosion size
// Adjust based on time scale. (0.0-1.0)

(continues on next page)

15.4. Shader Toy - Particles 259

54

55

56

57

58

59

60

61

62

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

vec2 particlePosition = dir * MAX_PARTICLE_DISTANCE * timeFract;
// Distance of this pixel from that particle
float d = length(uv - particlePosition);
// Add glow based on distance
alpha += DEFAULT_BRIGHTNESS / d;
}
// Output to screen
fragColor = vec4(1.0, 1.0, 1.0, alpha * (1.0 - timeFract));

15.4.6 Twinkling Particles

// Origin of the particles
uniform vec2 pos;

// Constants

// Number of particles

const float PARTICLE_COUNT = 100.0;

// Max distance the particle can be from the position.
// Normalized. (So, 0.3 is 30% of the screen.)
const float MAX_PARTICLE_DISTANCE = 0.3;

// Size of each particle. Normalized.

const float PARTICLE_SIZE = 0.004;

// Time for each burst cycle, in seconds.
const float BURST_TIME = 2.0;

// Particle brightness

const float DEFAULT_BRIGHTNESS = 0.0005;

// How many times to the particles twinkle
const float TWINKLE_SPEED = 10.0;

const float TWOPI = 6.2832;

// This function will return two pseudo-random numbers given an input seed.
// The result is in polar coordinates, to make the points random in a circle
// rather than a rectangle.
vec2 Hashl2_Polar(float t) {

float angle = fract(sin(t * 674.3) * 453.2) * TWOPI;

float distance = fract(sin((t + angle) * 724.3) * 341.2);

return vec2(sin(angle), cos(angle)) * distance;

}

void mainImage(out vec4 fragColor, in vec2 fragCoord)
{
// Normalized pixel coordinates (from 0 to 1)
// Origin of the particles
vec2 npos = (pos - .5 * iResolution.xy) / iResolution.y;
// Position of current pixel we are drawing
vec2 uv = (fragCoord- .5 * iResolution.xy) / iResolution.y;

(continues on next page)

260 Chapter 15. Shaders

39

40

41

42

43

44

45

46

47

48

49

53

54

55

56

57

59

60

61

62

64

65

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

// Re-center based on input coordinates, rather than origin.
uv -= npos;

// Default alpha is transparent.
float alpha = 0.0;

// 0.0 - 1.0 normalized fraction representing how far along in the explosion we are.

// Auto resets if time goes beyond burst time. This causes the explosion to cycle.

float timeFract = fract(iTime * 1 / BURST_TIME);

// Loop for each particle

for

}

(float i= 0.; i < PARTICLE_COUNT; i++) {

// Direction of particle + speed

float seed = i + 1.0;

vec2 dir = Hashl2_Polar(seed);

// Get position based on direction, magnitude, and explosion size
// Adjust based on time scale. (0.0-1.0)

vec2 particlePosition = dir * MAX_PARTICLE_DISTANCE * timeFract;
// Distance of this pixel from that particle

float d = length(uv - particlePosition);

// Add glow based on distance

float brightness = DEFAULT_BRIGHTNESS * (sin(timeFract * TWINKLE_SPEED + i) *

alpha += brightness / d;

// Output to screen
fragColor = vec4(1.0, 1.0, 1.0, alpha * (1.0 - timeFract));

15.5 Compute Shader

For certain types of calculations, compute shaders on the GPU can be thousands of times faster than on the CPU alone.

In this tutorial, we will simulate a star field using an ‘N-Body simulation’. Each star is affected by the gravity of every
other star. For 1,000 stars, this means we have 1,000 x 1,000 = 1,000,000 million calculations to perform for each
frame. The video has 65,000 stars, requiring 4.2 billion gravity force calculations per frame. On high-end hardware it
can still run at 60 fps!

How does
e The
e The
e The

this work? There are three major parts to this program:
Python code, which allocates buffers & glues everything together
visualization shaders, which let us see the data in the buffers

compute shader, which moves everything

15.5. Compute Shader

261

Python Arcade Library, Release 3.0.0.dev26

15.5.1 Buffers

We need a place to store the data we’ll visualize. To do so, we’ll create two Shader Storage Buffer Objects (SSBOs)
of floating point numbers from within our Python code. One will hold the previous frame’s star positions, and the other
will be used to store calculate the next frame’s positions.

Each buffer must be able to store the following for each star:
1. The x, y, and radius of each star stored
2. The velocity of the star, which will be unused by the visualization

3. The floating point RGBA color of the star

Generating Aligned Data

To avoid issues with GPU memory alignment quirks, we’ll use the function below to generate well-aligned data ready
to load into the SSBO. The docstrings & comments explain why in greater detail:

Listing 35: Generating Well-Aligned Data to Load onto the GPU

def gen_initial_data(
screen_size: Tuple[int, int],
num_stars: int = NUM_STARS,
use_color: bool = False

) -> array:

e

Generate an :py:class: ~array.array of randomly positioned star data.
Some of this data is wasted as padding because:

1. GPUs expect SSBO data to be aligned to multiples of 4
2. GLSL's vec3 is actually a vec4 with compiler-side restrictions,
so we have to use 4-length vectors anyway.

:param screen_size: A (width, height) of the area to generate stars in
:param num_stars: How many stars to generate

:param use_color: Whether to generate white or randomized pastel stars
:return: an array of star position data

width, height = screen_size

color_channel _min = 0.5 if use_color else 1.0

def _data_generator() -> Generator[float, None, None]:

"""Inner generator function used to illustrate memory layout"""
for i in range(num_stars):

Position/radius

yield random.randrange(®, width)

yield random.randrange(0, height)

yield 0.0 # z (padding, unused by shaders)

yield 6.0

Velocity (unused by visualization shaders)
yield 0.0

(continues on next page)

262 Chapter 15. Shaders

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

yield 0.0
yield 0.0 # vz (padding, unused by shaders)
yield 0.0 # vw (padding, unused by shaders)

Color

yield random.uniform(color_channel min, 1.0) # r
yield random.uniform(color_channel_min, 1.0) # g
yield random.uniform(color_channel_min, 1.0) # b
yield 1.0 # a

Use the generator function to fill an array in RAM
return array('f', _data_generator())

Allocating the Buffers

Listing 36: Allocating the Buffers & Loading the Data onto the GPU

--- Create buffers

Create pairs of buffers for the compute & visualization shaders.
We will swap which buffer instance is the initial value and
which is used as the current value to write to.

ssbo = shader storage buffer object

initial_data = gen_initial_data(self.get_size(), use_color=USE_COLORED_STARS)
self.ssbo_previous = self.ctx.buffer(data=initial_data)

self.ssbo_current = self.ctx.buffer(data=initial_data)

vao = vertex array object

Format string describing how to interpret the SSBO buffer data.

4f = position and size -> x, y, z, radius

4x4 = Four floats used for calculating velocity. Not needed for visualization.
4f = color -> rgba

buffer_format = "4f 4x4 4f"

Attribute variable names for the vertex shader
attributes = ["in_vertex", "in_color"]

self.vao_previous = self.ctx.geometry(
[BufferDescription(self.ssbo_previous, buffer_format, attributes)],
mode=self.ctx.POINTS,

)

self.vao_current = self.ctx.geometry(
[BufferDescription(self.ssbo_current, buffer_format, attributes)],
mode=self.ctx.POINTS,

15.5. Compute Shader 263

Python Arcade Library, Release 3.0.0.dev26

15.5.2 Visualization Shaders

Now that we have the data, we need to be able to visualize it. We’ll do it by applying vertex, geometry, and fragment
shaders to convert the data in the SSBO into pixels. For each star’s 12 floats in the array, the following flow of data will
take place:

Vertex Shader

In this tutorial, the vertex shader will be run for each star’s 12 float long stretch of raw padded data in self.
ssbo_current. Each execution will output clean typed data to an instance of the geometry shader.
Data is read in as follows:

* The x, y, and radius of each star are accessed via in_vertex

* The floating point RGBA color of the star, via in_color

Listing 37: shaders/vertex_shader.glsl

#version 330

in vec4 in_vertex;
in vec4 in_color;

out vec2 vertex_pos;
out float vertex_radius;

out vec4 vertex_color;

void main()

{
vertex_pos = in_vertex.xy;
vertex_radius = in_vertex.w;
vertex_color = in_color;

The variables below are then passed as inputs to the geometry shader:
* vertex_pos
e vertex_radius

e vertex_color

Geometry Shader

The geometry shader converts a single point into a quad, in this case a square, which the GPU can render. It does this
by emitting four points centered on the input point.

Listing 38: shaders/geometry_shader.glsl

#version 330

layout (points) in;
layout (triangle_strip, max_vertices = 4) out;

(continues on next page)

264 Chapter 15. Shaders

20

21

22

23

24

25

26

27

28

29

40

41

42

43

44

45

46

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

// Use arcade's global projection UBO
uniform Projection {

uniform mat4 matrix;
} proj;

// The outputs from the vertex shader are used as inputs
in vec2 vertex_pos[];

in float vertex_radius[];

in vec4 vertex_color[];

// These are used with EmitVertex to generate four points of
// a quad centered around vertex_pos[0].

out vec2 g_uv;

out vec3 g_color;

void main() {
vec2 center = vertex_pos[0];
vec2 hsize = vec2(vertex_radius[0]);

g_color = vertex_color[0].rgb;

gl_Position = proj.matrix * vec4(vec2(-hsize.x, hsize.y) + center, 0.0, 1.0);
g_uv = vec2(0, 1);
EmitVertex();

gl_Position = proj.matrix * vec4(vec2(-hsize.x, -hsize.y) + center, 0.0, 1.0);
g_uv = vec2(0, 0);
EmitVertex();

gl_Position = proj.matrix * vec4(vec2(hsize.x, hsize.y) + center, 0.0, 1.0);
g_uv = vec2(l, 1);
EmitVertex();

gl_Position = proj.matrix * vec4(vec2(hsize.x, -hsize.y) + center, 0.0, 1.0);
g_uv = vec2(l, 0);
EmitVertex();

// End geometry emmission
EndPrimitive(Q);

15.5. Compute Shader 265

20

21

22

23

24

25

Python Arcade Library, Release 3.0.0.dev26

Fragment Shader

A fragment shader runs for each pixel in a quad. It converts a UV coordinate within the quad to a float RGBA value.
In this tutorial’s case, the shader produces the soft glowing circle on the surface of each star’s quad.

Listing 39: shaders/fragment_shader.glsl

#version 330

in vec2 g_uv;
in vec3 g_color;

out vec4 out_color;

void main()
{
float 1 = length(vec2(0.5, 0.5) - g_uv.xy);
if (1> 0.5
{
discard;
}
float alpha;
if (1 == 0.0)
alpha = 1.0;
else
alpha = min(1.0, .60-1 * 2);

vec3 c = g_color.rgb;

// c.xy += v_uv.xy * 0.05;
// C.Xy += v_pos.xy * 0.75;
out_color = vec4(c, alpha);

15.5.3 Compute Shader

Now that we have a way to display data, we should update it.

We created pairs of buffers earlier. We will use one SSBO as an input buffer holding the previous frame’s data, and
another as our output buffer to write results to.

We then swap our buffers each frame after drawing, using the output as the input of the next frame, and repeat the
process until the program stops running.

Listing 40: shaders/compute_shader.glsl

#version 430

// Set up our compute groups.

// The COMPUTE_SIZE X and COMPUTE_SIZE_ Y values will be replaced

// by the Python code with actual values. This does not happen

// automatically, and must be called manually.
layout(local_size_x=COMPUTE_SIZE_X, local_size_y=COMPUTE_SIZE_Y) in;

// Input uniforms would go here if you need them.
(continues on next page)

266 Chapter 15. Shaders

20

21

22

23

24

25

26

27

28

29

30

31

32

33

35

36

37

39

40

41

42

43

44

45

46

47

48

49

51

52

53

54

55

56

57

58

59

60

61

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

// The examples below match the ones commented out in main.py
//uniform vec2 screen_size;
//uniform float frame_time;

// Structure of the star data
struct Star

{
vec4 pos;
vec4 vel;
vec4 color;
};

// Input buffer

layout(std430, binding=0) buffer stars_in

{
Star stars[];

} In;

// Output buffer

layout(std430, binding=1) buffer stars_out

{
Star stars[];

} Out;

void main()

{

int curStarIndex = int(gl_GlobalInvocationID);
Star in_star = In.stars[curStarIndex];

vecd p = in_star.pos.xyzw;
vec4d v = in_star.vel.xyzw;

// Move the star according to the current force
pP.Xy += V.Xy;

// Calculate the new force based on all the other bodies

for (int i=0; i < In.stars.length(Q); i++) {
// If enabled, this will keep the star from calculating gravity on itself
// However, it does slow down the calcluations do do this check.
// 1if (i == x)

// continue;

// Calculate distance squared
float dist = distance(In.stars[i].pos.Xyzw.Xy, p.Xy);
float distanceSquared = dist * dist;

// If distance is too small, extremely high forces can result and
// fling the star into escape velocity and forever off the screen.
// Using a reasonable minimum distance to prevents this.

float minDistance = 0.02;

float gravityStrength = 0.3;

(continues on next page)

15.5. Compute Shader

267

62

63

64

65

66

67

68

69

70

71

72

3

74

75

76

77

78

79

20

21

22

23

Python Arcade Library, Release 3.0.0.dev26

float simulationSpeed = 0.002;

(continued from previous page)

float force = min(minDistance, gravityStrength / distanceSquared) * -

—,simulationSpeed;

vec2 diff = p.xy - In.stars[i].pos.Xyzw.Xxy;

// We should normalize this I think, but it doesn't work.

// diff = normalize(diff);
vec2 delta_v = diff * force;
v.xy += delta_v;

Star out_star;
out_star.pos.Xyzw = pP.XYyZW,;
out_star.vel.xyzw = V.Xyzw;

vec4 ¢ = in_star.color.xyzw;
out_star.color.xyzw = C.XyZW;

Out.stars[curStarIndex] = out_star;

15.5.4 The Finished Python Program

The code includes thorough docstrings and annotations explaining how it works.

Listing 41: main.py

i

N-Body Gravity with Compute Shaders & Buffers
import random

from array import array

from pathlib import Path

from typing import Generator, Tuple

import arcade
from arcade.gl import BufferDescription

Window dimensions in pixels
WINDOW_WIDTH = 800
WINDOW_HEIGHT = 600

Size of performance graphs in pixels
GRAPH_WIDTH = 200

GRAPH_HEIGHT 120

GRAPH_MARGIN = 5

NUM_STARS: int = 4000
USE_COLORED_STARS: bool = True

(continues on next page)

268

Chapter 15. Shaders

24

25

26

27

28

29

38

39

40

41

42

43

44

45

46

47

48

49

50

54

55

56

57

58

60

61

62

63

64

66

67

68

69

70

71

72

73

74

75

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

def gen_initial_data(
screen_size: Tuple[int, int],
num_stars: int = NUM_STARS,
use_color: bool = False

) -> array:

i

Generate an :py:class: ~array.array of randomly positioned star data.
Some of this data is wasted as padding because:

1. GPUs expect SSBO data to be aligned to multiples of 4
2. GLSL's vec3 is actually a vec4 with compiler-side restrictions,
so we have to use 4-length vectors anyway.

:param screen_size: A (width, height) of the area to generate stars in
:param num_stars: How many stars to generate

:param use_color: Whether to generate white or randomized pastel stars
:return: an array of star position data

width, height = screen_size

color_channel_min = 0.5 if use_color else 1.0

def _data_generator() -> Generator[float, None, None]:

"""Inner generator function used to illustrate memory layout"""
for i in range(num_stars):

Position/radius

yield random.randrange(0, width)

yield random.randrange(0, height)

yield 0.0 # z (padding, unused by shaders)

yield 6.0

Velocity (unused by visualization shaders)
yield 0.0
yield 0.0
yield 0.0 # vz (padding, unused by shaders)
yield 0.0 # vw (padding, unused by shaders)

Color

yield random.uniform(color_channel_min, 1.0) # r
yield random.uniform(color_channel_min, 1.0) # g
yield random.uniform(color_channel _min, 1.0) # b
yield 1.0 # a

Use the generator function to fill an array in RAM
return array('f', _data_generator())
class NBodyGravityWindow(arcade.Window) :

def __init__(self):

(continues on next page)

15.5. Compute Shader

269

76

77

78

79

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

Ask for OpenGL context supporting version 4.3 or greater when
calling the parent initializer to make sure we have compute shader
support.
super().__init__(
WINDOW_WIDTH, WINDOW_HEIGHT,
"N-Body Gravity with Compute Shaders & Buffers",
gl_version=(4, 3),
resizable=False
)
Attempt to put the window in the center of the screen.
self.center_window()

--- Create buffers

Create pairs of buffers for the compute & visualization shaders.
We will swap which buffer instance is the initial value and
which is used as the current value to write to.

ssbo = shader storage buffer object

initial_data = gen_initial_data(self.get_size(), use_color=USE_COLORED_STARS)
self.ssbo_previous = self.ctx.buffer(data=initial_data)

self.ssbo_current = self.ctx.buffer(data=initial_data)

vao = vertex array object

Format string describing how to interpret the SSBO buffer data.

4f = position and size -> x, y, z, radius

4x4 = Four floats used for calculating velocity. Not needed for visualization.
4f = color -> rgba

buffer_format = "4f 4x4 4f"

Attribute variable names for the vertex shader
attributes = ["in_vertex", "in_color"]

self.vao_previous = self.ctx.geometry(
[BufferDescription(self.ssbo_previous, buffer_format, attributes)],
mode=self.ctx.POINTS,

)

self.vao_current = self.ctx.geometry(
[BufferDescription(self.ssbo_current, buffer_format, attributes)],
mode=self.ctx.POINTS,

)

--- Create the visualization shaders

vertex_shader_source = Path('shaders/vertex_shader.glsl").read_text()
fragment_shader_source = Path("shaders/fragment_shader.glsl").read_text()
geometry_shader_source = Path("shaders/geometry_shader.glsl").read_text()

Create the complete shader program which will draw the stars

self.program = self.ctx.program(
vertex_shader=vertex_shader_source,
geometry_shader=geometry_shader_source,

(continues on next page)

270

Chapter 15. Shaders

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

fragment_shader=fragment_shader_source,

--- Create our compute shader

Load in the raw source code safely & auto-close the file
compute_shader_source = Path("shaders/compute_shader.glsl").read_text()

Compute shaders use groups to parallelize execution.

You don't need to understand how this works yet, but the

values below should serve as reasonable defaults. Later, we'll
preprocess the shader source by replacing the templating token
with its corresponding value.

self.group_x = 256

self.group_y = 1

self.compute_shader_defines = {
"COMPUTE_SIZE_X": self.group_x,
"COMPUTE_SIZE_Y": self.group_y
}

Preprocess the source by replacing each define with its value as a string
for templating_token, value in self.compute_shader_defines.items():
compute_shader_source = compute_shader_source.replace(templating_token,.
—str(value))

self.compute_shader = self.ctx.compute_shader(source=compute_shader_source)
--- Create the FPS graph

Enable timings for the performance graph
arcade.enable_timings()

Create a sprite list to put the performance graph into
self.perf_graph_list = arcade.SpriteList()

Create the FPS performance graph

graph = arcade.PerfGraph(GRAPH_WIDTH, GRAPH_HEIGHT, graph_data="FPS")
graph.position = GRAPH_WIDTH / 2, self.height - GRAPH_HEIGHT / 2
self.perf_graph_list.append(graph)

def on_draw(self):
Clear the screen
self.clear()
Enable blending so our alpha channel works
self.ctx.enable(self.ctx.BLEND)

Bind buffers
self.ssbo_previous.bind_to_storage_buffer(binding=0)
self.ssbo_current.bind_to_storage_buffer(binding=1)

If you wanted, you could set input variables for compute shader

(continues on next page)

15.5. Compute Shader 271

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

as in the lines commented out below. You would have to add or
uncomment corresponding lines in compute_shader.glsl
self.compute_shader["screen_size"] = self.get_size()
self.compute_shader["frame_time"] = self.frame_time

Run compute shader to calculate new positions for this frame
self.compute_shader.run(group_x=self.group_x, group_y=self.group_y)

Draw the current star positions
self.vao_current.render(self.program)

Swap the buffer pairs.

The buffers for the current state become the initial state,

and the data of this frame's initial state will be overwritten.
self.ssbo_previous, self.ssbo_current = self.ssbo_current, self.ssbo_previous
self.vao_previous, self.vao_current = self.vao_current, self.vao_previous

Draw the graphs
self.perf_graph_list.draw()

if __name__ == "__main__":
app = NBodyGravityWindow()
arcade.run()

An expanded version of this tutorial whith support for 3D is available at: https://github.com/pvcraven/n-body

15.6 GPU Particle Burst

In this example, we show how to create explosions using particles. The particles are tracked by the GPU, significantly
improving the performance.

15.6.1 Step 1: Open a Blank Window

First, let’s start with a blank window.

Listing 42: gpu_particle_burst_O1.py

i

Example showing how to create particle explosions via the GPU.

i

import arcade
SCREEN_WIDTH = 1024

SCREEN_HEIGHT = 768
SCREEN_TITLE = "GPU Particle Explosion"

(continues on next page)

272 Chapter 15. Shaders

https://github.com/pvcraven/n-body

20

21

22

23

24

25

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)
class MyWindow(arcade.Window):
""" Main window
def __init__(self):
super() .__init__ (SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)

e

def on_draw(self):
""" Draw everything
self.clear()

o

def on_update(self, dt):
""" Update everything

mirn

pass

def on_mouse_press(self, x: float, y: float, button: int, modifiers: int):
""" User clicks mouse """
pass

if __name__ == "__main__
window = MyWindow()
window.center_window()
arcade.run()

15.6.2 Step 2: Create One Particle For Each Click

For this next section, we are going to draw a dot each time the user clicks their mouse on the screen.

For each click, we are going to create an instance of a Burst class that will eventually be turned into a full explosion.
Each burst instance will be added to a list.

15.6. GPU Particle Burst 273

Python Arcade Library, Release 3.0.0.dev26

Imports

First, we’ll import some more items for our program:

from array import array
from dataclasses import dataclass

import arcade
import arcade.gl

Burst Dataclass

Next, we’ll create a dataclass to track our data for each burst. For each burst we need to track a Vertex Array Object
(VAO) which stores information about our burst. Inside of that, we’ll have a Vertex Buffer Object (VBO) which will
be a high-speed memory buffer where we’ll store locations, colors, velocity, etc.

@dataclass

class Burst:
""" Track for each burst.
buffer: arcade.gl.Buffer
vao: arcade.gl.Geometry

i

Init method

Next, we’ll create an empty list attribute called burst_list. We’ll also create our OpenGL shader program. The
program will be a collection of two shader programs. These will be stored in separate files, saved in the same directory.

Note: In addition to loading the program via the load_program() method of ArcadeContext shown, it is also possible
to keep the GLSL programs in triple- quoted string by using program() of Context.

274 Chapter 15. Shaders

Python Arcade Library, Release 3.0.0.dev26

Listing 43: MyWindow.__init__

def __init__(self):
super().__init__ (SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)
self.burst_list = []

Program to visualize the points

self.program = self.ctx.load_program(
vertex_shader="vertex_shader_v1.glsl",
fragment_shader="fragment_shader.glsl",

)

self.ctx.enable_only()

OpenGL Shaders

The OpenGL Shading Language (GLSL) is C-style language that runs on your graphics card (GPU) rather than your
CPU. Unfortunately a full explanation of the language is beyond the scope of this tutorial. I hope, however, the tutorial
can get you started understanding how it works.

We’ll have two shaders. A vertex shader, and a fragment shader. A vertex shader runs for each vertex point of the
geometry we are rendering, and a fragment shader runs for each pixel. For example, vertex shader might run four times
for each point on a rectangle, and the fragment shader would run for each pixel on the screen.

The vertex shader takes in the position of our vertex. We’ll set in_pos in our Python program, and pass that data to
this shader.

The vertex shader outputs the color of our vertex. Colors are in Red-Green-Blue-Alpha (RGBA) format, with floating-
point numbers ranging from O to 1. In our program below case, we set the color to (1, 1, 1) which is white, and the
fourth 1 for completely opaque.

Listing 44: vertex_shader_v1.glsl

#version 330

// (x, y) position passed in
in vec2 in_pos;

// Output the color to the fragment shader
out vec4 color;

void main() {

// Set the RGBA color
color = vec4(l, 1, 1, 1);

// Set the position. (x, y, z, W)
gl_Position = vec4(in_pos, 0.0, 1);

}

There’s not much to the fragment shader, it just takes in color from the vertex shader and passes it back out as the
pixel color. We’ll use the same fragment shader for every version in this tutorial.

15.6. GPU Particle Burst 275

Python Arcade Library, Release 3.0.0.dev26

Listing 45: fragment_shader.glsl

#version 330

// Color passed in from the vertex shader
in vec4 color;

// The pixel we are writing to in the framebuffer
out vec4 fragColor;

void main() {

// Fill the point
fragColor = vec4(color);

Mouse Pressed

Each time we press the mouse button, we are going to create a burst at that location.

The data for that burst will be stored in an instance of the Burst class.

The Burst class needs our data buffer. The data buffer contains information about each particle. In this case, we just
have one particle and only need to store the x, y of that particle in the buffer. However, eventually we’ll have hundreds
of particles, each with a position, velocity, color, and fade rate. To accommodate creating that data, we have made a
generator function _gen_initial_data. It is totally overkill at this point, but we’ll add on to it in this tutorial.

The buffer_description says that each vertex has two floating data points (2f) and those data points will come into
the shader with the reference name in_pos which we defined above in our OpenGL Shaders

Listing 46: MyWindow.on_mouse_press

def on_mouse_press(self, x: float, y: float, button: int, modifiers: int):

i mirn

User clicks mouse

def _gen_initial_data(initial_x, initial_y):
""" Generate data for each particle """
yield initial_x
yield initial_y

Recalculate the coordinates from pixels to the OpenGL system with
0, 0 at the center.

x2 = x / self.width * 2. - 1.

y2 =y / self.height * 2. - 1.

Get initial particle data
initial_data = _gen_initial_data(x2, y2)

Create a buffer with that data
buffer = self.ctx.buffer(data=array('f', initial_data))

Create a buffer description specifying the buffer's data format
buffer_description = arcade.gl.BufferDescription(
(continues on next page)

276

Chapter 15. Shaders

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)
buffer,
lzfl ,
['in_pos'])
Create our Vertex Attribute Object

vao = self.ctx.geometry([buffer_description])

Create the Burst object and add it to the list of bursts
burst = Burst(buffer=buffer, vao=vao)
self.burst_list.append(burst)

Drawing
Finally, draw it.

Listing 47: MyWindow.on_draw

def on_draw(self):
""" Draw everything
self.clear()

i

Set the particle size
self.ctx.point_size = 2 * self.get_pixel _ratio()

Loop through each burst
for burst in self.burst_list:

Render the burst
burst.vao.render(self.program, mode=self.ctx.POINTS)

Program Listings

 fragment_shader <~ Where we are right now
e vertex_shader_v1 « Where we are right now
* gpu_particle_burst_02 < Where we are right now

* gpu_particle_burst_02_diff « What we changed to get here

15.6. GPU Particle Burst 277

Python Arcade Library, Release 3.0.0.dev26

15.6.3 Step 3: Multiple Moving Particles

Next step is to have more than one particle, and to have the particles move. We’ll do this by creating the particles, and
calculating where they should be based on the time since creation. This is a bit different than the way we move sprites,
as they are manually repositioned bit-by-bit during each update call.

Imports

First, we’ll add imports for both the random and time libraries:

import random
import time

Constants

Then we need to create a constant that contains the number of particles to create:

[PARTICLE_COUNT — 300

Burst Dataclass

We'll need to add a time to our burst data. This will be a floating point number that represents the start-time of when
the burst was created.

@dataclass

class Burst:
""" Track for each burst.
buffer: arcade.gl.Buffer
vao: arcade.gl.Geometry
start_time: float

mirn

278 Chapter 15. Shaders

20

21

22

23

24

25

26

27

28

29

Python Arcade Library, Release 3.0.0.dev26

Update Burst Creation

Now when we create a burst, we need multiple particles, and each particle also needs a velocity.

_gen_initial_data we add a loop for each particle, and also output a delta x and y.

In

Note: Because of how we set delta x and delta y, the particles will expand into a rectangle rather than a circle. We’ll

fix that on a later step.

Because we added a velocity, our buffer now needs two pairs of floats 2f 2f named in_pos and in_vel. We’ll update

our shader in a bit to work with the new values.

Finally, our burst object needs to track the time we created the burst.

def on_mouse_press(self, x: float, y: float, button: int, modifiers: int):
""" User clicks mouse """
def _gen_initial_data(initial_x, initial_y):
Generate data for each particle """
for i in range (PARTICLE_COUNT):

dx = random.uniform(-.2, .2)

dy = random.uniform(-.2, .2)

yield initial_x

yield initial_y

yield dx

yield dy

mirn

Recalculate the coordinates from pixels to the OpenGL system with
0, 0 at the center.

X2 = x / self.width * 2. - 1.

y2 =y / self.height * 2. - 1.

Get initial particle data
initial_data = _gen_initial_data(x2, y2)

Create a buffer with that data
buffer = self.ctx.buffer(data=array('f', initial_data))

Create a buffer description specifying the buffer's data format
buffer_description = arcade.gl.BufferDescription(

buffer,

'2f 2f',

['in_pos', 'in_vel'l])

Create our Vertex Attribute Object
vao = self.ctx.geometry([buffer_description])

Create the Burst object and add it to the list of bursts
burst = Burst(buffer=buffer, vao=vao, start_time=time.time())
self.burst_list.append(burst)

15.6. GPU Particle Burst

279

Python Arcade Library, Release 3.0.0.dev26

Set Time in on_draw

When we draw, we need to set “uniform data” (data that is the same for all points) that says how many seconds it has
been since the burst started. The shader will use this to calculate particle position.

def on_draw(self):
""" Draw everything
self.clear()

o

Set the particle size
self.ctx.point_size = 2 * self.get_pixel_ratio()

Loop through each burst
for burst in self.burst_list:

Set the uniform data
self.program['time'] = time.time() - burst.start_time

Render the burst
burst.vao.render(self.program, mode=self.ctx.POINTS)

Update Vertex Shader

Our vertex shader needs to be updated. We now take in a uniform float called time. Uniform data is set once, and
each vertex in the program can use it. In our case, we don’t need a separate copy of the burst’s start time for each
particle in the burst, therefore it is uniform data.

We also need to add another vector of two floats that will take in our velocity. We set in_vel in Update Burst Creation.
Then finally we calculate a new position based on the time and our particle’s velocity. We use that new position when

setting gl_Position.

Listing 48: vertex_shader_v2.glsl

#version 330

// Time since burst start
uniform float time;

// (x, y) position passed in
in vec2 in_pos;

// Velocity of particle
in vec2 in_vel;

// Output the color to the fragment shader
out vec4 color;

void main() {

// Set the RGBA color
color = vecd4(l, 1, 1, 1);

// Calculate a new position
(continues on next page)

280 Chapter 15. Shaders

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

vec2 new_pos = in_pos + (time * in_vel);

// Set the position. (x, y, z, w)
gl_Position = vec4(new_pos, 0.0, 1);

Program Listings

* vertex_shader_v2 « Where we are right now
* vertex_shader_v2_diff « What we changed to get here
* gpu_particle_burst_03 < Where we are right now

* gpu_particle_burst_03_diff « What we changed to get here

15.6.4 Step 4: Random Angle and Speed

Step 3 didn’t do a good job of picking a velocity, as our particles expanded into a rectangle rather than a circle. Rather
than just pick a random delta x and y, we need to pick a random direction and speed. Then calculate delta x and y from
that.

Update Imports

Import the math library so we can do some trig:

[import math

15.6. GPU Particle Burst 281

Python Arcade Library, Release 3.0.0.dev26

Update Burst Creation

Now, pick a random direction from zero to 2 pi radians. Also, pick a random speed. Then use sine and cosine to
calculate the delta x and y.

def on_mouse_press(self, x: float, y: float, button: int, modifiers: int):

""" User clicks mouse

mirn

def _gen_initial_data(initial_x, initial_y):

i

for

i

Generate data for each particle
i in range (PARTICLE_COUNT):
angle = random.uniform(®, 2 * math.pi)
speed = random.uniform(0®.0, 0.3)

dx = math.sin(angle) * speed

dy = math.cos(angle) * speed

yield initial_x

yield initial_y

yield dx

yield dy

Program Listings

* gpu_particle_burst_04 < Where we are right now

 gpu_particle_burst_04_diff « What we changed to get here

15.6.5 Step 5: Gaussian Distribution

Setting speed to a random amount makes for an expanding circle. Another option is to use a gaussian function to
produce more of a ‘splat’ look:

[

speed = abs(random.gauss(0, 1)) * .5

282

Chapter 15. Shaders

20

21

22

23

Python Arcade Library, Release 3.0.0.dev26

Program Listings

* gpu_particle_burst_05 <— Where we are right now

 gpu_particle_burst_05_diff « What we changed to get here

15.6.6 Step 6: Add Color

So far our particles have all been white. How do we add in color? We’ll need to generate it for each particle. Shaders
take colors in the form of RGB floats, so we’ll generate a random number for red, and add in some green to get our
yellows. Don’t add more green than red, or else you get a green tint.

Finally, make sure to update the shader buffer description (VBO) to accept the three color channel floats (3f) under the

name in_color.

def on_mouse_press(self, x: float, y: float, button: int, modifiers: int):

i

User clicks mouse

mirn

def _gen_initial_data(initial_x, initial_y):

i

for

e

Generate data for each particle
i in range (PARTICLE_COUNT):
angle = random.uniform(®, 2 * math.pi)
speed = abs(random.gauss(®, 1)) * .5
dx = math.sin(angle) * speed

dy = math.cos(angle) * speed

red = random.uniform(0.5, 1.0)

green = random.uniform(®, red)

blue = 0

yield initial_x

yield initial_y

yield dx

yield dy

yield red

yield green

yield blue

Recalculate the coordinates from pixels to the OpenGL system with
0, 0 at the center.

(continues on next page)

15.6. GPU Particle Burst

283

24

25

26

27

28

29

38

39

40

41

42

43

44

20

21

22

23

24

25

26

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

x2
y2

x / self.width * 2. - 1.
y / self.height * 2. - 1.

Get initial particle data
initial_data = _gen_initial_data(x2, y2)

Create a buffer with that data
buffer = self.ctx.buffer(data=array('f', initial_data))

Create a buffer description specifying the buffer's data format
buffer_description = arcade.gl.BufferDescription(

buffer,

'2f 2f 3f',

['in_pos', 'in_vel', 'in_color'])

Create our Vertex Attribute Object
vao = self.ctx.geometry([buffer_description])

Create the Burst object and add it to the list of bursts
burst = Burst(buffer=buffer, vao=vao, start_time=time.time())
self.burst_list.append(burst)

Then, update the shader to use the color instead of always using white:

Listing 49: vertex_shader_v3.glsl

#version 330

// Time since burst start
uniform float time;

// (x, y) position passed in
in vec2 in_pos;

// Velocity of particle
in vec2 in_vel;

// Color of particle
in vec3 in_color;

// Output the color to the fragment shader
out vec4 color;

void main() {

// Set the RGBA color
color = vec4(in_color[0], in_color[1], in_color[2], 1);

// Calculate a new position
vec2 new_pos = in_pos + (time * in_vel);

// Set the position. (x, y, z, W)
(continues on next page)

284 Chapter 15. Shaders

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

27 gl_Position = vec4(new_pos, 0.0, 1);

Program Listings

* vertex_shader_v3 < Where we are right now
* vertex_shader_v3_diff « What we changed to get here
* gpu_particle_burst_06 < Where we are right now

* gpu_particle_burst_06_diff « What we changed to get here

15.6.7 Step 7: Fade Out

Right now the explosion particles last forever. Let’s get them to fade out. Once a burst has faded out, let’s remove it
from burst_list.

Constants

First, let’s add a couple constants to control the minimum and maximum times to fade a particle:

MIN_FADE_TIME
MAX_FADE_TIME =

I
=]
v N
v

15.6. GPU Particle Burst 285

20

21

22

23

24

25

26

27

28

29

Python Arcade Library, Release 3.0.0.dev26

Update Init

Next, we need to update our OpenGL context to support alpha blending. Go back to the __init__ method and update

the enable_only call to:

[self.ctx.enable_only(self.ctx.BLEND)

Add Fade Rate to Buffer

Next, add the fade rate float to the VBO:

def on_mouse_press(self, x: float, y: float, button: int, modifiers:
User clicks mouse """

i

def _gen_initial_data(initial_x, initial_y):
Generate data for each particle """
for i in range (PARTICLE_COUNT):

angle = random.uniform(®, 2 * math.pi)

speed = abs(random.gauss(®, 1)) * .5

dx = math.sin(angle) * speed

dy = math.cos(angle) * speed

red = random.uniform(0.5, 1.0)

green = random.uniform(®, red)

blue = 0

fade_rate = random.uniform(

1 / MAX_FADE_TIME, 1 / MIN_FADE_TIME)

i

initial_x
initial_y
dx

dy

red

green
blue
fade_rate

yield
yield
yield
yield
yield
yield
yield
yield

Recalculate

0, 0 at the center.
x2 = x / self.width * 2. - 1.
y2 =y / self.height * 2. - 1.

Get initial particle data
initial_data = _gen_initial_data(x2, y2)

Create a buffer with that data
buffer = self.ctx.buffer(data=array('f', initial_data))

Create a buffer description specifying the buffer's data format
buffer_description = arcade.gl.BufferDescription(
buffer,
'2f 2f 3f £',
["in_pos', 'in_vel',

'in_color', 'in_fade_rate'])

int):

the coordinates from pixels to the OpenGL system with

(continues on next page)

286

Chapter 15. Shaders

42

43

44

45

46

47

48

20

21

22

23

24

25

26

27

28

29

30

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

Create our Vertex Attribute Object
vao = self.ctx.geometry([buffer_description])

Create the Burst object and add it to the list of bursts
burst = Burst(buffer=buffer, vao=vao, start_time=time.time())
self.burst_list.append(burst)

Update Shader
Update the shader. Calculate the alpha. If it is less that 0, just use O.

Listing 50: vertex_shader_v4.glsl

#version 330

// Time since burst start
uniform float time;

// (x, y) position passed in
in vec2 in_pos;

// Velocity of particle
in vec2 in_vel;

// Color of particle
in vec3 in_color;

// Fade rate
in float in_fade_rate;

// Output the color to the fragment shader
out vec4 color;

void main() {
// Calculate alpha based on time and fade rate
float alpha = 1.0 - (in_fade_rate * time);

if(alpha < 0.0) alpha = 0;

// Set the RGBA color
color = vec4(in_color[0], in_color[1], in_color[2], alpha);

// Calculate a new position
vec2 new_pos = in_pos + (time * in_vel);

// Set the position. (x, y, z, W)
gl_Position = vec4(new_pos, 0.0, 1);

15.6. GPU Particle Burst 287

Python Arcade Library, Release 3.0.0.dev26

Remove Faded Bursts

Once our burst has completely faded, no need to keep it around. So in our on_update remove the burst from the
burst_list after it has been faded.

def on_update(self, dt):
mirrn Update game mirrrr

Create a copy of our list, as we can't modify a list while iterating
it. Then see if any of the items have completely faded out and need
to be removed.
temp_list = self.burst_list.copy()
for burst in temp_list:
if time.time() - burst.start_time > MAX_FADE_TIME:
self.burst_list.remove(burst)

Program Listings

* vertex_shader_v4 < Where we are right now
* vertex_shader_v4_diff « What we changed to get here
* gpu_particle_burst_07 < Where we are right now

* gpu_particle_burst_07_diff « What we changed to get here

15.6.8 Step 8: Add Gravity

You could also add come gravity to the particles by adjusting the velocity based on a gravity constant. (In this case,
1.1.)

// Adjust velocity based on gravity
vec2 new_vel = in_vel;
new_vel[1l] -= time * 1.1;

// Calculate a new position

vec2 new_pos = in_pos + (time * new_vel);

Program Listings

* vertex_shader_v5 < Where we are right now

* vertex_shader_v5_diff « What we changed to get here

288 Chapter 15. Shaders

21

22

23

24

25

26

Python Arcade Library, Release 3.0.0.dev26

15.7 Working With Shaders

Shaders are graphics programs that run on GPU and can be used for many varied purposes.

Here we look at some very simple shader programs and learn how to pass data to and from shaders

15.7.1 Basic Arcade Program

Listing 51: Starting template

import arcade

SCREEN_WIDTH = 800
SCREEN_HEIGHT = 600
SCREEN_TITLE = "Basic Arcade Template"

class MyWindow(arcade.Window) :
def __init__(self):
super().__init__ (SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)
self.center_window()
self.background_color = arcade.color.ALMOND

def on_draw(self):
Draw a simple circle to the screen
self.clear()
arcade.draw_circle_filled(
SCREEN_WIDTH / 2,
SCREEN_HEIGHT / 2,
100,
arcade.color.AFRICAN_VIOLET

app = MyWindow()
arcade.run()

15.7.2 Basic Shader Program

From here we add a very basic shader and draw it to the screen. This shader simply sets color and alpha based on the
horizontal coordinate of the pixel.

We have to define vertex shader and fragment shader programs.

* Vertex shaders run on each passed coorninate and can modify it. Here we use it only to pass on the coordinate
on to the fragment shader

» Fragment shaders set color for each passed pixel. Here we set a fixed color for every pixel and vary alpha based
on horizontal position

We need to pass the shader the pixel coordinates so create an object quad_£s to facilitate it.

15.7. Working With Shaders 289

20

21

22

23

24

25

26

27

28

29

30

39

40

41

42

43

44

45

46

47

48

49

50

51

Python Arcade Library, Release 3.0.0.dev26

Listing 52: Simple shader

import arcade

SCREEN_WIDTH = 800
SCREEN_HEIGHT = 600
SCREEN_TITLE = "Basic Vertex and Fragment Shader"

class MyWindow(arcade.Window):

def

def

__init__(self):

super() .__init__(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)
self.center_window()

self.background_color = arcade.color.ALMOND

GL geometry that will be used to pass pixel coordinates to the shader
It has the same dimensions as the screen
self.quad_fs = arcade.gl.geometry.quad_2d_£fs()

Create a simple shader program
self.prog = self.ctx.program(
vertex_shader="""
#version 330
in vec2 in_vert;
void main()
{
gl_Position = vec4(in_vert, 0., 1.);

3

nin
’
non

fragment_shader=
#version 330
out vec4 fragColor;
void main()
{
// Set the pixel colour and alpha based on x position
fragColor = vec4(0.9, 0.5, 0.5, sin(gl_FragCoord.x / 50));
}

non

)

on_draw(self):
Draw a simple circle
self.clear()
arcade.draw_circle_filled(
SCREEN_WIDTH / 2,
SCREEN_HEIGHT / 2,
100,
arcade.color.AFRICAN_VIOLET
)

Run the shader and render to screen
The shader code is run once for each pixel coordinate in quad_fs

and the fragColor output added to the screen
(continues on next page)

290

Chapter 15. Shaders

20

21

22

23

24

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

self.quad_fs.render(self.prog)

app = MyWindow()
arcade.run()

15.7.3 Passing Data To The Shader

To pass data to the shader program we can define uniforms. Uniforms are global shader variables that act as parameters
passed from outside the shader program.

We have to define uniform within the shader and then register the python variable with the shader program before
rendering.

It is important to make sure that the uniform type is appropriate for the data being passed.

Listing 53: Uniforms

import arcade

SCREEN_WIDTH = 800
SCREEN_HEIGHT = 600
SCREEN_TITLE = "Shader With Uniform"

class MyWindow(arcade.Window) :
def __init__(self):
super().__init__ (SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)
self.center_window()
self.background_color = arcade.color.ALMOND

GL geometry that will be used to pass pixel coordinates to the shader
It has the same dimensions as the screen
self.quad_fs = arcade.gl.geometry.quad_2d_£fs()

Create a simple shader program
self.prog = self.ctx.program(
vertex_shader="""
#version 330
in vec2 in_vert;
void main()
{
gl_Position = vec4(in_vert, 0., 1.);

}

i
3

fragment_shader=
#version 330

// Define an input to receive total_time from python
uniform float time;

out vec4 fragColor;

void main()

{

non

(continues on next page)

15.7. Working With Shaders 291

https://www.khronos.org/opengl/wiki/Uniform_(GLSL)

39

40

41

)

43

44

45

46

47

48

49

50

51

52

53

55

56

57

58

60

61

62

63

64

65

66

67

68

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

// Set the pixel colour and alpha based on x position and time
fragColor = vec4(0.9, 0.5, 0.5, sin(gl_FragCoord.x / 50 + time));
}

nmin

)

Create a variable to track program run time
self.total_time = 0

def on_update(self, delta_time):
Keep tract o total time
self.total_time += delta_time

def on_draw(self):
Draw a simple circle
self.clear()
arcade.draw_circle_filled(
SCREEN_WIDTH / 2,
SCREEN_HEIGHT / 2,
100,
arcade.color.AFRICAN_VIOLET
)

Register the uniform in the shader program
self.prog['time'] = self.total_time

Run the shader and render to screen

The shader code is run once for each pixel coordinate in quad_fs
and the fragColor output added to the screen
self.quad_fs.render(self.prog)

app = MyWindow()
arcade.run()

15.7.4 Accessing Textures From The Shader

To make the shader more useful we may wish to pass textures to it.

Here we create to textures (and associated framebuffers) and pass them to the shader as uniform sampler objects. Unlike
other uniforms we need to assign a reference to an integer texture channel (rather than directly to the python object)
and .use() the texture to bind it to that channel.

Listing 54: Textures

import arcade
SCREEN_WIDTH = 800

SCREEN_HEIGHT = 600
SCREEN_TITLE = "Shader with Textures"

(continues on next page)

292 Chapter 15. Shaders

20

21

22

23

24

25

26

27

28

29

30

38

39

40

41

42

43

44

45

46

47

48

49

53

54

55

56

57

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

class MyWindow(arcade.Window) :

def

__init__(self):

super().__init__ (SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)
self.center_window()

self.background_color = arcade.color.ALMOND

GL geometry that will be used to pass pixel coordinates to the shader
It has the same dimensions as the screen
self.quad_fs = arcade.gl.geometry.quad_2d_£fs()

Create textures and FBOs
self.tex_0 = self.ctx.texture((self.width, self.height))
self.fbo_0 = self.ctx.framebuffer(color_attachments=[self.tex_0])

self.tex_1 = self.ctx.texture((self.width, self.height))
self.fbo_1 = self.ctx.framebuffer(color_attachments=[self.tex_1])

Fill the textures with solid colours
self.fbo_0.clear(color=(0.0, 0.0, 1.0, 1.0), normalized=True)
self.fbo_1.clear(color=(1.0, 0.0, 0.0, 1.0), normalized=True)

Create a simple shader program
self.prog = self.ctx.program(
vertex_shader="""
#version 330
in vec2 in_vert;
// Get normalized coordinates
in vec2 in_uv;
out vec2 uv;
void main()
{
gl_Position = vec4(in_vert, 0., 1.);
uv = in_uv;

3

i
’

fragment_shader=
#version 330

// Define an input to receive total_time from python
uniform float time;

// Define inputs to access textures

uniform sampler2D tO;

uniform sampler2D tl1;

in vec2 uv;

out vec4 fragColor;

void main()

{

// Set pixel color as a combination of the two textures
fragColor = mix(

texture(t®, uv),

texture(tl, uv),

smoothstep(0.0, 1.0, uv.x));

(continues on next page)

15.7. Working With Shaders

293

59

60

61

62

63

64

65

66

67

69

70

71

72

73

74

75

76

77

78

79

90

91

92

93

94

95

96

97

98

99

100

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

// Set the alpha based on time
fragColor.w = sin(time);
3

nmin

)

Register the texture uniforms in the shader program
self.prog['t®'] = 0
self.prog['tl'] =1

Create a variable to track program run time
self.total_time = O

def on_update(self, delta_time):
Keep tract o total time
self.total_time += delta_time

def on_draw(self):

Draw a simple circle

self.clear()

arcade.draw_circle_filled(
SCREEN_WIDTH / 2,
SCREEN_HEIGHT / 2,
100,
arcade.color.AFRICAN_VIOLET

Register the uniform in the shader program
self.prog['time'] = self.total_time

Bind our textures to channels
self.tex_0.use(0)
self.tex_1.use(l)

Run the shader and render to screen

The shader code is run once for each pixel coordinate in quad_fs
and the fragColor output added to the screen
self.quad_fs.render(self.prog)

app = MyWindow()
arcade.run()

294 Chapter 15. Shaders

20

21

22

23

24

25

26

27

28

29

36

37

38

39

40

41

42

43

44

Python Arcade Library, Release 3.0.0.dev26

15.7.5 Drawing To Texture From The Shader

Finally we have an example of reading from and writing to the same texture with a shader.
We use the with fbo: syntax to tell arcade that we wish to render to the new frambuffer rather than default one.

Once the shader has updated the framebuffer we need to copy its contents to the screen to be displayed.

Listing 55: Textures

import arcade

SCREEN_WIDTH = 800
SCREEN_HEIGHT = 600
SCREEN_TITLE = "An Empty Program"

class MyWindow(arcade.Window) :
def __init__(self):
super().__init__ (SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)
self.center_window()
self.background_color = arcade.color.ALMOND

GL geometry that will be used to pass pixel coordinates to the shader
It has the same dimensions as the screen
self.quad_£fs = arcade.gl.geometry.quad_2d_f£fs()

Create texture and FBO
self.tex = self.ctx.texture((self.width, self.height))
self.fbo = self.ctx.framebuffer(color_attachments=[self.tex])

Put something in the framebuffer to start
self.fbo.clear(arcade.color.ALMOND)
with self. fbo:
arcade.draw_circle_filled(
SCREEN_WIDTH / 2,
SCREEN_HEIGHT / 2,
100,
arcade.color.AFRICAN_VIOLET
)

Create a simple shader program
self.prog = self.ctx.program(
vertex_shader="""
#version 330
in vec2 in_vert;
void main()
{
gl_Position = vec4(in_vert, 0., 1.);

}

i
’

fragment_shader=
#version 330
// Define input to access texture

(continues on next page)

15.7. Working With Shaders 295

45

46

47

48

49

50

51

52

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)
uniform sampler2D tO;
out vec4 fragColor;
void main()

{
// Overwrite this pixel with the colour from its neighbour
ivec2 pos = ivec2(gl_FragCoord.xy) + ivec2(-1, -1);
fragColor = texelFetch(t®, pos, 0);

}

i

)

Register the texture uniform in the shader program
self.prog['t®'] = 0

def on_draw(self):
Activate our new framebuffer to render to
with self.fbo:
Bind our texture to the first channel
self.tex.use(0)

Run the shader and render to the framebuffer
self.quad_fs.render(self.prog)

Copy the framebuffer to the screen to display

self.ctx.copy_framebuffer(self.fbo, self.ctx.screen)

app = MyWindow()
arcade.run()

296 Chapter 15. Shaders

CHAPTER
SIXTEEN

MAKING A MENU WITH ARCADE’S GUI

This tutorial shows how to use most of arcade’s gui’s widgets.

16.1 Step 1: Open a Window

Making a Menu

First, let’s start a blank window with a view.

Listing 1: Opening a Window

i

Menu.

Shows the usage of almost every gui widget, switching views and making a modal.

import arcade

Screen title and size
SCREEN_WIDTH = 800
SCREEN_HEIGHT = 600
SCREEN_TITLE = "Making a Menu"

class MainView(arcade.View):
(continues on next page)

297

20

21

22

23

24

25

26

27

28

29

30

31

32

33

35

36

37

38

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

mirn

""" Main application class.

def __init__(self):
super().__init__Q)

def on_show_view(self):
""" This is run once when we switch to this view
arcade.set_background_color(arcade.color.DARK_BLUE_GRAY)

i

def on_draw(self):
""" Render the screen.
Clear the screen
self.clear()

mirn

def main(Q:
window = arcade.Window(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE, resizable=True)
main_view = MainView()
window. show_view(main_view)
arcade.run()

if __name__ == "__main__":
main()

16.2 Step 2: Switching to Menu View

Making a Menu

For this section we will switch the current view of the window to the menu view.

298 Chapter 16. Making a Menu with Arcade’s GUI

Python Arcade Library, Release 3.0.0.dev26

16.2.1 Imports
First we will import the arcade gui:

Listing 2: Importing arcade.gui

Shows the usage of almost every gui widget, switching views and making a modal.

16.2.2 Modify the MainView

We are going to add a button to change the view. For drawing a button we would need a UIManager.

Listing 3: Intialising the Manager

o

"""This is the class where your normal game would go.

def __init__(self):
super().__init__Q

After initialising the manager we need to enable it when the view is shown and disable it when the view is hiddien.

Listing 4: Enabling the Manager

def on_show_view(self):
""" This is run once when we switch to this view
arcade.set_background_color (arcade.color.DARK_BLUE_GRAY)

e

Enable the UIManager when the view i1s showm.
self.manager.enable()

Listing 5: Disabling the Manager

def on_hide_view(self):
Disable the UIManager when the view is hidden.
self.manager.disable()

We also need to draw the childrens of the menu in on_draw.

Listing 6: Drawing Children’s of the Manager

def on_draw(self):
""" Render the screen.
Clear the screen
self.clear()

i

Draw the manager.
self.manager.draw()

Now we have successfully setup the manager, only thing left it to add the button. We are using UIAnchorLayout to
position the button. We also setup a function which is called when the button is clicked.

16.2. Step 2: Switching to Menu View 299

Python Arcade Library, Release 3.0.0.dev26

Listing 7: Initialising the Button

self.manager = arcade.gui.UIManager()

Initialise the button with an on_click event.
@switch_menu_button.event("on_click")
def on_click_switch_button(event):
Passing the main view into menu view as an argument.
menu_view = MenuView(self)
self.window. show_view(menu_view)

Use the anchor to position the button on the screen.
self.anchor = self.manager.add(arcade.gui.UIAnchorLayout())

self.anchor.add(
anchor_x="center_x",
anchor_y="center_y",

switch_menu_button = arcade.gui.UIFlatButton(text="Pause", width=250)

16.2.3 Initialise the Menu View

We make a boiler plate view just like we did in Step-1 for switiching the view when the pause button is clicked.

Listing 8: Initialise the Menu View

class MenuView(arcade.View):
"""Main menu view class.

i

def __init__(self, main_view):
super().__init__ Q)

self.manager = arcade.gui.UIManager()
self.main_view = main_view

def on_hide_view(self):
Disable the UIManager when the view is hidden.

self.manager.disable()

def on_show_view(self):
""" This is run once when we switch to this view

i

Makes the background darker

arcade.set_background_color([rgb - 50 for rgb in arcade.color.DARK_BLUE_GRAY])

self.manager.enable()

def on_draw(self):
""" Render the screen.

mirn

Clear the screen

(continues on next page)

300 Chapter 16. Making a Menu with Arcade’s GUI

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

self.clear()
self.manager.draw()

16.2.4 Program Listings

e menu_02 « Where we are right now

* menu_02_diff « What we changed to get here

16.3 Step 3: Setting Up the Menu View

Making a Menu

Resume Start New Game

Volume Options

In this step we will setup the display buttons of the actual menu. The code written in this section is written for MenuView

16.3.1 Initialising the Buttons

First we setup buttons for resume, starting a new game, volume, options and exit.

16.3. Step 3: Setting Up the Menu View 301

Python Arcade Library, Release 3.0.0.dev26

Listing 9: Initialising the Buttons

self.manager = arcade.gui.UIManager()

resume = arcade.gui.UIFlatButton(text="Resume", width=150)

start_new_game = arcade.gui.UIFlatButton(text="Start New Game", width=150)
volume = arcade.gui.UIFlatButton(text="Volume", width=150)

options = arcade.gui.UIFlatButton(text="Options", width=150)

16.3.2 Displaying the Buttons in a Grid
After setting up the buttons we add them to UIGridLayout, so that they can displayed in a grid like manner.

Listing 10: Setting up the Grid

exit = arcade.gui.UIFlatButton(text="Exit", width=320)

Initialise a grid in which widgets can be arranged.
self.grid = arcade.gui.UIGridLayout(column_count=2, row_count=3, horizontal_
—.spacing=20, vertical_spacing=20)

Adding the buttons to the layout.
self.grid.add(resume, col_num=0, row_num=0)
self.grid.add(start_new_game, col_num=1, row_num=0)
self.grid.add(volume, col_num=0, row_num=1)
self.grid.add(options, col_num=1, row_num=1)
self.grid.add(exit, col_num=0, row_num=2, col_span=2)

self.anchor = self.manager.add(arcade.gui.UIAnchorLayout())
self.anchor.add(

anchor_x="center_x",
anchor_y="center_y",

Final code for the __init__ method after these.

Listing 11: __init__

def __init__(self, main_view):
super().__init__(Q)

self.manager = arcade.gui.UIManager()

resume = arcade.gui.UIFlatButton(text="Resume", width=150)

start_new_game = arcade.gui.UIFlatButton(text="Start New Game", width=150)
volume = arcade.gui.UIFlatButton(text="Volume", width=150)

options = arcade.gui.UIFlatButton(text="Options", width=150)

exit = arcade.gui.UIFlatButton(text="Exit", width=320)
Initialise a grid in which widgets can be arranged.

self.grid = arcade.gui.UIGridLayout(column_count=2, row_count=3, horizontal_
(continues on next page)

302 Chapter 16. Making a Menu with Arcade’s GUI

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

—»spacing=20, vertical_spacing=20)

Adding the buttons to the layout.
self.grid.add(resume, col_num=0, row_num=0)
self.grid.add(start_new_game, col_num=1, row_num=0)
self.grid.add(volume, col_num=0, row_num=1)
self.grid.add(options, col_num=1, row_num=1)
self.grid.add(exit, col_num=0, row_num=2, col_span=2)

self.anchor = self.manager.add(arcade.gui.UIAnchorLayout())

self.anchor.add(
anchor_x="center_x",
anchor_y="center_y",
child=self.grid,

)

self.main_view = main_view

16.3.3 Program Listings

e menu_03 « Where we are right now

* menu_03_diff « What we changed to get here

16.4 Step 4: Configuring the Menu Buttons

Making a Menu

We basically add event listener for on_click for buttons.

16.4. Step 4: Configuring the Menu Buttons 303

Python Arcade Library, Release 3.0.0.dev26

16.4.1 Adding on_click Callback for Resume, Start New Game and Exit

First we will add the event listener to resume, start_new_game and exit button as they don’t have much to explain.

Listing 12: Adding callback for button events 1

self.main_view = main_view

@resume_button.event ("on_click")

def on_click_resume_button(event):
Pass already created view because we are resuming.
self.window.show_view(self.main_view)

@start_new_game_button.event("on_click")

def on_click_start_new_game_button(event):
Create a new view because we are starting a new game.
main_view = MainView()
self.window.show_view(main_view)

@exit_button.event("on_click")

16.4.2 Adding on_click Callback for Volume and Options

Now we need to implement an actual menu for volume and options, for that we have to make a class that acts like a
window. Using UIMouseFilterMixin we catch all the events happening for the parent and respond nothing to them.
Thus making it act like a window/view.

Listing 13: Making a Fake Window.

class SubMenu(arcade.gui.UIMouseFilterMixin, arcade.gui.UIAnchorLayout):

"""Acts like a fake view/window.

i

__init__(self,):
super().__init__(size_hint=(1, 1))

Setup frame which will act like the window.
frame = self.add(arcade.gui.UIAnchorLayout(width=300, height=400, size_

—hint=None))

frame.with_padding(all=20)

Add a background to the window.
frame.with_background(texture=arcade.gui.NinePatchTexture(
left=7,
right=7,
bottom=7,
top=7,
texture=arcade.load_texture(
":resources:gui_basic_assets/window/dark_blue_gray_panel.png"
)
)

back_button = arcade.gui.UIFlatButton(text="Back", width=250)

The type of event listener we used earlier for the button will not work here.
(continues on next page)

304

Chapter 16. Making a Menu with Arcade’s GUI

Python Arcade Library, Release 3.0.0.dev26

def

(continued from previous page)

back_button.on_click = self.on_click_back_button

Internal widget layout to handle widgets in this class.
widget_layout = arcade.gui.UIBoxLayout(align="1left", space_between=10)

widget_layout.add(back_button)

frame.add(child=widget_layout, anchor_x="center_x", anchor_y="top")
on_click_back_button(self, event):

Removes the widget from the manager.

After this the manager will respond to its events like it previously did.
self.parent.remove(self)

We have got ourselves a fake window currently. We now, pair it up with the volume and options button to trigger it
when they are clicked.

Listing 14: Adding callback for button events 2

arcade.exit()

@volume_button.event ("on_click")
def on_click_volume_button(event):
volume_menu = SubMenu()
self.manager.add(
volume_menu,
layer=1
)

@options_button.event("on_click")
def on_click_options_button(event):
options_menu = SubMenu()
self.manager.add(
options_menu,

16.4.3 Program Listings

e menu_04 < Where we are right now

* menu_04_diff « What we changed to get here

16.4. Step 4: Configuring the Menu Buttons 305

Python Arcade Library, Release 3.0.0.dev26

16.5 Step 5: Finalising the Fake Window aka the Sub Menu

Funny Menu

I Fun?

Adjust Fun

We finalise the menu or you can call it the last step!

16.5.1 Editing the Parameters for the Sub Menu
We will edit the parameters for the sub menu to suit our needs. Will explain later why are those parameters needed.

Listing 15: Editing parameters

self.clear()
self.manager.draw()

We also need to change accordingly the places where we have used this class i.e options and volume on_click event
listener. The layer parameter being set 1, means that this layer is always drawn on top i.e its the first layer.

Listing 16: Editing arguments

@exit_button.event("on_click")
def on_click_exit_button(event):
arcade.exit()

@volume_button.event("on_click")
(continues on next page)

306 Chapter 16. Making a Menu with Arcade’s GUI

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

def on_click_volume_button(event):
volume_menu = SubMenu(
"Volume Menu", "How do you like your volume?", "Enable Sound",
["Play: Rock", "Play: Punk", "Play: Pop"],
"Adjust Volume",

)

self.manager.add(
volume_menu,
layer=1

)

@options_button.event("on_click")
def on_click_options_button(event):
options_menu = SubMenu(

"Funny Menu", "Too much fun here", "Fun?",
["Make Fun", "Enjoy Fun", "Like Fun"],
"Adjust Fun",

)

Now you might be getting a little idea why we have edited the parameters but
follow on to actually know the reason.

16.6 Adding a Title label

We will be adding a UILabel that explains the menu. UISpace is a widget that can be used to add space around some
widget, you can set its color to the background color so it appears invisible.

Listing 17: Adding title label

back_button = arcade.gui.UIFlatButton(text="Back", width=250)
The type of event listener we used earlier for the button will not work here.
back_button.on_click = self.on_click_back_button

Adding it to the widget layout.

16.6. Adding a Title label 307

Python Arcade Library, Release 3.0.0.dev26

Listing 18: Adding title label to the layout

style_dict = {"press": pressed_style, "normal": default_style, "hover": default_
—style, "disabled": default_style}

Configuring the styles is optional.

slider = arcade.gui.UISlider(value=50, width=250, style=style_dict)

16.6.1 Adding a Input Field

We will use UIInputText to add an input field. The with_border () function creates a border around the widget
with color(default argument is black) black and thickness(default argument is 2px) 2px. Add this just below the title
label.

Listing 19: Adding input field

title_label = arcade.gui.UILabel(text=title, align="center", font_size=20,..
—multiline=False)

Adding it to the widget layout.

Listing 20: Adding input field to the layout

style_dict = {"press": pressed_style, "normal": default_style, "hover": default_
—.style, "disabled": default_style}

Configuring the styles is optional.

slider = arcade.gui.UISlider(value=50, width=250, style=style_dict)

If you paid attention when we defined the input_text variable we passed the text parameter with our
input_text_default argument. We basically added those parameters in our sub menu so that it can be used by
both volume and options button, with texts respecting their names. We will repeat this again in the last also for those
of you who are skipping through this section :P.

16.6.2 Adding a Toggle Button
Don’t go on the section title much, in arcade the UITextureToggle is not really a button it switches between two
textures when clicked. Yes, it functions like a button but by “is not really a button” we meant that it doesn’t inherits the

button class. We also pair it up horizontally with the toggle label.

Listing 21: Adding toggle button

Load the on-off textures.

on_texture = arcade.load_texture(":resources:gui_basic_assets/toggle/circle_
—switch_on.png")

off_texture = arcade.load_texture(":resources:gui_basic_assets/toggle/circle_
—switch_off.png")

Create the on-off toggle and a label

toggle_label = arcade.gui.UILabel (text=toggle_label)

toggle = arcade.gui.UITextureToggle(
on_texture-on_texture,

off_texture=off_texture,
(continues on next page)

308 Chapter 16. Making a Menu with Arcade’s GUI

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)
width=20,
height=20

Adding it to the widget layout. Add this line after you have added the input field.

Listing 22: Adding toggle button to the layout

widget_layout = arcade.gui.UIBoxLayout(align="1left", space_between=10)

16.6.3 Adding a Dropdown

We add a dropdown by using UIDropdown.

Listing 23: Adding dropdown

toggle_group = arcade.gui.UIBoxLayout(vertical=False, space_between=5)
toggle_group.add(toggle)

Adding it to the widget layout.

Listing 24: Adding dropdown to the layout

widget_layout.add(title_label)

16.6.4 Adding a Slider

The final widget. In arcade you can use UISlider to implement a slider. Theres a functionality to style the slider, this
is also present for UIFlatButton and UITextureButton.

Listing 25: Adding slider

Create dropdown with a specified default.

Adding it to the widget layout.

16.6. Adding a Title label 309

Python Arcade Library, Release 3.0.0.dev26

Listing 26: Adding slider to the layout

widget_layout.add(title_label_space)
widget_layout.add(input_text_widget)

16.6.5 Finishing touches
As we mentioned earlier, to explain the use of those parameters to the class. We basically used them so it can be used

by both options and volume as we wanted to have different text for both. For those who have read the full tutorial
line-by-line; ‘They will never know’. :D. We also recommend to see the full code for this section.

16.6.6 Program Listings

* menu_05 < Where we are right now

* menu_05_diff « What we changed to get here

310 Chapter 16. Making a Menu with Arcade’s GUI

20

21

22

23

24

25

26

27

28

29

1

2

CHAPTER
SEVENTEEN

WORKING WITH FRAMEBUFFER OBJECTS

Start with a simple window:

Listing 1: Starting template

import arcade

SCREEN_WIDTH = 800
SCREEN_HEIGHT = 600
SCREEN_TITLE = "Frame Buffer Object Demo"

class MyGame(arcade.Window) :

def __init__(self, width, height, title):
super().__init__(width, height, title)

self.background_color = arcade.color.ALMOND

def setup(self):
pass

def on_draw(self):
self.clear()

def main(Q):
""" Main function
window = MyGame (SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)
window.setup()
arcade.run()

i

if __name__ == "__main__":
main()

Then create a simple program with a frame buffer:

Listing 2: Pass-through frame buffer

import arcade
from arcade.experimental.texture_render_target import RenderTargetTexture
(continues on next page)

311

20

21

22

23

24

25

39

40

41

42

43

44

45

46

4

48

49

50

51

52

53

Python Arcade Library, Release 3.0.0.dev26

SCREEN_WIDTH = 800
SCREEN_HEIGHT = 600
SCREEN_TITLE = "Starting Template Simple"

class RandomFilter(RenderTargetTexture):
def __init__(self, width, height):
super() .__init__(width, height)
self.program = self.ctx.program(
vertex_shader="""
#version 330

in vec2 in_vert;
in vec2 in_uv;
out vec2 uv;

void main() {
gl_Position = vec4(in_vert, 0.0,
uv = in_uv;

1.0);

3

o
’

fragment_shader=
#version 330

uniform sampler2D texture®;

in vec2 uv;
out vec4 fragColor;

void main() {
vec4 color = texture(texture®, uv);
fragColor = color;

3

)

def use(self):
self._fbo.use()

def draw(self):
self.texture.use(0)
self._quad_£fs.render(self.program)
class MyGame(arcade.Window) :
def __init__(self, width, height, title):
super().__init__(width, height, title)

self.filter = RandomFilter(width, height)

def on_draw(self):

(continued from previous page)

(continues on next page)

312

Chapter 17

. Working With FrameBuffer Objects

59

60

61

62

63

64

65

66

67

68

69

70

71

2

73

23

24

25

26

27

28

Python Arcade Library, Release 3.0.0.dev26

self.clear()
self.filter.clear()
self.filter.use()

(continued from previous page)

arcade.draw_circle_filled(self.width / 2, self.height / 2, 100, arcade.color.RED)

arcade.draw_circle_filled(400, 300,

self.use()
self.filter.draw()

def main(Q:
""" Main function

o

100, arcade.color.GREEN)

MyGame (SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)

arcade.run()

if __name__ == "__main__":
main()

Now, color everything that doesn’t have an alpha of zero as green:

Listing 3: Pass-through frame buffer

import arcade

from arcade.experimental.texture_render_target import RenderTargetTexture

SCREEN_WIDTH = 800
SCREEN_HEIGHT = 600
SCREEN_TITLE = "Starting Template Simple"

class RandomFilter (RenderTargetTexture):
def __init__(self, width, height):
super().__init__(width, height)
self.program = self.ctx.program(
vertex_shader="""
#version 330

in vec2 in_vert;
in vec2 in_uv;
out vec2 uv;

void main() {
gl_Position =
uv = in_uv;

}

fragment_shader=
#version 330

nmon

uniform sampler2D texture®;

vec4 (in_vert,

0.0, 1.0);

(continues on next page)

313

43

44

45

46

47

48

49

50

60

61

62

63

64

66

67

68

69

70

71

2

3

74

75

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

in vec2 uv;
out vec4 fragColor;

void main() {
vecd4 color = texture(texture®, uv);

if (color.a > 0)
fragColor = vec4(®, 1, 0, 1.0);
else
fragColor = vec4(0, 0, 0, 0);
}

)

def use(self):
self._fbo.use()

def draw(self):
self.texture.use(0)
self._quad_fs.render(self.program)

class MyGame(arcade.Window) :

def

def __init__(self, width, height, title):
super().__init__(width, height, title)
self.filter = RandomFilter(width, height)

def on_draw(self):
self.clear()
self.filter.clear()
self.filter.use()
arcade.draw_circle_filled(self.width / 2, self.height / 2, 100, arcade.color.RED)

self.use()
self.filter.draw()

main(Q):

""" Main function
MyGame (SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)
arcade.run()

i

if __name__ == "__main__":

main()

Something about passing uniform data to the shader:

314

Chapter 17. Working With FrameBuffer Objects

20

21

22

23

24

25

26

27

28

29

30

39

40

41

42

43

44

45

46

47

48

49

50

51

Python Arcade Library, Release 3.0.0.dev26

Listing 4: Pass-through frame buffer

import arcade
from arcade.experimental.texture_render_target import RenderTargetTexture

SCREEN_WIDTH = 800
SCREEN_HEIGHT = 600
SCREEN_TITLE = "Starting Template Simple"

class RandomFilter(RenderTargetTexture):
def __init__(self, width, height):
super().__init__(width, height)
self.program = self.ctx.program(
vertex_shader="""
#version 330

in vec2 in_vert;
in vec2 in_uv;
out vec2 uv;

void main() {
gl_Position = vec4(in_vert, 0.0, 1.0);
uv = in_uv;

3

o
’

fragment_shader=
#version 330

LIRLRT]

uniform sampler2D texture0;

in vec2 uv;
uniform vec4 my_color;
out vec4 fragColor;

void main() {
vecd4 color = texture(texture®, uv);

if (color.a > 0)
fragColor = my_color;
else
fragColor = vec4(0, 0, 0, 0);
}

IRIRT]
’

)
self.program["my_color"] =1, 0, 1, 1

def use(self):
self._fbo.use()

def draw(self):
self.texture.use(0)

self._quad_fs.render(self.program)
(continues on next page)

315

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

3

74

75

76

77

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

class MyGame(arcade.Window) :

def __init__(self, width, height, title):
super().__init__(width, height, title)
self.filter = RandomFilter(width, height)

def on_draw(self):
self.clear()
self.filter.clear()
self.filter.use()
arcade.draw_circle_filled(self.width / 2, self.height / 2, 100, arcade.color.RED)

self.use()
self.filter.draw()

def main(Q):
""" Main function """
MyGame (SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)
arcade.run()
if __name__ == "__main__":
main()
316 Chapter 17. Working With FrameBuffer Objects

CHAPTER
EIGHTEEN

DRAWING & USING SPRITES

Most games built with Arcade will use sprites and sprite lists to draw image data. This section of the programming
guide will help you achieve that by covering:

* What sprites & sprite lists are

* The essentials of how to use them

* How to get started with images

* Non-drawing features such as collisions

* QOverviews of various advanced techniques

Beginners should start by reading & following What’s a Sprite? page (~10 minute read). If you get stuck, see How fo
Get Help.

18.1 Contents

18.1.1 What’s a Sprite?

Each sprite describes where a game object is & how to draw it. This includes:
* Where it is in the world
* Where to find the image data
* How big the image should be

The rest of this page will explain using the SpriteList class to draw sprites to the screen.

18.1.2 Why SpriteLists?

They’re How Hardware Works

Graphics hardware is designed to draw groups of objects at the same time. These groups are called batches.

Each SpriteList automatically translates every Sprite in it into an optimized batch. It doesn’t matter if a batch has
one or hundreds of sprites: it still takes the same amount of time to draw!

This means that using fewer batches helps your game run faster, and that you should avoid trying to draw sprites one at
a time.

317

20

21

22

23

24

25

26

27

28

29

30

Python Arcade Library, Release 3.0.0.dev26

They Help Develop Games Faster

Sprite lists do more than just draw. They also have built-in features which save you time & effort, including:
* Automatically skipping off-screen sprites
* Collision detection

* Debug drawing for hit boxes

18.1.3 Drawing with Sprites and SpriteLists

Let’s get to the example code.
There are 3 steps to drawing sprites with a sprite list:
1. Create a SpritelList
2. Create & append your Sprite instance(s) to the list
3. Call draw() on your SpriteList inside an on_draw() method

Here’s a minimal example:

Listing 1: sprite_minimal.py

i

Minimal Sprite Example
Draws a single sprite in the middle screen.

If Python and Arcade are installed, this example can be run from the command line with:
python -m arcade.examples.sprite_minimal

i

import arcade

class WhiteSpriteCircleExample(arcade.Window) :

def __init__(self):
super().__init__ (800, 600, "White SpriteCircle Example")
self.sprites = None
self.setup()

def setup(self):
1. Create the SpritelList
self.sprites = arcade.SpritelList()

2. Create & append your Sprite instance to the SpriteList

self.circle = arcade.SpriteCircle(30, arcade.color.WHITE) # 30 pixel radius.
—circle

self.circle.position = self.width // 2, self.height // 2 # Put it in the middle

self.sprites.append(self.circle) # Append the instance to the SpriteList

def on_draw(self):
3. Call draw() on the SpritelList inside an on_draw() method

self.sprites.draw()
(continues on next page)

318 Chapter 18. Drawing & Using Sprites

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

if __name__ == "__main__":
game = WhiteSpriteCircleExample()
game.run()

Using Images with Sprites

Beginners should see the following to learn more, such as how to load images into sprites:
* Arcade’s Sprite examples
* Arcade’s Simple Platformer Tutorial

e The Sprite API documentation

Viewports, Cameras, and Screens

Intermediate users can move past the limitations of arcade. Window with the following classes:
e arcade.Camera (examples) to control which part of game space is drawn

e arcade. View (examples) for start, end, and menu screens

18.1.4 Advanced SpriteList Techniques
This page provides overviews of advanced techniques. Runnable examples are not guaranteed, as the reader is expected
to be able to put the work into implementing them.

Beginners should be careful of the following sections. Some of these techniques can slow down or crash your game if
misused.

Draw Order & Sorting

In some cases, you can combine two features of SpriteList:
* By default, SpriteLists draw starting from their lowest index.

e SpriteList has a sort() method nearly identical to 1ist.sort().

First, Consider Alternatives

Sorting in Python is a slow, CPU-bound function. Consider the following techniques to eliminate or minimize this cost:
» Use multiple sprite lists or arcade. Scene to achieve layering

¢ Chunk your game world into smaller regions with sprite lists for each, and only sort when something inside
moves or changes

e Use the Sprite.depth attribute with shaders to sort on the GPU
For a conceptual overview of chunks as used in a commercial 2D game, please see the following:

¢ Chunks in Factorio

18.1. Contents 319

https://docs.python.org/3/library/stdtypes.html#list.sort
https://wiki.factorio.com/Map_structure#Chunk

Python Arcade Library, Release 3.0.0.dev26

Sorting SpriteLists

Although the alternative listed above are often better, sorting sprite lists to control draw order can still be useful.

Like Python’s built-in 1ist.sort (), you can pass a callable object via the key argument to specify how to sort, along
with an optional reverse keyword to reverse the direction of sorting.

Here’s an example of how you could use sorting to quickly create an inefficient prototype:

import random
import arcade

Warning: the bottom property is extra slow compared to other attributes!
def bottom_edge_as_sort_key(sprite):
return sprite.bottom

class InefficientTopDownGame (arcade.Window) :

i

Uses sorting to allow the player to move in front of & behind shrubs

For non-prototyping purposes, other approaches will be better.

o

def __init__(self, num_shrubs=50):
super().__init__ (800, 600, "Inefficient Top-Down Game")

self.background_color = arcade.color.SAND
self.shrubs = arcade.SpriteList()
self.drawable = arcade.SpriteList()

Randomly place pale green shrubs around the screen

for i in range(num_shrubs):
shrub = arcade.SpriteSolidColor(20, 40, color=arcade.color.BUD_GREEN)
shrub.position = random.randrange(self.width), random.randrange(self.height)
self.shrubs.append(shrub)
self.drawable.append(shrub)

self.player = arcade.SpriteSolidColor(16, 30, color=arcade.color.RED)
self.drawable.append(self.player)

def on_mouse_motion(self, x, y, dx, dy):
Update the player position
self.player.position = x, y
Sort the sprites so the highest on the screen draw first
self.drawable. sort(key=bottom_edge_as_sort_key, reverse=True)

def on_draw(self):
self.clear()
self.drawable.draw()

game = InefficientTopDownGame ()

(continues on next page)

320 Chapter 18. Drawing & Using Sprites

https://docs.python.org/3/library/stdtypes.html#list.sort
https://docs.python.org/3/library/functions.html#callable

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

{game.run()

Custom Texture Atlases
A TextureAtlas represents Texture data packed side-by-side in video memory. As textures are added, the atlas
grows to fit them all into the same portion of your GPU’s memory.

By default, each SpriteList uses the same default atlas. Use the atlas keyword argument to specify a custom atlas
for an instance.

This is especially useful to prevent problems when using large or oddly shaped textures.
Please see the following for more information:
* Custom Atlas

e The TextureAtlas API documentation

Lazy SpriteLists

You can delay creating the OpenGL resources for a Spritelist by passing lazy=True on creation:

[sprite_list = SpritelList(lazy=True)]

The SpriteList won’t create the OpenGL resources until forced to by one of the following:
1. The first SpriteList.draw() call on it
2. SpritelList.initialize()
3. GPU-backed collisions, if enabled

This behavior is most useful in the following cases:

Case Primary Purpose

Creating SpriteLists before a Win- CPU-only unit tests which never draw

dow

Parallelized SpriteList creation Faster loading & world generation via threading or subprocess &

pickle

Parallelized Loading

To increase loading speed & reduce stutters during gameplay, you can run pre-gameplay tasks in parallel, such as
pre-generating maps or pre-loading assets from disk into RAM.

Warning: Only the main thread is allowed to access OpenGL!

Attempting to access OpenGL from non-main threads will raise an OpenGL Error!

To safely implement parallel loading, you will want to use the following general approach before allowing gameplay to
begin:

1. Pass lazy=True when creating SpriteList instances in your loading code as described above

18.1. Contents 321

https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/threading.html#module-threading
https://docs.python.org/3/library/subprocess.html#module-subprocess
https://docs.python.org/3/library/pickle.html#module-pickle

Python Arcade Library, Release 3.0.0.dev26

2. Sync the SpriteList data back to the main thread or process once loading is finished

3. Inside the main thread, call Spritelist.initialize() on each sprite list once it’s ready to allocate GPU
resources

Very advanced users can use subprocess to create SpriteLists inside another process and the pickle module to help
pass data back to the main process.

Please see the following for additional information:
» Arcade’s OpenGL notes for arcade-specific threading considerations
* Python’s threading documentation

* Python’s subprocess and pickle documentation

18.2 I’'m Impatient!

Beginners should at least skim What's a Sprite? (~10 minute read), but you can skip to the tutorials and full example
code if you’'d like:

* Drawing with Sprites and SpriteLists
* Arcade’s Sprite Examples

* Arcade’s Simple Platformer Tutorial

322 Chapter 18. Drawing & Using Sprites

https://docs.python.org/3/library/subprocess.html#module-subprocess
https://docs.python.org/3/library/pickle.html#module-pickle
https://docs.python.org/3/library/threading.html#module-threading
https://docs.python.org/3/library/subprocess.html#module-subprocess
https://docs.python.org/3/library/pickle.html#module-pickle

CHAPTER
NINETEEN

KEYBOARD

19.1 Events

19.1.1 What is a keyboard event?

Keyboard events are arcade’s representation of physical keyboard interactions.

For example, if your keyboard is working correctly and you type the letter A into the window of a running arcade game,
it will see two separate events:

1. akey press event with the key code for A

2. akey release event with the key code for A

19.1.2 How do | handle keyboard events?

You must implement key event handlers. These functions are called whenever a key event is detected:
e arcade.Window.on_key_press()
e arcade.Window.on_key_release()

You need to implement your own versions of the above methods on your subclass of arcade. Window. The arcade.key
module contains constants for specific keys.

For runnable examples, see the following:
* sprite_move_keyboard
* sprite_move_keyboard_better

* sprite_move_keyboard_accel

Note: If you are using Views, you can also implement key event handler methods on them.

323

Python Arcade Library, Release 3.0.0.dev26

19.2 Modifiers

19.2.1 What is a modifier?

Modifiers are keys that modify the behavior of keyboard input. Examples include keys such as shift, control, and
command. Lock keys such as capslock are also modifiers.

19.2.2 What does active mean?

Modifiers can be active in two ways:
1. A modifier key is currently held down by the user (example: shift)
2. A lock modifier is currently turned on (example: capslock)

This is important because lock modifiers can be active without their corresponding key held down. Instead, they are
switched on and off by pressing their keys.

19.2.3 How do | use modifiers?
As long as you don’t need to distinguish between the left and right versions of modifiers keys, you can rely on the
modifiers argument of key event handlers.

For every key event, the current state of all modifiers is passed to the handler method through the modifiers argument
as a single integer. For each active modifier during an event, a corresponding bit is set to 1.

Constants for each of these bits are defined in arcade.key:

MOD_SHIFT
MOD_CTRL
MOD_ALT Not available on Mac OS X
MOD_WINDOWS Available on Windows only
MOD_COMMAND Available on Mac OS X only
MOD_OPTION Available on Mac OS X only

MOD_CAPSLOCK

MOD_NUMLOCK

MOD_SCROLLLOCK

MOD_ACCEL Equivalent to MOD_CTRL, or MOD_COMMAND on Mac OS X.

You can use these constants with bitwise operations to check if a specific modifier is active during a keyboard event:

this should be implemented on a subclass of Window or View
def on_key_press(self, symbol, modifiers):

if modifiers & arcade.key.MOD_SHIFT:
print("The shift key is held down")

if modifiers & arcade.key.MOD_CAPSLOCK:
print("Capslock is on")

324 Chapter 19. Keyboard

Python Arcade Library, Release 3.0.0.dev26

19.2.4 How do I tell left & right modifers apart?

Many keyboards have both left and right versions of modifiers such as shift and control. However, the modifiers
argument to key handlers does not tell you which specific modifier keys are currently pressed!

Instead, you have to use specific key codes for left and right versions from arcade.key to track press and release events.

19.2. Modifiers 325

Python Arcade Library, Release 3.0.0.dev26

326 Chapter 19. Keyboard

CHAPTER
TWENTY

This page will help you get started by covering the essentials of sound.

In addition each section’s concepts, there may also be links to example code and documentation.

1. Why Is Sound Important?
2. Sound Basics

* Loading Sounds

e Playing Sounds

» Stopping Sounds
3. Streaming or Static Loading?
4. Advanced Playback Control
5. Cross-Platform Compatibility

6. Other Sound Libraries (for advanced users)

I’'m Impatient!

Users who want to skip to example code should consult the following:
1. sound_demo
2. sound_speed_demo
3. music_control_demo

4. Platformer Tutorial - Step 9 - Adding Sound

20.1 Why Is Sound Important?

Sound helps players make sense of what they see.
For example, have you ever run into one of these common problems?
* Danger you never knew was there
* A character whose reaction seemed unexpected or out of place
* Items or abilities which appeared similar, but were very different

* An unclear warning or confirmation dialog

SOUND

327

Python Arcade Library, Release 3.0.0.dev26

How much progress did it cost you? A few minutes? The whole playthrough? More importantly, how did you feel?
You probably didn’t want to keep playing.

You can use sound to prevent moments like these. In each example above, the right audio can provide the information
players need for the game to feel fair.

20.2 Sound Basics

20.2.1 Loading Sounds

Before you can play a sound, you need to load its data into memory.
Arcade provides two ways to do this. Both accept the same arguments and return an arcade. Sound instance.

The easiest way is to use arcade. load_sound():

import arcade

You can pass strings containing a built-in resource handle,

hurt_sound = arcade.load_sound(":resources:sounds/hurtl.wav")

a pathlib.Path,

pathlib_sound = arcade.load_sound(Path("imaginary\\windows\\path\\file.wav"))
or an ordinary string describing a path.

string_path_sound = arcade.load_sound("imaginary/mac/style/path.wav")

If you prefer a more object-oriented style, you can create Sound instances directly:

from arcade import Sound # You can also use arcade.Sound directly

Although Sound accepts the same arguments as load_sound,
only the built-in resource handle is shown here.
hurt_sound = Sound(":resources:sounds/hurtl.wav'")

See the following to learn more:
1. Built-In Resources
2. pathlib

3. Streaming or Static Loading?

20.2.2 Playing Sounds

There are two easy ways to play a Sound object.

One is to call Sound. play directly:

[self .hurt_player = hurt_sound.play()

The other is to pass a Sound instance as the first argument of arcade.play_sound():

Important: this *must* be a Sound instance, not a path or string!
self.hurt_player = arcade.play_sound(hurt_sound)

Both return a pyglet.media.player.Player. You should store it somewhere if you want to be able to stop or alter
a specific playback of a Sound’s data.

328 Chapter 20. Sound

https://docs.python.org/3/library/pathlib.html#module-pathlib
https://pyglet.readthedocs.io/en/latest/modules/media.html#pyglet.media.player.Player

Python Arcade Library, Release 3.0.0.dev26

arcade.Sound vs pyglet’s Player

This is a very important distinction:
e An arcade. Sound is a source of audio data in memory
* Starting a playback of audio data returns a new pyglet Player which controls that specific playback

Imagine you have two non-player characters (NPCs) in a game which both play the same selection of Sound data. Since
they are separate characters in the world, their playbacks of the data must be independent. To do this, each NPC will
keep the pyglet Player returned when they start playing a sound.

For example, an NPC may get close enough to the user’s character to talk, attack, or perform some other action which
requires playing a different sound. You would handle this as follows:

1. Use the approaching NPC’s pyglet Player to stop its current playback
2. If the NPC starts playing a different sound, store the returned pyglet Player

This is especially important when a dangerous NPC or other hazard can be invisible. Making invisible hazards play
sounds is one of the easiest and most popular ways of making their gameplay feel balanced, fair, and fun.

See the following to learn more:
1. Why Is Sound Important?

2. sound_demo

20.2.3 Stopping Sounds

Arcade’s helper functions are the easiest way to stop playback. To use them:
1. Do one of the following:

* Pass the stored pyglet Player to arcade. stop_sound():

[arcade .stop_sound(self.current_playback)

* Pass the stored pyglet Player to the sound’s stop () method:

[self .hurt_sound.stop(self.current_playback)

2. Clear any references to the player to allow its memory to be freed:

For each object, Python tracks how many other objects use it. If
nothing else uses an object, it will be marked as garbage which
Python can delete automatically to free memory.
self.current_playback = None

See the following to learn more:
e The Most Reliable Formats & Features

* Advanced Playback Control

20.2. Sound Basics 329

https://pyglet.readthedocs.io/en/latest/modules/media.html#pyglet.media.player.Player
https://pyglet.readthedocs.io/en/latest/modules/media.html#pyglet.media.player.Player
https://pyglet.readthedocs.io/en/latest/modules/media.html#pyglet.media.player.Player
https://pyglet.readthedocs.io/en/latest/modules/media.html#pyglet.media.player.Player
https://pyglet.readthedocs.io/en/latest/modules/media.html#pyglet.media.player.Player
https://pyglet.readthedocs.io/en/latest/modules/media.html#pyglet.media.player.Player

Python Arcade Library, Release 3.0.0.dev26

20.3 Streaming or Static Loading?

Streaming Best' Format Decompressed Best Uses
False (Default) .wav Whole file 2+ overlapping playbacks, short, repeated, unpredictable
True .mp3 Predicted data 1 copy & file at a time, long, uninterrupted

By default, arcade decompresses the entirety of each sound into memory.

This is the best option for most game sound effects. It’s called “static””> audio because the data never changes.

The alternative is streaming. Enable it by passing True through the streaming keyword argument when you load a
sound.:

Both loading approaches accept the streaming keyword.
classical music_track = arcade.load_sound(":resources:music/1918.mp3", streaming=True)
funky_music_track = arcade.Sound(":resources:music/funkyrobot.mp3", streaming=True)

For an interactive example, see the music_control_demo.

The following subheadings will explain each option in detail.

20.3.1 Static Sounds are for Speed

Static sounds can help your game run smoothly by preloading data before gameplay.

This is because disk access is one of the slowest things a computer can do. Waiting for sounds to load during gameplay
can make the your game run slowly or stutter. The best way to prevent this is to load your sound data ahead of time.
Popular approaches for this include:

* Loading screens
¢ Small inter-level “rooms”
* Multi-threading (best used by experienced programmers)

Unless music is a central part of your gameplay, you should avoid storing fully decompressed albums of music in RAM.
Each decompressed minute of CD quality audio uses slightly over 10 MB of RAM. This adds up quickly, and can slow
down or freeze a computer if it fills RAM completely.

For music and long background audio, you should should strongly consider streaming from compressed files instead.

When to Use Static Sounds

If an audio file meets one or more of the following conditions, you may want to load it as static audio:
* You need to start playback quickly in response to gameplay.
» Two or more “copies” of the sound can be playing at the same time.
* You will unpredictably skip to different times in the file.
* You will unpredictably restart playback.
* You need to automatically loop playback.

* The file is a short clip.

1 See The Most Reliable Formats & Features to learn more.
2 See the pyglet.media.StaticSource class used by arcade.

330 Chapter 20. Sound

https://docs.python.org/3/glossary.html#term-argument
https://pyglet.readthedocs.io/en/latest/modules/media.html#pyglet.media.StaticSource

Python Arcade Library, Release 3.0.0.dev26

20.3.2 Streaming Saves Memory

Streaming audio from files is very similar to streaming video online.

Both save memory by keeping only part of a file into memory at any given time. Even on the slowest recent hardware,
this usually works if:

* You only stream one media source at a time.

* You don’t need to synchronize it closely with anything else.

When to Stream

The best way to use streaming is to only use it when you need it.

Advanced users may be able to handle streaming multiple tracks at a time. However, issues with synchronization &
interruptions will grow with the quantity and quality of the audio tracks involved.

If you’re unsure, avoid streaming unless you can say yes to all of the following:
1. The Sound will have at most one playback at a time.
2. The file is long enough to make it worth it.
3. Seeking (skipping to different parts) will be infrequent.
¢ Ideally, you will never seek or restart playback suddenly.
* If you do seek, the jumps will ideally be close enough to land in the same or next chunk.
See the following to learn more:
e Change Ongoing Playbacks via Player Objects

e The pyglet.media.StreamingSource class used to implement streaming

Streaming Can Cause Freezes

Failing to meet the requirements above can cause buffering issues.

Good compression on files can help, but it can’t fully overcome it. Each skip outside the currently loaded data requires
reading and decompressing a replacement.

In the worst-case scenario, frequent skipping will mean constantly buffering instead of playing. Although video stream-
ing sites can downgrade quality, your game will be at risk of stuttering or freezing.

The best way to handle this is to only use streaming when necessary.

20.4 Advanced Playback Control

Arcade’s functions for Stopping Sounds are convenience wrappers around the passed pyglet Player.
You can alter a playback of Sound data with more precision by:
* Using the properties and methods of its P1layer any time before playback has finished

* Passing keyword arguments with the same (or similar) names as the Player’s properties when playing the sound.

20.4. Advanced Playback Control 331

https://pyglet.readthedocs.io/en/latest/modules/media.html#pyglet.media.StreamingSource
https://pyglet.readthedocs.io/en/latest/modules/media.html#pyglet.media.player.Player
https://pyglet.readthedocs.io/en/latest/modules/media.html#pyglet.media.player.Player

Python Arcade Library, Release 3.0.0.dev26

20.4.1 Stopping via the Player Object

The simplest form of advanced control is pausing and resuming playback.

Pausing

There is no stop method. Instead, call the Player.pause () method:

Assume this is inside an Enemy class subclassing arcade.Sprite
self.current_player.pause()

Stopping Permanently

After you’ve paused a player, you can stop playback permanently:

1. Call the player’s delete () method:

Permanently deletes the operating system half of this playback.
self.current_player.delete()

This specific playback is now permanently over, but you can start new ones.

2. Make sure all references to the player are replaced with None:

Python will delete the pyglet Player once there are 0 references to it
self.current_player = None

For a more in-depth explanation of references and auto-deletion, skim the start of Python’s page on garbage collection.
Reading the Abstract section of this page should be enough to get started.

20.4.2 Changing Aspects of Playback

There are more ways to alter playback than stopping. Some are more qualitative. Many of them can be applied to both
new and ongoing sound data playbacks, but in different ways.

Change Ongoing Playbacks via Player Objects

Player.pause() is one of many method and property members which change aspects of an ongoing playback. It’s
impossible to cover them all here, especially given the complexity of positional audio.

Instead, the table below summarizes a few of the most useful members in the context of arcade. Superscripts link
info about potential issues, such as name differences between properties and equivalent keyword arguments to arcade
functions.

332 Chapter 20. Sound

https://pyglet.readthedocs.io/en/latest/modules/media.html#pyglet.media.player.Player.pause
https://pyglet.readthedocs.io/en/latest/modules/media.html#pyglet.media.player.Player.delete
https://devguide.python.org/internals/garbage-collector/
https://pyglet.readthedocs.io/en/latest/modules/media.html#pyglet.media.player.Player.pause

Python Arcade Library, Release 3.0.0.dev26

Player Member Type Default Purpose

pause() method N/A Pause playback resumably.
play(Q method N/A Resume paused playback.
seek () method N/A

yarning:

SLELE %:-_o<|
oQ

Sfream-

cuse
freezes!

Skip to the passed float
timestamp measured as
seconds from the audio’s
start.

volume float property 1.0 The scaling factor to apply
to the original audio’s vol-
ume. Must be between 0.
0 (silent) and 1. 0 (full vol-

ume).

loop® bool property False Whether to restart play-
back automatically after
finishing.*

pitch’ float property 1.0 How fast to play the sound

data; also affects pitch.

Configure New Playbacks via Keyword Arguments

Arcade’s helper functions for playing sound also accept keyword arguments for configuring playback. As mentioned
above, the names of these keywords are similar or identical to those of properties on Player. See the following to learn
more:

e arcade.play_sound()
e Sound.play()

* sound_speed_demo

3 arcade.play_sound() uses looping instead. See:

e Configure New Playbacks via Keyword Arguments

¢ The related GitHub issue.

4 Looping is unavailable when streaming=True; see pyglet’s guide to controlling playback.
5 Arcade’s equivalent keyword for Playing Sounds is speed

20.4. Advanced Playback Control 333

https://pyglet.readthedocs.io/en/latest/modules/media.html#pyglet.media.player.Player
https://pyglet.readthedocs.io/en/latest/modules/media.html#pyglet.media.player.Player.pause
https://pyglet.readthedocs.io/en/latest/modules/media.html#pyglet.media.player.Player.play
https://pyglet.readthedocs.io/en/latest/modules/media.html#pyglet.media.player.Player.seek
https://docs.python.org/3/library/functions.html#float
https://pyglet.readthedocs.io/en/latest/modules/media.html#pyglet.media.player.Player.volume
https://docs.python.org/3/library/functions.html#float
https://pyglet.readthedocs.io/en/latest/modules/media.html#pyglet.media.player.Player.loop
https://docs.python.org/3/library/functions.html#bool
https://pyglet.readthedocs.io/en/latest/modules/media.html#pyglet.media.player.Player.pitch
https://docs.python.org/3/library/functions.html#float
https://pyglet.readthedocs.io/en/latest/modules/media.html#pyglet.media.player.Player
https://github.com/pythonarcade/arcade/issues/1915
https://pyglet.readthedocs.io/en/latest/programming_guide/media.html#controlling-playback

Python Arcade Library, Release 3.0.0.dev26

20.5 Cross-Platform Compatibility

The sections below cover the easiest approach to compatibility.

You can try other options if you need to. Be aware that doing so requires grappling with the many factors affecting

audio compatibility:
1. The formats which can be loaded
2. The features supported by playback
3. The hardware, software, and settings limitations on the first two

4. The interactions of project requirements with all of the above

20.5.1 The Most Reliable Formats & Features

For most users, the best approach to formats is:
e Use 16-bit PCM Wave (.wav) files for sound effects
» Use MP3 files for long background audio like music
As long as a user has working audio hardware and drivers, the following basic features should work:
1. Loading Sounds sound effects from Wave files
2. Playing Sounds and Stopping Sounds
3. Adjusting playback volume and speed of playback

Advanced functionality or subsets of it may not, especially positional audio. To learn more, see the rest of this page

and pyglet’s guide to supported media types.

Why 16-bit PCM Wave for Effects?

Storing sound effects as 16-bit PCM .wav ensures all users can load them:
1. pyglet has built-in in support for this format
2. Some platforms can only play 16-bit audio
The files must also be mono rather than stereo if you want to use positional audio.

Accepting these limitations is usually worth the compatibility benefits, especially as a beginner.

Why MP3 For Music and Ambiance?

1. Nearly every system which can run arcade has a supported MP3 decoder.
2. MP3 files are much smaller than Wave equivalents per minute of audio, which has multiple benefits.
See the following to learn more:
* Loading In-Depth
* Pyglet’s Supported Media Types

334 Chapter 20

. Sound

https://pyglet.readthedocs.io/en/latest/programming_guide/media.html#supported-media-types
https://pyglet.readthedocs.io/en/latest/programming_guide/media.html#supported-media-types

Python Arcade Library, Release 3.0.0.dev26

Converting Audio Formats

Don’t worry if you have a great sound in a different format.

There are multiple free, reliable, open-source tools you can use to convert existing audio. Two of the most famous are
summarized below.

Name & Link for Tool Difficulty ~ Summary
6

Audacity Beginner® A free GUI application for editing sound
FFmpeg’s command line tool Advanced Powerful media conversion tool included with the library

Most versions of these tools should handle the following common tasks:
* Converting audio files from one encoding format to another
» Converting from stereo to mono for use with positional audio.

To integrate FFmpeg with Arcade as a decoder, you must use FFmpeg version 4.X, 5.X, or 6.X. See Loading In-Depth
to learn more.

20.5.2 Loading In-Depth

There are 3 ways arcade can read audio data through pyglet:
1. The built-in pyglet .wav loading features
2. Platform-specific components or nearly-universal libraries
3. Supported cross-platform media libraries, such as PyOgg or FFmpeg

To load through FFmpeg, you must install FFmpeg 4.X, 5.X, or 6.X. This is a requirement imposed by pyglet. See
pyglet’s notes on installing FFmpeg to learn more.

Everyday Usage

In practice, Wave is universally supported and MP3 nearly so.”

Limiting yourself to these formats is usually worth the increased compatibility doing so provides. Benefits include:
1. Smaller download & install sizes due to having fewer dependencies
2. Avoiding binary dependency issues common with PyInstaller and Nuitka
3. Faster install and loading, especially when using MP3s on slow drives

These benefits become even more important during game jams.

6 Linux users may need to install the LAME MP3 encoder separately to export MP3 files.
7 The only time MP3 will be absent is on unusual Linux configurations. See pyglet’s guide to supported media types to learn more.

20.5. Cross-Platform Compatibility 335

https://www.audacityteam.org/
https://ffmpeg.org/
https://ffmpeg.org/
https://pyglet.readthedocs.io/en/latest/programming_guide/media.html#ffmpeg-installation
https://manual.audacityteam.org/man/faq_installing_the_lame_mp3_encoder.html
https://pyglet.readthedocs.io/en/latest/programming_guide/media.html#supported-media-types

Python Arcade Library, Release 3.0.0.dev26

20.5.3 Backends Determine Playback Features
As with formats, you can maximize compatibility by only using the lowest common denominators among features. The
most restrictive backends are:
* Mac’s only backend, an OpenAL version limited to 16-bit audio
* PulseAudio on Linux, which has multiple limitations:
— It lacks support for positional audio
— It can crash under certain circumstances when other backends will not:
Pausing / resuming in debuggers
% Rarely and unpredictably when multiple sounds are playing

On Linux, the best way to deal with the PulseAudio bug is to install OpenAL. It will often already be installed as a
dependency of other packages.

Other differences between backends are less drastic. Usually, they will be things like the specific positional features
supported and the maximum number of simultaneous sounds.

See the following to learn more:
* Pyglet’s Audio Backends

e Other Sound Libraries

20.5.4 Choosing the Audio Backend

By default, arcade will try pyglet audio back-ends in the following order until it finds one which loads:

1. "openal"

2. "xaudio2"

3. "directsound”
4. "pulse"

5. "silent"

You can override through the ARCADE_SOUND_BACKENDS environment variable. The following rules apply to its value:
1. It must be a comma-separated string
2. Each name must be an audio back-ends supported by pyglet
3. Spaces do not matter and will be ignored

For example, you could need to test OpenAL on a specific system. This example first tries OpenAL, then gives up
instead using fallbacks.

[ARCADE_SOUND_BACKENDS:"openal ,silent" python mygame.py

Please see the following to learn more:
* pyglet’s audio driver documentation

* Working with Environment Variables in Python

336 Chapter 20. Sound

https://pyglet.readthedocs.io/en/latest/programming_guide/media.html#the-bug
https://pyglet.readthedocs.io/en/latest/programming_guide/media.html#openal
https://pyglet.readthedocs.io/en/latest/programming_guide/media.html#choosing-the-audio-driver
https://www.twilio.com/blog/environment-variables-python
https://pyglet.readthedocs.io/en/latest/programming_guide/media.html#choosing-the-audio-driver
https://www.twilio.com/blog/environment-variables-python

Python Arcade Library, Release 3.0.0.dev26

20.6 Other Sound Libraries

Advanced users may have reasons to use other libraries to handle sound.

20.6.1 Using Pyglet

The most obvious external library for audio handling is pyglet:
* It’s guaranteed to work wherever arcade’s sound support does.
* It offers far better control over media than arcade
* You may have already used parts of it directly for Advanced Playback Control

Note that arcade. Sound’s source attribute holds a pyglet.media. Source. This means you can start off by cleanly
using arcade’s resource and sound loading with pyglet features as needed.

Notes on Positional Audio
Positional audio is a set of features which automatically adjust sound volumes across the channels for physical speakers
based on in-game distances.

Although pyglet exposes its support for this through its Player, arcade does not currently offer integrations. You will
have to do the setup work yourself.

If you already have some experience with Python, the following sequence of links should serve as a primer for trying
positional audio:

1. Why 16-bit PCM Wave for Effects?

2. Backends Determine Playback Features

3. The following sections of pyglet’s media guide:
1. Controlling playback
2. Positional audio

4. pyglet.media.player.Player’s full documentation

20.6.2 External Libraries

Some users have reported success with using PyGame CE or SDL2 to handle sound. Both these and other libraries
may work for you as well. You will need to experiment since this isn’t officially supported.

20.6. Other Sound Libraries 337

https://pyglet.readthedocs.io/en/latest/modules/media.html#pyglet.media.Source
https://pyglet.readthedocs.io/en/latest/modules/media.html#pyglet.media.player.Player
https://pyglet.readthedocs.io/en/latest/programming_guide/media.html#controlling-playback
https://pyglet.readthedocs.io/en/latest/programming_guide/media.html#positional-audio
https://pyglet.readthedocs.io/en/latest/modules/media.html#pyglet.media.player.Player
https://pyga.me/
https://www.libsdl.org/

Python Arcade Library, Release 3.0.0.dev26

338 Chapter 20. Sound

CHAPTER
TWENTYONE

TEXTURES

21.1 Introduction

The arcade. Texture type is how arcade normally interacts with images either loaded from disk or created manually.
This is basically a wrapper for PIL/Pillow images including detection for hit box data using pymunk depending on the
selected hit box algorithm. These texture objects are in other words responsible to provide raw RGBA pixel data to
OpenGL and hit box geometry to the sprite engine.

There is another texture type in Arcade in the lower level OpenGL API: arcade.gl.Texture. This represents an
actual OpenGL texture and should only be used when dealing with the low level rendering API arcade.gl.

Textures can be created/loaded before or after the window is created because they don’t interact with OpenGL directly.

21.2 Texture Uniqueness

When a texture is created a name is required. This should be a unique string. If two more more textures have the same
name we will run into trouble. When loading textures the absolute path to the file is used as part of the name including
vertical/horizontal/diagonal, size and other parameter for a truly unique name.

When loading texture through arcade the name of the texture will be the absolute path to the image and various param-
eters such as size, flipping, xy position etc.

Also remember that the texture class do hit box detection with pymunk by looking at the raw pixel data. This means
for example a texture with different flipping will be loaded multiple times (or fetched from cache) because we rely in
the transformed pixel data to get the hit box.

21.3 Texture Cache

Arcade is caching texture instances based on the name attribute to significantly speed up loading times.

The texture will only be loaded during the first sprite creation

tex_name = "path/to/sprite.png"

sprite_1 = arcade.Sprite(tex_name)

sprite_2 arcade.Sprite(tex_name)

sprite_3 = arcade.Sprite(tex_name)

Will be loaded and cached because we need fresh pixel data for hit box detection
sprite_4 = arcade.Sprite(tex_name, flipped_vertically=True)

Fetched from cache

sprite_5 = arcade.Sprite(tex_name, flipped_vertically=True)

339

Python Arcade Library, Release 3.0.0.dev26

The above also applies when using arcade.load_texture() or other texture loading functions.

Arcade’s texture cache can be cleared using arcade. cleanup_texture_cache().

21.4 Custom Textures

We can manually create textures by creating PIL/Pillow images. How this is done is entirely up to you. Using the
drawing functionality of Pillow or simply providing raw pixel data from another library/source into a Pillow image. A
random example is getting raw pixel data from matplotlib.

Create a image from raw pixel data from some source
image = PIL.Image.frombuffer(raw_data)

NOTE: Also make sure you use a sane hit_box_algorithm
texture = arcade.Texture('unique_name", image, hit_box_algorithm=...)

Again, how you create the image is up to you. There are many possibilities with Pillow.

340 Chapter 21. Textures

CHAPTER
TWENTYTWO

SECTIONS

In a simple game, the whole viewport is used to display the game “map”. In more advanced games it’s fairly normal to
have this viewport divided into different “sections” with different usages. Areas where different information is displayed
and processed. For example you can have a menu at the top, some info panel at the right and the game main “screen”
(the “map”) covering the rest of the viewport.

To achieve this separation of game logic you have Sections. A Section is a way to divide a View space into smaller
parts, each one will then receive events redirected depending on configuration and the space of the view occupied.
Sections can isolate code that otherwise goes packed together in a View . This way the code remains exactly where it
belongs and not mixed together with code from other parts of the program.

By configuring a Section you can capture some events or for example only capture certain keys from keyboard events.
Also you can configure which events are propagated to other underlying sections or even to the view itself.

Sections can also be “modal” meaning that they will capture all the events first but draw last and also will prevent other
views from receiving the on_update event.

Also note that if you don’t use sections in your code, nothing changes. Even the SectionManager is not created if you
don’t add sections.

Key features of Sections:
* Divide the screen into logical components (Sections).

» Event dispatching: a Section will capture mouse events based on the space occupied from the view. Also
keyboard events will be captured based on configuration.

 Prevent dispatching: a Section can be configured to prevent dispatching events captured or let events flow to
other sections underneath.

* Event capturing order: based on a Section insertion order you can configure the order in which sections will
capture events.

* Draw order: you can configure the order in which sections are drawn (sections can overlap!).

* Section “enable” property to show or hide sections. You can toogle that.

* Modal Sections: sections that draw last but capture all events and also stop other sections from updating.

* Automated camera swich: Sections will try to activate and deactivate cameras when changing between sections.

Important: You don’t need to cover 100% of the View with sections. Sections can work with the View as well.
Also, Sections can overlap.

341

Python Arcade Library, Release 3.0.0.dev26

22.1 A simple example

A small program without the use of sections needs to perform some checks inside a on_mouse_release event to know

what to do depending on the mouse position.

For example maybe if the mouse is on top of the map you want to do something, but if the
you may need to do other things.

This is what this somehow looks without sections:

mouse is somewhere else

class MyView(arcade.View):

def on_mouse_release(x: int, y: int, *args, **kwargs):
if x > 700:
click in the side
do_some_logic_when_side_clicking()
else:
click on the game map
do_something_in_the_game_map ()

This code can and often become long and with a lot of checks to know what to do.
By using Sections, you can improve this code and automate this cimple checks.

This is what looks like using Sections:

class Map(arcade.Section):

...

def on_mouse_release(x: int, y: int, *args, **kwargs):
clicks on the map are handled here
pass

class Side(arcade.Section):

def on_mouse_release(x: int, y: int, *args, **kwargs):
clicks on the side of the screen are handled here
pass

class MyView(arcade.View):

def __init__(self, *args, **kwargs):
self.map_section = Map(0, 0, 700, self.window.height)
self.side_section = SideSpace(700, 0, 100, self.window.height)

self.add_section(self.map_section)
self.add_section(self.side_section)

342

Chapter 22. Sections

Python Arcade Library, Release 3.0.0.dev26

22.2 How to work with Sections

To work with sections you first need to have a View. Sections depend on Views and are handled by a special
SectionManager inside the View. Don’t worry, 99% of the time you won’t need to interact with the SectionManager.

To create a Section start by inheriting from arcade.Section.

Based on the Section configuration your section will start receiving events from the View SectionManager. A
Section has all the events a View has like on_draw, on_update, on_mouse_press, etc.

On instantiation define the positional arguments (left, bottom, width, height) of the section. These are very important
properties of a Section: as they define the event capture rectangular area.

Properties of a Section:

position: (left, bottom, width, height):
This are mandatory arguments that you need to provide when instantiating a Section. This is very important as
this rectangular positioning will determine the event capture space for mouse related events. This also will help
you determine inside a class the space that is holding for example when you want to draw something or calculate
coordinates.

name:
A Section can optionally get a name so it will be easier to debug and indetify what Section is doing what. When
logging for example is very nice to log the Section name at the beginnig so you have a reference from where
the log was generated.

accept_keyboard_keys:
This allows to tell if a Section can receive keyboard events (accept_keyboard_keys=False) or to tell which
keyboard keys are captured in this Section (accept_keyboard_keys={arade.key.UP, arcade. key. DOWN })

accept_mouse_events:
This allows to tell if a Section can receive mouse events or which mouse events are accepted. For example:
accept_mouse_events={ ‘on_mouse_move’ } means only mouse move events will be captured.

prevent_dispatch:
This tells a Section if it should prevent the dispatching of certain events to other sections down
event capture stream. By default a Section will prevent dispatching all handled events. By passing
prevent_dispatch={'on_mouse_press'} all events will propagate down the event capture stream except
the on_mouse_press event. Note that passing prevent_dispatch=None (the default) is the same as passing
prevent_dispatch={True} which means “prevent all events” from dispatching to other sections. You can
also set prevent_dispatch={False} to dispatch all events to other sections.

prevent_dispatch_view:

This allows to tell a Section if events (and what events) should not be dispatched to the underlying View.
This is handy if you want to do some action in the View code whether or not the event was handled by an-
other Section. By default a Section will prevent dispatching all handled events to the View. Note that passing
prevent_dispatch=None (the default) is the same as passing prevent_dispatch={True} which means “pre-
vent all events” from dispatching to the view. You can also set prevent_dispatch={False} to dispatch all
events to other sections. Also note that in order for the view to receive any event, ALL the sections need to
allow the dispatch of that particular event. If at least one section prevents it, the event will not be delivered
to the view.

local_mouse_coordinates:
If True the section mouse events will receive x, y coordinates section related to the section dimensions and
position (not related to the screen). Note that although this seems very usefull, section local coordinates
doesn’t work with arcade collision methods. You can use Section ““get_xy_screen_relative " to transform
local mouse coordinates to screen coordinates that work with arcade collision methods

22.2. How to work with Sections 343

Python Arcade Library, Release 3.0.0.dev26

enabled:
By default all sections are enabled. This allows to tell if this particuar Section should be enabled or not. If
a Section is not enabled, it will not capture any event, draw, update, etc. It will be as it didn’t exist. You can
enable and disable sections at any time allowing some cool efects. Nota that setting this property will trigger the
section on_show_section or on_hide_section events.

modal:
This tells the SectionManager that this Section is modal. This means that the Section will capture all events
first and not deliver any events to the underlying sections or view. Also, It will draw last (on top of other on_draw
calls). When enabled a modal Section will prevent all other sections from receive on_update events.

draw_order:
This allows to define the draw order this Section will have. The lower the number the earlier this section will
get draw. This is handy when you have overlaping sections and you want some Section to be drawn ontop of
another. By default sections will be draw in the order they are added (except modal sections which no matter
what will be drawn last). Note that this can be different from the event capture order or the on_update order
which is defined by the insertion order in the SectionManager.

Other handy Section properties:
* block_updates: if True this section will not have the on_update method called.

e camera: this is meant to hold a arcade.Camera but it is None by default. The SectionManager will trigger the
use of the camera when is needed automatically.

Handy Section: methods:
* overlaps_with: this will tell if another Section overlaps with this one.
e mouse_is_on_top: this will tell if given a x, y coodinate, the mouse is on top of the section.
* get_xy_screen_relative: get screen X, y coordinates from x, y section coordinates.

* get_xy_section_relative: get section x, y coordinates from X, y screen coordinates.

22.3 Sections configuration and logic with an example

Imagine a game where you have this basic components:
¢ A 800x600 screen viewport
* A game map
* A menu bar at the top of the screen
* A side right panel with data from the game
* Popup messages (dialogs)
With this configuration you can divide this logic into sections with a some configuration.

Lets look what this configuration may look:

import arcade

class Map(arcade.Section):
#... define all the section logic

(continues on next page)

344 Chapter 22. Sections

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

class Menu(arcade.Section):
#... define all the section logic

class Panel (arcade.Section):
#... define all the section logic

class PopUp(arcade.Section):
def __init__(message, *args, **kwargs):
super() .__init(*args, **kwargs)
self.message = message

define draw logic, etc...

class MyView(arcade.View):

def __init__(self, *args, **kwargs):
self.map = Map(left=0, bottom=0, width=600, height=550,
name="Map', draw_order=2)
self.menu = Menu(left=0, bottom=550, width=800, height=50,
name="'Menu', accept_keyboard_keys=False,
accept_mouse_events={'on_mouse_press'})
self.panel = Panel(left=600, bottom=0, width=200, height=550,
name="'Panel', accept_keyboard_keys=False,
accept_mouse_events=False)

popup_left = (self.view.window.width // 2) - 200

popup_bottom = (self.view.window.height // 2) - 100

popup_width = 400

popup_height = 200

self.popup = PopUp(message='"', popup_left, popup_bottom, popup_width,
popup_height, enabled=False, modal=True)

self.add_section(self.map)
self.add_section(self.menu)
self.add_section(self.panel)
self.add_section(self.popup)

def close(Q):
self.popup.message = 'Are you sure you want to close the view?'
self.popup.enabled = True

Lets go step by step. First we configure a Map section that will hold the map. This Section will start at left, bottom =
0,0 and will not occupy the whole screen. Mouse events that occur outside of this coordinates will not be handled by
the Map event handlers. So Map will only need to take care of what happens inside the map.

Second we configure a Menu section that will hold some buttons. This menu takes the top space of the screen that the
Map has left. The Map + the Menu will occupy 100% of the height of the screen. The menu section is configured to
not receive any keyboard events and to only receive on_mouse_press events, ignoring all other type of mouse events.

Third, the Panel also doesn’t receive keyboard events. So the Map is the only handling keyboard events at the moment.
Also no mouse events are allowed in the panel. This panel is just to show data.

22.3. Sections configuration and logic with an example 345

Python Arcade Library, Release 3.0.0.dev26

For the last part notice that we define a section that it will be disabled at first and that is modal. This section will render
something with a message. The section is used when the close method of the view is called. Because PopUp is a modal
section, when enabled it’s rendered on top of everything. Also, all other section stoped updating and all events are
captured by the modal section. So in brief we are “stopping” the world outside the popup section.

22.4 Section Unique Events

There a few unique events that belong to sections and are somehow special in the way they are triggered:

* on_mouse_enter and on_mouse_leave:
These events are triggered on two ocasions: when the mouse enters/leaves the view and when the
SectionManager detects by mouse motion (or dragging) that the mouse has enter / leaved the section
dimensions.

» on_show_section and on_hide_section:
There events are triggered only when the section is enabled and under certain circumstances that must be
known:

— When the section is added or removed from the SectionManager and the View is currently being
shown

— When the section is enabled or disabled

— When Window calls on_show_view or on_hide_view

22.5 The Section Manager

Behind the scenes, when sections are added to the View the SectionManager is what will handle all events instead of
the View itself.

You can access the SectionManager by accessing the View.section_manager. Note that if you don’t use Sections,
the section manager inside the View will not be used nor created.

Usually you won’t need to work with the SectionManager, but there are some cases where you will need to work with
it.

You add sections usually with View.add_section but the same method exists on the SectionManager. Also you
have a remove_section and a clear_sections method.

You can enable or disable the SectionManager to completely enable or disable all sections at once.

There are some other functionality exposed from the SectionManager like get_section_by_name that can also be
useful. Check the api to know about those.

Also there are three attributes that can be configured in the SectionManager that are useful and important sometimes.

By default, on_draw, on_update and on_resize are events that will always be triggered in the View before any
section has triggered them. This is the default but you can configure this with the following attributes:

* view_draw_first
e view_update_first
* view_resize_first
Both three work the same way:
* True (default) to trigger that event in the View before the sections.

* False so it’s triggered in the View after sections corresponding methods.

346 Chapter 22. Sections

Python Arcade Library, Release 3.0.0.dev26

* None to not trigger that event in the View at all.

22.5. The Section Manager 347

Python Arcade Library, Release 3.0.0.dev26

348 Chapter 22. Sections

CHAPTER
TWENTYTHREE

GUI

Fig. 1: gui_flat_button

Arcade’s GUI module provides you classes to interact with the user using buttons, labels and much more.

Using those classes is way easier if the general concepts are known. It is recommended to read through them.

23.1 GUI Concepts

GUI elements are represented as instances of UIVidget. The GUI is structured like a tree; every widget can have other
widgets as children.

The root of the tree is the UTManager. The UIManager connects the user interactions with the GUI. Read more about
User-interface events.

Classes of arcade’s GUI code are prefixed with UI- to make them easy to identify and search for in autocompletion.

23.1.1 UlWidget

The UIWidget class is the core of arcade’s GUI system. Widgets specify the behavior and graphical representation of
any UI element, such as buttons or labels.

A UIWidget has following properties.

rect
A tuple with four slots. The first two are x and y coordinates (bottom left of the widget), and the last two are
width and height.

children
Child widgets rendered within this widget. A UIWidget will not move or resize its children; use a UILayout
instead.

349

../../example_code/how_to_examples/gui_flat_button.html

Python Arcade Library, Release 3.0.0.dev26

P cul Widgets Example

THISISATEHT WIDGET

The real danger is not that computers will begin to think like
people, but that people will begin to think like computers. -
Sydney Harris (Journalist)

Flat Button

4

Fig. 2: gui_widgets

350

Chapter 23.

GUI

../../example_code/how_to_examples/gui_widgets.html

Python Arcade Library, Release 3.0.0.dev26

Which option do you choose?

Fig. 3: gui_ok_messagebox

23.1. GUI Concepts 351

../../example_code/how_to_examples/gui_ok_messagebox.html

Python Arcade Library, Release 3.0.0.dev26

B Ul Mockup - O X

Lorem ipsum dolor sit
amet, consectetur
adipiscing elit. Praesent
eget pellentesque velit.
Nam eu rhoncus nulla.
Fusce ornare libero eget
ex vulputate, vitae mattis
orci eleifend. Donec quis
volutpat arcu. Proin lacinia
velit id imperdiet ultrices.
Fusce porta magna leo,

non maximus justo facilisis
vel. Duis pretium sem ut
eros scelerisque, a
dignissim ante
pellentesque. Cras rutrum

alirmam farmantiim

Fig. 4: gui_scrollable_text

352 Chapter 23. GUI

../../example_code/how_to_examples/gui_scrollable_text.html

Python Arcade Library, Release 3.0.0.dev26

size_hint
A tuple of two normalized floats (0.0-1.0) describing the portion of the parent’s width and height this widget

prefers to occupy.

Examples:

Prefer to take up all space within the parent
widget.size_hint = (1.0, 1.0)

Prefer to take up the full width & half the height of the parent
widget.size_hint = (1.0, 0.5)

Prefer using 1/10th of the available width & height
widget.size_hint = (0.1, 0.1)

_hint_min
A tuple of two integers defining the minimum width and height of the widget. Attempting to set a smaller width
or height on the widget will fail by defaulting to the minimum values specified here.

size

size_hint_max
A tuple of two integers defining the maximum width and height of the widget. Attempting to set a larger width
or height greater will fail by defaulting to the to the maximum values specified here.

Warning: Size hints do nothing on their own!

They are hints to UILayout instances, which may choose to use or ignore them.

Rendering
do_render () is called recursively if rendering was requested via trigger_render (). In case widgets have to request
their parents to render, use arcade.gui.UIWidget. trigger_full_render().

The widget has to draw itself and child widgets within do_render (). Due to the deferred functionality render does
not have to check any dirty variables, as long as state changes use the trigger_full_render () method.

For widgets, that might have transparent areas, they have to request a full rendering.

Warning: Enforced rendering of the whole GUI might be very expensive!

23.1.2 UlLayout

UILayout are widgets, which reserve the option to move or resize children. They might respect special properties of
a widget like size_hint, size_hint_min, or size_hint_max.

The arcade. gui.UILayout only resizes a child’s dimension (X or y axis) if size_hint provides a value for the axis,
which is not None for the dimension.

23.1. GUI Concepts 353

Python Arcade Library, Release 3.0.0.dev26

Algorithm

arcade.gui.UIManager triggers the layout and render process right before the actual frame draw. This opens the

possibility to adjust to multiple changes only once.
Example: Executed steps within UIBoxLayout:

1. do_layout()

1. Collect current size, size_hint, size_hint_min of children

2. Calculate the new position and sizes

3. Set position and size of children

2. Recursively call do_layout on child layouts (last step in do_Iayout ())

UIManager | |UILayout |children|
L L
do_layout() |
>
place children
use size, size_hint,
<
set size and pos
>
LOOP | sub layouts |
do_layout () |
>
. |
< _________
UIManager | UILayout |children|
L L

354

Chapter 23. GUI

Python Arcade Library, Release 3.0.0.dev26

Size hint support

size_hint size_hint._min size_hint_max

UIAnchorLayout X X X
UIBoxLayout X X X
UIGridLayout X X X
UIManager X X

23.1.3 UIMixin

Mixin classes are a base class which can be used to apply some specific behaviour. Currently the available Mixins are
still under heavy development.

23.1.4 Constructs

Constructs are predefined structures of widgets and layouts like a message box or (not yet available) file dialogues.

23.1.5 Available Elements

Buttons
As with most widgets, buttons take x, y, width, and height parameters for their sizing. Buttons specifically have two
more parameters - text and multiline.

All button types support styling. And they are text widgets, which means you can use the _label attribute to get the
label component of the button.

Flat button

Name: FlatButton

A flat button for simple interactions (hover, press, release, click). This button is created with a simple rectangle. Flat
buttons can quickly create a nice-looking button. However, depending on your use case, you may want to use a texture
button to further customize your look and feel.

Styling options are shown in the table below.

23.1. GUI Concepts 355

Python Arcade Library, Release 3.0.0.dev26

Name Description

font_¢ Font size for the button text. Defaults to 12.

font_1 Font name or family for the button text. If a tuple is supplied then arcade will attempt to load all of the
fonts, prioritizing the first one. Defaults to ("calibri", "arial").

font_c Fontcolor for the button text (foreground). Defaults to white for normal, hover, and disabled states. Defaults
to black for pressed state.

bg Background color of the button. This modifies the color of the rectangle within the button and not the border.
Instead of making each of these different colors for each of your buttons, set these towards a common color
theme. Defaults to gray for hover and disabled states. Otherwise it is white.

border Border color. It is common to only modify this in a focus or hover state. Defaults to white or turquoise for
hover.

border Width of the border/outline of the button. It is common to make this thicker on a hover or focus state,
however an overly thick border will result in your GUI looking old or low-quality. Defaults to 2.

Image/texture button

Name: UITextureButton

An image button. Textures are supplied from arcade. load_texture () for simple interactions (hover, press, release,
click). A texture lets you further customize the look of the widget better than styling.

A texture button a few more arguments than a flat button. texture, texture_hovered, and texture_pressed will
change the texture displayed on the button respectively. scale will change the scaling or size of the button - it’s similar
to the sprite scale.

Hint: This widget does have width and height parameters, but they only stretch the texture instead of resizing it
with keeping the borders. This feature is currently in-progress.

Texture buttons have fewer styling options when they have a texture compared to flat buttons.

Name Description

font_si: Font size for the button text. Defaults to 12.

font_nar Font name or family for the button text. If a tuple is supplied then arcade will attempt to load all of the
fonts, prioritizing the first one. Defaults to ("calibri", "arial").

font_co. Font color for the button text (foreground). Defaults to white for normal, hover, and disabled states.
Defaults to black for pressed state.

border_i Width of the border/outline of the button. It is common to make this thicker on a hover or focus state,
however an overly thick border will result in your GUI looking old or low-quality. Defaults to 2.

Text widgets

All text widgets take x and y positioning parameters. They also accept text and multiline options.

356 Chapter 23. GUI

Python Arcade Library, Release 3.0.0.dev26

Label

Name: UILabel

A label is used to display text as instruction for the user. Multiline text is supported, and what would have been its style
options were moved into the parameters.

This widget has no style options whatsoever, and they have been moved into the parameters. bold and italic will set
the text to bold or italic. align specifies the justification of the text. Additionally it takes font_name, font_size,
and text_color options.

Using the 1abel property accesses the internal Text class.

Hint: A text attribute can modify the displayed text. Beware-calling this again and again will give a lot of lag. Use
begin_update() and py:meth:~arcade.Text.end_update to speed things up.

Text input field

Name: UIInputText

A text field allows a user to input a basic string. It uses pyglet’s IncrementalTextLayout and its Caret. These are
stored in 1ayout and caret properties.

This widget takes width and height properties and uses a rectangle to display a background behind the layout.

A text input field allows the user to move a caret around text to modify it, as well as selecting parts of text to replace or
delete it. Motion symbols for a text field are listed in pyglet.window.key module.

Text area

Name: UITextArea

A text area is a scrollable text widget. A user can scroll the mouse to view a rendered text document. This does not
support editing text. Think of it as a scrollable label instead of a text field.

width and height allocate a size for the text area. If text does not fit within these dimensions then only part of it
will be displayed. Scrolling the mouse will display other sections of the text incrementally. Other parameters include
multiline and scroll_speed. See view_y on scroll speed.

Use layout and doc to get the pyglet layout and document for the text area, respectively.

23.1.6 User-interface events

Arcade’s GUI events are fully typed dataclasses, which provide information about an event affecting the UL

All pyglet window events are converted by the UIManager into UIEvents and passed via dispatch_event() to the
on_event () callbacks.

Widget-specific events (such as UTOnClickEvent are dispatched via on_event and are then dispatched as specific
event types (like on_click).

A full list of event attributes is shown below.

23.1. GUI Concepts 357

https://pyglet.readthedocs.io/en/latest/modules/text/layout.html#pyglet.text.layout.IncrementalTextLayout
https://pyglet.readthedocs.io/en/latest/modules/text/caret.html#pyglet.text.caret.Caret
https://pyglet.readthedocs.io/en/latest/modules/window_key.html#module-pyglet.window.key
https://pyglet.readthedocs.io/en/latest/modules/text/layout.html#pyglet.text.layout.ScrollableTextLayout.view_y
https://pyglet.readthedocs.io/en/latest/modules/event.html#pyglet.event.EventDispatcher.dispatch_event

Python Arcade Library, Release 3.0.0.dev26

Event Attributes

UIEvent None

UIMouseEvent X,y
UIMouseMovementEvent dx, dy
UIMousePressEvent dx, dy, button, modifiers
UIMouseDragEvent dx, dy
UIMouseScrollEvent scroll_x, scroll_y
UIKeyEvent symbol, modifiers
UIKeyReleaseEvent None

UITextEvent text
UITextMotionEvent motion
UITextMotionSelectEvent selection
UIOnClickEvent None
UIOnUpdateEvent dt

UIOnChangeEvent old_value, new_value
UIOnActionEvent action

e arcade.gui.UIEvent. Base class for all events.
e arcade.gui.UIMouseEvent. Base class for mouse-related events.

— arcade.gui.UIMouseMovementEvent. Mouse motion. This event has an additional pos property
that returns a tuple of the x and y coordinates.

UINMousePressEvent. Mouse button pressed.

UIMouseDragEvent. Mouse pressed and moved (drag).

UIMouseReleaseEvent. Mouse button release.

UIMouseScrollEvent. Mouse scroll.

e UITextEvent. Text input from user. This is only used for text fields and is the text as a string that was inputed.

* UITextMotionEvent. Text motion events. This includes moving the text around with the caret. Examples
include using the arrow keys, backspace, delete, or any of the home/end and PgUp/PgDn keys. Holding Control
with an arrow key shifts the caret by a entire word or paragraph. Moving the caret via the mouse does not trigger
this event.

* UITextMotionSelectEvent. Text motion events for selection. Holding down the Shift key and pressing
arrow keys (Control optional) will select character(s). Additionally, using a Control-A keyboard combination
will select all text. Selecting text via the mouse does not trigger this event.

e UIOnUpdateEvent. This is a callback to the arcade on_update method.

Widget-specific events

Widget events are only dispatched as a pyglet event on a widget itself and are not passed through the widget tree.
e UIOnClickEvent. Click event of UIInteractivelWidget class. This is triggered on widget press.
e UIOnChangeEvent. A value of a UIWidget has changed.

e UIOnActionEvent. An action results from interaction with the UIVidget (mostly used in constructs)

358 Chapter 23. GUI

Python Arcade Library, Release 3.0.0.dev26

23.1.7 Different event systems
Arcade’s GUI uses different event systems, dependent on the required flow. A game developer should mostly interact
with user-interface events, which are dispatched from specific UIWidget s like an "~ “on_click" of a button.

In rare cases a developer might implement some widgets themselves or want to modify the existing GUI behavior. In
those cases a developer might register own pyglet event types on widgets or overwrite the on_event method. In that
case, refer to existing widgets as an example.

Pyglet window events

Pyglet window events are received by UIManager.

You can dispatch them via:

[UIWidget.dispatch_event("on_event", UIEvent(...)) J

Window events are wrapped into subclasses of UIEvent.

Pyglet event dispatcher - UlWidget

Widgets implement pyglet’s EventDispatcher and register an on_event event type.

on_event () contains specific event handling and should not be overwritten without deeper understanding of the con-
sequences.

To add custom event handling, use the decorator syntax to add another listener:

[@UIWidget .event("on_event") J

User-interface events

User-interface events are typed representations of events that are passed within the GUI. Widgets might define and
dispatch their own subclasses of these events.

Property

Property is an pure-Python implementation of Kivy Properties. They are used to detect attribute changes of widgets
and trigger rendering. They should only be used in arcade internal code.

23.2 GUI Style

With arcade 3.0 a whole new styling mechanism for GUI widgets was introduced. The new styling allows more type
safe and clear styling while staying flexible.

Following widgets support styling:
* UITextureButton
e UIFlatButton
e UISlider

For an advanced description about the style system read the ‘Advanced’ section.

23.2. GUI Style 359

https://pyglet.readthedocs.io/en/latest/modules/event.html#pyglet.event.EventDispatcher

Python Arcade Library, Release 3.0.0.dev26

23.2.1 Basic Usage

This section covers how to use the existing stylable widgets.

In the following examples we will use the UTF1atButton as the stylable widget, you can do the same with
any stylable widget listed above.

Quickstart

The following example shows how to adjust the style.

create an own style
new_style = {
provide a style for each widget state
"normal": UIFlatButton.UIStyle(), # use default values for ‘normal’ state
"hover": UIFlatButton.UIStyle(
font_color=arcade.color.BLACK,
bg=arcade.color.WHITE,
)
"press": UIFlatButton.UIStyle(
font_color=arcade.color.BLACK,
bg=arcade.color.WHITE,
border=arcade.color.WHITE,
)
"disabled": UIFlatButton.UIStyle(
bg=arcade.color.GRAY,

}

UIFlatButton(style=new_style)

Default style

Stylable widgets have a property which holds the default style for the type of widget. For the UIFI1atButton this is
UlIFlatButton. DEFAULT_STYLE.

This default style will be used if no other style is provided within the constructor. The default style looks like this:

class UIFlatButton(UIInteractiveWidget, UIStyledWidget, UITextWidget):

DEFAULT_STYLE = {

"normal": UIStyle(),

"hover": UIStyle(
font_size=12,
font_name=("calibri", "arial'),
font_color=arcade.color.WHITE,
bg=(21, 19, 21, 255),
border=(77, 81, 87, 255),
border_width=2,

)

"press": UIStyle(
font_size=12,
font_name=("calibri", "arial"),

(continues on next page)

360 Chapter 23. GUI

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

font_color=arcade.color.BLACK,
bg=arcade.color.WHITE,
border=arcade.color.WHITE,
border_width=2,

)

"disabled": UIStyle(
font_size=12,
font_name=("calibri", "arial"),
font_color=arcade.color.WHITE,
bg=arcade.color.GRAY,
border=None,
border_width=2,

Style attributes

A UlStyle is a typed description of available style options. For the UIFlatButton the supported attributes are:

Name Type Default value Description

font_size int 12 Size of the text on the button
font_name FontNameOrNames (“calibri”, “arial”) Font of the text

font_color RGBA255 arcade.color WHITE Color of text

bg RGBA255 (21, 19, 21, 255) Background color

border Optional None Border color

border_width int 0 Border width

The style attribute is a dictionary, which maps a state like ‘normal, ‘hover’ etc. to an instance of UIFlatButton.UIStyle.

Wellknown states

Name Description

normal The default state of a widget.

hover Mouse hovered over an interactive widget.

press Mouse is pressed while hovering over the widget.
disabled The widget is disabled.

23.2.2 Advanced

This section describes the styling system itself, and how it can be used to create own stylable widgets or extend existing
ones.

Stylable widgets inherit from UlStyledWidget, which provides two basic features:
1. owns a style property, which provides a mapping between a widgets state and style to be applied

2. provides an abstractmethod which have to provide a state (which is a simple string)

Tha basic idea:

23.2. GUI Style 361

Python Arcade Library, Release 3.0.0.dev26

* astylable widget has a state (e.g. ‘normal’, ‘hover’, ‘press’, or ‘disabled’)

* the state is used to define, which style will be applied

Your own stylable widget

class MyColorBox(UIStyledWidget, UIInteractiveWidget, UIWidget):

i

A colored box, which changes on mouse interaction

i

create the style class, which will be used to define style for any widget state
@dataclass
class UIStyle(UIStyleBase):

color: RGBA255 = arcade.color.GREEN

DEFAULT_STYLE = {
"normal": UIStyle(),
"hover": UIStyle(color=arcade.color.YELLOW),
"press": UIStyle(color=arcade.color.RED),
"disabled": UIStyle(color=arcade.color.GRAY)

def get_current_state(self) -> str:

"""Returns the current state of the widget i.e disabled, press, hover or normal."

nn

if self.disabled:
return "disabled"
elif self.pressed:
return "press"
elif self.hovered:
return "hover"
else:
return "normal"

def do_render(self, surface: Surface):
self.prepare_render(surface)

get current style
style: MyColorBox.UIStyle = self.get_current_style()

Get color from current style, it is a good habit to be

bullet proven for missing values in case a dict is provided instead of a.
—UIStyle

color = style.get("color", MyColorBox.UIStyle.bg)

render
if color: # support for not setting a color at all
surface.clear(bg_color)

362 Chapter 23.

GUI

Python Arcade Library, Release 3.0.0.dev26

23.3 Troubleshooting & Hints

23.3.1 UILabel does not show the text after it was updated

Currently the size of UILabel is not updated after modifying the text. Due to the missing information, if the size
was set by the user before, this behaviour is intended for now. To adjust the size to fit the text you can use UILabel.
fit_content().

In the future this might be fixed.

23.3. Troubleshooting & Hints 363

Python Arcade Library, Release 3.0.0.dev26

364 Chapter 23. GUI

CHAPTER
TWENTYFOUR

TEXTURE ATLAS

24.1 Introduction

arcade.TextureAtlas is where your textures eventually end up when they are used in a sprite. This is where the
image data is moved to graphics memory (OpenGL) and is one of the reasons we can batch draw hundreds of thousands
of sprites extremely fast.

A texture atlas is basically a large texture containing multiple textures and we keep track of where these textures are
located. Arcade’s texture atlas reside in graphics memory and is dynamic meaning textures can be added and removed
on the fly.

Arcade’s texture atlas also automatically resizes when needed all the way up to the maximum texture size your hardware
supports. This requires a complete rebuild of the atlas, something we do on the gpu itself to minimize the impact of
this operations. For average hardware it’s something you won’t notice runtime.

It’s also important to note that texture atlases can only be created after the window has been created. Textures and
sprites can be created before the window because they don’t interact with OpenGL directly. This part is usually the
most time consuming while atlases are very fast to create and build.

24.2 Size Restriction

Currently we use a very simple row based allocation algorithm to make room for new textures over time. This means
that very tall textures can end up taking a lot of vertical space.

The maximum size of the atlas is usually 16384 x 16384 if we are targeting average hardware.

24.3 Resize

Atlases will resize automatically when full. It will also try to pack the textures better by sorting them by their height.

365

Python Arcade Library, Release 3.0.0.dev26

24.4 Default Texture Atlas

Most users will not be aware that arcade is using a texture atlas under the hood. More advanced users can take advantage
of these if they run into limitations.

Arcade has a global default texture atlas stored in window.ctx.default_atlas. This is an instance of arcade.
ArcadeContext where the low level rendering API is accessed (OpenGL).

24.5 Custom Atlas

Instead of relying on the global texture atlas we can also create our own. Sprite lists take an atlas argument for
supplying your own texture atlas instance. This atlas can also be shared between several sprite lists if needed.

Create an empty 256 x 256 texture atlas
my_atlas = TextureAtlas((256, 256))
spritelist = SpriteList(atlas=my_atlas)

When new textures are detected (sprite is added to list) the texture is added to the atlas.

We can also pre-add textures into an atlas before the game starts to avoid potential minor stalls. This is usually not a
problem, but when adding a large amount of them it can be noticeable.

List of arcade.Texture instances
list_of_textures = ...

Create an atlas with a reasonable size for a list of textures
atlas = TextureAtlas.create_from_texture_sequence(list_of_textures)

Create an atlas with a specific size and initial textures
atlas = TextureAtlas((256, 256), textures=list_of_textures)

We can also pre-add textures at any time using:
(can also be done with the default texture atlas)
atlas.add(texture)

24.6 Border

Atlases has a border property that is 1 by default. This is important to avoid “texture bleeding”” between borders of
the textures in the atlas. This is a very common issues in games using the gpu based graphics and is even a problem
with using NEAREST interpolation when sprites are rotating.

Keep the default value of this property unless you know exactly what you are doing.

366 Chapter 24. Texture Atlas

Python Arcade Library, Release 3.0.0.dev26

24.7 Updating Texture

In some instances it can be useful to update a texture. We would normally do this by modifying the Pillow texture in
the arcade. Texture instance. However, this doesn’t update the texture in the atlas itself. We can manually update it:

Change the internal image in a texture
texture.image # <- Modify or crate a new image with the same size

Write the new image data to the atlas
atlas.update_texture_image(texture)

This updates the already allocated region and the image needs to be exactly the same size. This should be used sparingly
or at least not a per frame operation. If can be fast as a per-frame operation, but you’ll need to profile that. Animated
sprites are much better option, but of course requires pre-determined texture frames.

24.8 Removing Texture

If you have stale textures they can be removed from the atlas using:

[atlas .remove (texture)

This will make the region free for new textures the next time the atlas rebuilds. You can also call arcade.
TextureAtlas.rebuild() directly if you are removing a large quantity of textures, but generally it’s enough to
let this happen automatically when needed.

24.9 Rendering Into Atlas

A much faster way to update a texture in the atlas is rendering directly into it. This can for example be used to make a
minimap for your game or in any case you need the sprite texture to be really dynamic (not decided by pre-made texture
frames). It can be used in many creative ways.

--- Initialization ---
Create an empty texture so we can allocate some space in the atlas
texture = arcade.Texture.create_empty("render_area_1", size=(256, 256))

Assign the texture to a sprite
sprite = arcade.Sprite(center_x=200, center_y=300, texture=texture)

Create the spritelist and add the sprite

spritelist = arcade.SpriteList()

Adding the sprite will also add the texture to the atlas
spritelist.append(sprite)

-- Rendering ---
Let's render something into our texture directly.
All operations will only affect the allocated portion of the atlas for texture.
We are given a framebuffer instance representing this area
with spritelist.atlas.render_into(texture) as framebuffer:
Clear the allocated region in the atlas (if you need it)
framebuffer.clear()

(continues on next page)

24.7. Updating Texture 367

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

From here on we can draw using any arcade draw functionality
arcade.draw_rectangle_filled(128, 128, 160, 160, arcade.color.WHITE, rotation)

Draw the spritelist and see your animating sprite texture
spritelist.draw()

Doing the rendering part above every frame (and incrementing rotation by delta time) will give you a sprite with a
rotating rectangle a a texture. Again, you can draw anything into this texture area. Spritelists,