
Python Arcade Library
Release 3.0.0.dev26

Paul Vincent Craven

Dec 15, 2023

GET STARTED

1 What is Arcade? 1

2 Start Here 3

3 Installation 7

4 How to Get Help 19

5 How-To Example Code 25

6 Python Discord GameJam 2020 61

7 Games Made With Arcade 65

8 Simple Platformer 75

9 Pymunk Platformer 141

10 Using Views for Start/End Screens 169

11 Solitaire 175

12 Lights 203

13 Bundling a Game with PyInstaller 211

14 Compiling a Game with Nuitka 217

15 Shaders 221

16 Making a Menu with Arcade’s GUI 297

17 Working With FrameBuffer Objects 311

18 Drawing & Using Sprites 317

19 Keyboard 323

20 Sound 327

21 Textures 339

22 Sections 341

i

23 GUI 349

24 Texture Atlas 365

25 Edge Artifacts 369

26 Logging 373

27 OpenGL 375

28 Performance 377

29 Headless Arcade 379

30 Vertical Synchronization 383

31 Pygame Comparison 385

32 API Index 389

33 API Reference 397

34 Built-In Resources 603

35 Release Notes 641

36 Ways to Contribute 691

37 Contributing to Arcade 693

38 Directory Structure 697

39 How to Submit Changes 699

40 Release Checklist 701

41 Social 703

42 Learning Resources 705

Index 707

ii

CHAPTER

ONE

WHAT IS ARCADE?

Arcade is an easy-to-learn Python library for creating 2D video games. It is ideal for people learning to program, or
developers that want to code a 2D game without learning a complex framework.

1

Python Arcade Library, Release 3.0.0.dev26

2 Chapter 1. What is Arcade?

CHAPTER

TWO

START HERE

2.1 Installation

Arcade can be installed like any other Python Package. Arcade needs support for OpenGL 3.3+. If you are familiar
with Python package management you can just “pip install” Arcade. For more detailed instructions see Installation.

2.2 Getting Help

If you get stuck, you can always ask for help! See the page on How to Get Help for more information.

2.3 Tutorials

If you are already familiar with basic Python programming, follow the Simple Platformer as a quick way to get up and
running. If you are just learning how to program, see the Learn Arcade book.

2.4 Arcade Skill Tree

• Basic Drawing Commands - See How to Draw with Your Computer, drawing_primitives

– ShapeElementLists - Batch together thousands of drawing commands into one using a arcade.
ShapeElementList. See examples in Faster Drawing with ShapeElementLists.

• Sprites - Almost everything in Arcade is done with the arcade.Sprite class.

– Basic Sprites and Collisions

– Individually place sprites

– Place sprites with a loop

– Place sprites with a list

• Moving player sprites

– Mouse - sprite_collect_coins

– Keyboard - sprite_move_keyboard

3

https://learn.arcade.academy
https://learn.arcade.academy/en/latest/chapters/05_drawing/drawing.html
https://learn.arcade.academy/en/latest/chapters/21_sprites_and_collisions/sprites.html#basic-sprites-and-collisions
https://learn.arcade.academy/en/latest/chapters/25_sprites_and_walls/sprites_and_walls.html#individually-placing-walls
https://learn.arcade.academy/en/latest/chapters/25_sprites_and_walls/sprites_and_walls.html#placing-walls-with-a-loop
https://learn.arcade.academy/en/latest/chapters/25_sprites_and_walls/sprites_and_walls.html#placing-walls-with-a-list

Python Arcade Library, Release 3.0.0.dev26

∗ Keyboard, slightly more complex but handles multiple key presses better:
sprite_move_keyboard_better

∗ Keyboard with acceleration, de-acceleration: sprite_move_keyboard_accel

∗ Keyboard, rotate and move forward/back like a space ship: sprite_move_angle

– Game Controller - sprite_move_controller

∗ Game controller buttons - Supported, but documentation needed.

• Sprite collision detection

– Basic detection - Learn arcade book on collisions, sprite_collect_coins

– Understanding collision detection and spatial hashing: Collision detection performance

– Sprite Hit boxes

∗ Detail amount - arcade.Sprite

∗ Changing -arcade.Sprite.hit_box

∗ Drawing - arcade.Sprite.draw_hit_box

– Avoid placing items on walls - sprite_no_coins_on_walls

– Sprite drag-and-drop - See the Solitaire.

• Drawing sprites in layers

• Sprite animation

– Change texture on sprite when hit - sprite_change_coins

• Moving non-player sprites

– Bouncing - sprite_bouncing_coins

– Moving towards player - sprite_follow_simple

– Moving towards player, but with a delay - sprite_follow_simple_2

– Space-invaders style - slime_invaders

– Can a sprite see the player? - line_of_sight

– A-star pathfinding - astar_pathfinding

• Shooting

– Player shoots straight up - sprite_bullets

– Enemy shoots every x frames - sprite_bullets_periodic

– Enemy randomly shoots x frames - sprite_bullets_random

– Player aims - sprite_bullets_aimed

– Enemy aims - sprite_bullets_enemy_aims

• Physics Engines

– SimplePhysicsEngine - Platformer tutorial Step 3 - Many Sprites with SpriteList, Learn Arcade Book Simple
Physics Engine, Example sprite_move_walls

– PlatformerPhysicsEngine - From the platformer tutorial: Step 4 - Add User Control,

∗ sprite_moving_platforms

∗ Ladders - Platformer tutorial Step 10 - Adding a Score

4 Chapter 2. Start Here

https://learn.arcade.academy/en/latest/chapters/21_sprites_and_collisions/sprites.html#the-update-method
https://learn.arcade.academy/en/latest/chapters/25_sprites_and_walls/sprites_and_walls.html#physics-engine
https://learn.arcade.academy/en/latest/chapters/25_sprites_and_walls/sprites_and_walls.html#physics-engine

Python Arcade Library, Release 3.0.0.dev26

– Using the physics engine on multiple sprites - Supported, but documentation needed.

– Pymunk top-down - Supported, needs docs

– Pymunk physics engine for a platformer - Pymunk Platformer

• View management

– Minimal example of using views - view_screens_minimal

– Using views to add a pause screen - view_pause_screen

– Using views to add an instruction and game over screen - view_instructions_and_game_over

• Window management

– Scrolling - sprite_move_scrolling

– Add full screen support - full_screen_example

– Allow user to resize the window - resizable_window

• Map Creation

– Programmatic creation

∗ Individually place sprites

∗ Place sprites with a loop

∗ Place sprites with a list

– Procedural Generation

∗ maze_depth_first

∗ maze_recursive

∗ procedural_caves_bsp

∗ procedural_caves_cellular

– TMX map creation - Platformer tutorial: Step 8 - Collecting Coins

∗ Layers - Platformer tutorial: Step 8 - Collecting Coins

∗ Multiple Levels - sprite_tiled_map_with_levels

∗ Object Layer - Supported, but documentation needed.

∗ Hit-boxes - Supported, but documentation needed.

∗ Animated Tiles - Supported, but documentation needed.

• Sound - Learn Arcade book sound chapter

– music_control_demo

– Spatial sound sound_demo

• Particles - particle_systems

• GUI

– Concepts - GUI Concepts

– Examples - GUI Concepts

• OpenGL

– Read more about using OpenGL in Arcade with OpenGL.

2.4. Arcade Skill Tree 5

https://learn.arcade.academy/en/latest/chapters/25_sprites_and_walls/sprites_and_walls.html#individually-placing-walls
https://learn.arcade.academy/en/latest/chapters/25_sprites_and_walls/sprites_and_walls.html#placing-walls-with-a-loop
https://learn.arcade.academy/en/latest/chapters/25_sprites_and_walls/sprites_and_walls.html#placing-walls-with-a-list
https://learn.arcade.academy/en/latest/chapters/20_sounds/sounds.html

Python Arcade Library, Release 3.0.0.dev26

– Lights - light_demo

– Writing shaders using “ShaderToy”

∗ Shader Toy - Glow

∗ Shader Toy - Particles

∗ Learn how to ray-cast shadows in the Ray-casting Shadows.

∗ Make your screen look like an 80s monitor in CRT Filter.

∗ Study the Asteroids Example Code.

– Rendering onto a sprite to create a mini-map - minimap

– Bloom/glow effect - bloom_defender

– Learn to do a compute shader in Compute Shader.

• Logging

6 Chapter 2. Start Here

https://github.com/pythonarcade/asteroids

CHAPTER

THREE

INSTALLATION

Arcade runs on Windows, Mac OS X, and Linux.

Arcade requires Python 3.7 or newer. It does not run on Python 2.x.

Select the instructions for your platform:

3.1 Installation on Windows

To develop with the Arcade library, we need to install Python, then install Arcade.

3.1.1 Step 1: Install Python

Install Python from the official Python website:

https://www.python.org/downloads/

Run the downloader. From there, you can just click ‘install’. If you aren’t using an IDE like PyCharm or Visual Studio,
you might want to also mark the checkbox and add Python to the path.

Once installed, you can just close the dialog. There’s no need to increase the path length, although it doesn’t hurt
anything if you do.

7

https://www.python.org/downloads/

Python Arcade Library, Release 3.0.0.dev26

3.1.2 Step 2: Install The Arcade Library

If you install Arcade as a pre-built library, there are two options on how to do it. The best way is to use a “virtual
environment.” This is a collection of Python libraries that only apply to your particular project. You don’t have to worry
about libraries for other projects conflicting with your project. You also don’t need “administrator” level privileges to
install libraries. Instructions for doing this with the PyCharm IDE are below:

Install Arcade with PyCharm and a Virtual Environment

If you are using PyCharm, (the community edition works great and is free) setting up a virtual environment is easy.
Once you’ve created your project, open up the settings:

Select project interpreter:

Create a new virtual environment. Make sure the venv is inside your project folder.

8 Chapter 3. Installation

https://www.jetbrains.com/pycharm/

Python Arcade Library, Release 3.0.0.dev26

Now you can install libraries. You can search for “Arcade” and install it.

Another way to do it is create a file called requirements.txt and just type arcade in that file. PyCharm will
automatically ask any libraries in that file. It is a common way to list dependencies for Python projects.

3.1. Installation on Windows 9

Python Arcade Library, Release 3.0.0.dev26

Install Arcade using the command line interface

If you prefer to use the command line interface (CLI), then you can install arcade directly using pip:

pip3 install arcade

If you happen to be using pipenv, then the appropriate command is:

python3 -m pipenv install arcade

3.2 Installation on Mac

Go to the Python website and download Python.

Then install it:

10 Chapter 3. Installation

https://www.python.org/downloads/

Python Arcade Library, Release 3.0.0.dev26

Download and install PyCharm. The community edition is free, and WAY better than IDLE.

Download the zip file (or use git) for the Arcade template file.

https://github.com/pythonarcade/template

After you’ve downloaded it, open up the zip file, and pull out the template folder to your desktop or wherever you’d
like to save it. Then rename it to your project name.

3.2. Installation on Mac 11

https://www.jetbrains.com/pycharm/
https://github.com/pythonarcade/template

Python Arcade Library, Release 3.0.0.dev26

Start PyCharm, and select File. . .Open and select the folder you just created.

When creating opening the new project, create a virtual environment like so:

If that doesn’t work, (sometimes PyCharm seems to ignore that, or maybe that step got skipped) go into Py-
Charm. . . settings, then “Project interpreter” on the right side, click the easy-to-miss gear icon and “Add”

12 Chapter 3. Installation

Python Arcade Library, Release 3.0.0.dev26

. . .Then set it like so:

3.2. Installation on Mac 13

Python Arcade Library, Release 3.0.0.dev26

You should get a warning at the top of the screen that ‘arcade’ is not installed. Go ahead and install it. Then try running
the starting template.

3.2.1 Sound Support

Support for .ogg Ogg Vorbis files and mp3 files can be added via HomeBrew with:

brew install ffmpeg

3.3 Installation on Linux

The Arcade library is Python 3.7+ only. First check your version of Python to ensure you have 3.7 or higher:

python -V

If your version shows Python 2.X then try running with:

python3 -V

If that works and shows you Python 3.7+, then anytime you see the python command, replace it with python3.

If you do not have Python 3.7+, please lookup how to install it for your specific distro of Linux. For Ubuntu/Debian
this would be with the below command, if you did have Python 3.7, you can skip this step:

sudo apt install python3 python3-pip libjpeg-dev zlib1g-dev

14 Chapter 3. Installation

https://brew.sh/

Python Arcade Library, Release 3.0.0.dev26

Next you’ll need to setup a Virtual Environment. Arcade should always be installed with a virtual environment. In-
stalling outside of a virtual environment can lead to unintended consequences and bugs with your system. You can read
more about Virtual Environments at this page: https://docs.python.org/3/tutorial/venv.html

python -m venv my_venv

This creates a new folder called my_venv which contains your Python virtual environment. You can now activate it
with:

source my_venv/bin/activate

And deactivate it with:

deactivate

Once your venv is activated, you can install Arcade with:

pip install arcade

3.3.1 Raspberry Pi Instructions

Arcade required OpenGL graphics 3.3 or higher. Unfortunately the Raspberry Pi does not support this, Arcade can not
run on the Raspberry Pi.

3.4 Installation From Source

First step is to clone the repository:

git clone https://github.com/pythonarcade/arcade.git

Or download from:

https://github.com/pythonarcade/arcade/archive/development.zip

Next, we’ll create a linked install. This will allow you to change files in the arcade directory, and is great if you want
to modify the Arcade library code. From the root directory of arcade type:

pip install -e .

To install additional documentation and development requirements:

pip install -e .[dev]

3.4. Installation From Source 15

https://docs.python.org/3/tutorial/venv.html
https://github.com/pythonarcade/arcade/archive/development.zip

Python Arcade Library, Release 3.0.0.dev26

3.5 Setting Up a Virtual Environment In PyCharm

A Python virtual environment (venv) allows libraries to be installed for just a single project, rather than shared across
everyone using the computer. It also does not require administrator privilages to install.

Assuming you already have a project, follow these steps to create a venv:

Step 1: Select File. . . Settings

Step 2: Click “Project Interpreter”. Then find the gear icon in the upper right. click on it and select “Add”

Step 3: Select Virtualenv Environment from the left. Then create a new environment. Usually it should be in a folder
called venv in your main project. PyCharm does not always select the correct location by default, so carefully look at
the path to make sure it is correct, then select “Ok”.

16 Chapter 3. Installation

Python Arcade Library, Release 3.0.0.dev26

Now a virtual environment has been set up. The standard in Python projects is to create a file called requirements.
txt and list the packages you want in there.

PyCharm will automatically ask if you want to install those packages as soon as you type them in. Go ahead and let it.

3.6 Installation for Obsolete Python Versions

Arcade aims to support the same Python versions currently supported by the PSF.

You are strongly encouraged to upgrade to one of the versions listed at the link above, with the exception of 3.11 or
later. Some of arcade’s dependencies have not yet been ported for those versions.

If you absolutely cannot upgrade to Python 3.7 or later, you can try using an older and unsupported version of Arcade.

Please remember the following:

1. Bugs will not be fixed, unless they are also present in current versions

2. The features and API may be very different from current versions

3. You will need use documentation for the version of Arcade you run

3.6. Installation for Obsolete Python Versions 17

https://devguide.python.org/versions/#supported-versions

Python Arcade Library, Release 3.0.0.dev26

The pairings suggested below might not work. They are based on briefly skimming git history. You may have to use
trial and error to look for a version that works, and it’s possible that you won’t find one! Here be dragons!

Obsolete Python Version Suggested Arcade Version Git Commit Hash
3.6 2.6.7 6e0a9af
3.5 1.2.2 078f5be

You can attempt to install these versions via the command line through pip, or by installing from source from github.
Check the tags on Arcade’s github page for additional commit IDs.

18 Chapter 3. Installation

https://github.com/pythonarcade/arcade

CHAPTER

FOUR

HOW TO GET HELP

The best places to get help are the help channels on the the Discord server. They are located in the 3rd category from
the top in the channel list:

To get help, start by choosing an inactive help channel. Inactive means that the last message was sent a day or more
ago. If all the help channels have been active in that time, choose the one in with the earliest last message.

Once you have chosen a channel, do your best to provide the following information:

1. A very short explanation of what you’re trying to do

2. The problem you’re having, with any error output formatted properly

19

https://discord.gg/ZjGDqMp

Python Arcade Library, Release 3.0.0.dev26

3. Your code, with proper formatting

4. Which version of arcade you’re using and how you installed it

Here’s an example as a series of Discord messages (click or tap to enlarge):

The rest of this page will explain how to format your messages like the example above.

20 Chapter 4. How to Get Help

Python Arcade Library, Release 3.0.0.dev26

4.1 Sharing & Formatting Your Code

Other people need to be able to see your code to help you. There are two preferred ways of showing it to them:

1. Pasting into Discord for small amounts of code

2. Using a code hosting service for 1 or more files

4.1.1 Formatting for Discord & Github Issues

It is important to format code and terminal output when posting it. Formatting helps other people understand what
you’ve pasted.

Both Discord & GitHub issues use the same 3 steps below.

Step 1 : Find your Backtick Key

The ` characters below are not single quotes or apostrophes. They’re called backticks.

On standard US keyboards, the backtick key is the same one used to type a tilda (~). You can find it to the left of the 1
key.

For other keyboard layouts, please see this StackExchange answer.

Step 2: Format & Paste

Formatting Python code is nearly identical to formatting terminal output.

Formatting Code

Once you have found your backtick key, you can format your code like this:

```python
# paste your code between the top and bottom lines!
print("Do stuff!")
```

If you cannot type a backtick on your keyboard, you can copy the example above to your clipboard. For convenience,
clicking the icon at the top right of the example box will copy it for you. You can paste it into Discord’s message box
as shown below:

4.1. Sharing & Formatting Your Code 21

https://superuser.com/a/254077

Python Arcade Library, Release 3.0.0.dev26

Formatting Terminal Output

Terminal output, such as error traceback, can be formatted in almost the exact same way. The difference is that you
don’t type python after the three backticks on the first line:

```
Traceback (most recent call last):
File "/home/user/src/arcade/helpexample.py", line 34, in <module>
main()

File "/home/user/src/arcade/helpexample.py", line 29, in main
window.setup()

File "/home/user/src/arcade/helpexample.py", line 17, in setup
self.player_sprite = arcade.Sprite(img, 1.0)

File "/home/user/src/arcade/arcade/sprite.py", line 243, in __init__
self._texture = load_texture(

File "/home/user/src/arcade/arcade/texture.py", line 543, in load_texture
file_name = resolve(file_name)

File "/home/user/src/arcade/arcade/resources/__init__.py", line 40, in resolve
raise FileNotFoundError(f"Cannot locate resource : {path}")

FileNotFoundError: Cannot locate resource : my_player_image.png
```

Step 3: Post it!

On Discord, you can now press enter to send your message like any other formatted text.

For reporting bugs on GitHub, the same general formatting principles apply, but with a few differences.

You will also have to click Submit new issue instead of pressing enter. Please see the following links for more infor-
mation on reporting bugs, GitHub issues, and their supported markdown syntax:

• How to Report Bugs Effectively

• GitHub issue creation documentation

• GitHub general markdown guide

• GitHub’s code formatting documentation

4.1.2 Code Hosting

Code hosting services provide a formatted web view of your code which you can share with a link.

To share code snippets or single files without a signup, you can use the code pasting service provided by the Python
Discord. If you’re ok with signing up for something, there are also GitHub Gists. Afterwards, you can paste a link in
Discord or another chat application.

A more advanced way to share code is to use a git hosting service. It takes effort to learn how to use git, but it has many
benefits. Some of them include:

• Easy backup & undo

• Easier collaboration with others

• Allow people to view your entire project’s source to help you better

Popular Git hosting options include:

22 Chapter 4. How to Get Help

https://www.chiark.greenend.org.uk/~sgtatham/bugs.html
https://docs.github.com/en/issues/tracking-your-work-with-issues/creating-an-issue
https://docs.github.com/en/get-started/writing-on-github/getting-started-with-writing-and-formatting-on-github/basic-writing-and-formatting-syntax
https://docs.github.com/en/get-started/writing-on-github/working-with-advanced-formatting/creating-and-highlighting-code-blocks#syntax-highlighting
https://paste.pythondiscord.com/
https://www.pythondiscord.com/
https://www.pythondiscord.com/
https://docs.github.com/en/get-started/writing-on-github/editing-and-sharing-content-with-gists/creating-gists

Python Arcade Library, Release 3.0.0.dev26

• GitHub

• GitLab

4.2 Arcade Version & Basic Environment Info

This section assumes you have installed arcade and activated your virtual environment.

To get basic information about your current arcade version and environment, run this from within your development
environment:

arcade

The command is cross-platform, which means it should work the same way regardless of whether you’re on Mac, Linux,
or Windows.

The output should should look something like this:

Arcade 2.7.0

vendor: Intel
renderer: Mesa Intel(R) UHD Graphics 620 (KBL GT2)
version: (4, 6)
python: 3.9.2 (default, Feb 28 2021, 17:03:44)
[GCC 10.2.1 20210110]
platform: linux

It’s ok if the output looks different from the example above. The second half of each line may change to reflect your
arcade version, hardware, and operating system.

You can copy and paste the output into Discord or GitHub using the markdown formatting for terminal output described
earlier.

Output like the example below means that something is wrong:

bash: arcade: command not found

You should still include the output as part of a request for help.

If you want to try fixing the problem yourself before getting help, the likeliest explanations for the error message above
are:

• Forgetting to activate your virtual environment

• Not installing arcade successfully

4.2. Arcade Version & Basic Environment Info 23

https://github.com
https://gitlab.com

Python Arcade Library, Release 3.0.0.dev26

24 Chapter 4. How to Get Help

CHAPTER

FIVE

HOW-TO EXAMPLE CODE

5.1 Starting Templates

Fig. 1: starting_template

Fig. 2: template_platformer

25

starting_template.html
template_platformer.html

Python Arcade Library, Release 3.0.0.dev26

Fig. 3: happy_face

Fig. 4: drawing_primitives

Fig. 5: drawing_text

Fig. 6: drawing_text_objects

26 Chapter 5. How-To Example Code

happy_face.html
drawing_primitives.html
drawing_text.html
drawing_text_objects.html

Python Arcade Library, Release 3.0.0.dev26

Fig. 7: bouncing_rectangle

Fig. 8: shapes-slow

Fig. 9: radar_sweep

Fig. 10: snow

5.1. Starting Templates 27

bouncing_rectangle.html
shapes-slow.html
radar_sweep.html
snow.html

Python Arcade Library, Release 3.0.0.dev26

Fig. 11: shape_list_demo

Fig. 12: lines_buffered

Fig. 13: shape_list_demo_skylines

Fig. 14: gradients

28 Chapter 5. How-To Example Code

shape_list_demo.html
lines_buffered.html
shape_list_demo_skylines.html
gradients.html

Python Arcade Library, Release 3.0.0.dev26

5.2 Drawing

5.2.1 Drawing Primitives

5.2.2 Animating Drawing Primitives

5.2.3 Faster Drawing with ShapeElementLists

5.3 Sprites

5.3.1 Player Movement

Fig. 15: sprite_collect_coins

Fig. 16: sprite_move_keyboard

Fig. 17: sprite_move_keyboard_better

5.2. Drawing 29

sprite_collect_coins.html
sprite_move_keyboard.html
sprite_move_keyboard_better.html

Python Arcade Library, Release 3.0.0.dev26

Fig. 18: sprite_move_keyboard_accel

Fig. 19: sprite_move_angle

Fig. 20: sprite_face_left_or_right

Fig. 21: sprite_move_controller

30 Chapter 5. How-To Example Code

sprite_move_keyboard_accel.html
sprite_move_angle.html
sprite_face_left_or_right.html
sprite_move_controller.html

Python Arcade Library, Release 3.0.0.dev26

Fig. 22: dual_stick_shooter

Fig. 23: turn_and_move

Fig. 24: sprite_rotate_around_tank

5.3. Sprites 31

dual_stick_shooter.html
turn_and_move.html
sprite_rotate_around_tank.html

Python Arcade Library, Release 3.0.0.dev26

5.3.2 Non-Player Movement

Fig. 25: sprite_collect_coins_move_down

Fig. 26: sprite_collect_coins_move_bouncing

Fig. 27: sprite_bouncing_coins

32 Chapter 5. How-To Example Code

sprite_collect_coins_move_down.html
sprite_collect_coins_move_bouncing.html
sprite_bouncing_coins.html

Python Arcade Library, Release 3.0.0.dev26

Fig. 28: sprite_collect_coins_move_circle

Fig. 29: sprite_collect_rotating

Fig. 30: sprite_rotate_around_point

Fig. 31: easing_example_1

5.3. Sprites 33

sprite_collect_coins_move_circle.html
sprite_collect_rotating.html
sprite_rotate_around_point.html
easing_example_1.html

Python Arcade Library, Release 3.0.0.dev26

Fig. 32: easing_example_2

Fig. 33: follow_path

Fig. 34: sprite_follow_simple

Fig. 35: sprite_follow_simple_2

34 Chapter 5. How-To Example Code

easing_example_2.html
follow_path.html
sprite_follow_simple.html
sprite_follow_simple_2.html

Python Arcade Library, Release 3.0.0.dev26

Fig. 36: line_of_sight

Fig. 37: astar_pathfinding

Fig. 38: sprite_health

Fig. 39: sprite_properties

5.3. Sprites 35

line_of_sight.html
astar_pathfinding.html
sprite_health.html
sprite_properties.html

Python Arcade Library, Release 3.0.0.dev26

Fig. 40: sprite_change_coins

Fig. 41: example-sprite-collect-coins-diff-levels

Fig. 42: sprite_rooms

Fig. 43: sprite_bullets

Fig. 44: sprite_bullets_aimed

36 Chapter 5. How-To Example Code

sprite_change_coins.html
example-sprite-collect-coins-diff-levels.html
sprite_rooms.html
sprite_bullets.html
sprite_bullets_aimed.html

Python Arcade Library, Release 3.0.0.dev26

Fig. 45: sprite_bullets_periodic

Fig. 46: sprite_bullets_random

Fig. 47: sprite_bullets_enemy_aims

Fig. 48: sprite_explosion_bitmapped

5.3. Sprites 37

sprite_bullets_periodic.html
sprite_bullets_random.html
sprite_bullets_enemy_aims.html
sprite_explosion_bitmapped.html

Python Arcade Library, Release 3.0.0.dev26

Fig. 49: sprite_explosion_particles

5.3.3 Easing

5.3.4 Calculating a Path

5.3.5 Sprite Properties

5.3.6 Games with Levels

5.3.7 Shooting with Sprites

5.4 Audio

5.4.1 Sound Effects

Fig. 50: sound_demo

38 Chapter 5. How-To Example Code

sprite_explosion_particles.html
sound_demo.html

Python Arcade Library, Release 3.0.0.dev26

Fig. 51: sound_speed_demo

Fig. 52: music_control_demo

Fig. 53: resizable_window

Fig. 54: full_screen_example

5.4. Audio 39

sound_speed_demo.html
music_control_demo.html
resizable_window.html
full_screen_example.html

Python Arcade Library, Release 3.0.0.dev26

Fig. 55: sprite_collect_coins_background

Fig. 56: background_parallax

5.4.2 Music

5.5 Display Management

5.5.1 Resizable Windows

5.5.2 Backgrounds

5.5.3 Cameras

Fig. 57: sprite_move_scrolling

40 Chapter 5. How-To Example Code

sprite_collect_coins_background.html
background_parallax.html
sprite_move_scrolling.html

Python Arcade Library, Release 3.0.0.dev26

Fig. 58: sprite_move_scrolling_box

Fig. 59: sprite_move_scrolling_shake

Fig. 60: camera_platform

5.5. Display Management 41

sprite_move_scrolling_box.html
sprite_move_scrolling_shake.html
camera_platform.html

Python Arcade Library, Release 3.0.0.dev26

5.6 View Management

5.6.1 Instruction and Game Over Screens

Fig. 61: view_screens_minimal

Fig. 62: view_instructions_and_game_over

Fig. 63: view_pause_screen

42 Chapter 5. How-To Example Code

view_screens_minimal.html
view_instructions_and_game_over.html
view_pause_screen.html

Python Arcade Library, Release 3.0.0.dev26

Fig. 64: transitions

5.6.2 Sectioning a View

Fig. 65: sections_demo_1

Fig. 66: sections_demo_2

5.7. Platformers 43

transitions.html
sections_demo_1.html
sections_demo_2.html

Python Arcade Library, Release 3.0.0.dev26

Fig. 67: sections_demo_3

Fig. 68: sprite_move_walls

Fig. 69: sprite_no_coins_on_walls

Fig. 70: sprite_move_animation

Fig. 71: sprite_moving_platforms

44 Chapter 5. How-To Example Code

sections_demo_3.html
sprite_move_walls.html
sprite_no_coins_on_walls.html
sprite_move_animation.html
sprite_moving_platforms.html

Python Arcade Library, Release 3.0.0.dev26

Fig. 72: sprite_enemies_in_platformer

Fig. 73: Simple Platformer

Fig. 74: sprite_tiled_map

Fig. 75: sprite_tiled_map_with_levels

5.7. Platformers 45

sprite_enemies_in_platformer.html
platformer_tutorial.html
sprite_tiled_map.html
sprite_tiled_map_with_levels.html

Python Arcade Library, Release 3.0.0.dev26

Fig. 76: maze_recursive

Fig. 77: maze_depth_first

Fig. 78: procedural_caves_cellular

Fig. 79: procedural_caves_bsp

46 Chapter 5. How-To Example Code

maze_recursive.html
maze_depth_first.html
procedural_caves_cellular.html
procedural_caves_bsp.html

Python Arcade Library, Release 3.0.0.dev26

5.7 Platformers

5.7.1 Basic Platformers

5.7.2 Tiled Map Editor

5.7.3 Procedural Generation

5.8 Graphical User Interface

Fig. 80: gui_flat_button

Fig. 81: gui_flat_button_styled

Fig. 82: gui_widgets

5.7. Platformers 47

gui_flat_button.html
gui_flat_button_styled.html
gui_widgets.html

Python Arcade Library, Release 3.0.0.dev26

Fig. 83: gui_ok_messagebox

Fig. 84: gui_scrollable_text

Fig. 85: gui_slider

48 Chapter 5. How-To Example Code

gui_ok_messagebox.html
gui_scrollable_text.html
gui_slider.html

Python Arcade Library, Release 3.0.0.dev26

5.9 Grid-Based Games

Fig. 86: array_backed_grid

Fig. 87: array_backed_grid_buffered

Fig. 88: array_backed_grid_sprites_1

5.9. Grid-Based Games 49

array_backed_grid.html
array_backed_grid_buffered.html
array_backed_grid_sprites_1.html

Python Arcade Library, Release 3.0.0.dev26

Fig. 89: array_backed_grid_sprites_2

Fig. 90: tetris

Fig. 91: conway_alpha

Fig. 92: pymunk_box_stacks

50 Chapter 5. How-To Example Code

array_backed_grid_sprites_2.html
tetris.html
conway_alpha.html
pymunk_box_stacks.html

Python Arcade Library, Release 3.0.0.dev26

Fig. 93: pymunk_pegboard

Fig. 94: pymunk_demo_top_down

Fig. 95: pymunk_joint_builder

Fig. 96: Pymunk Platformer

5.9. Grid-Based Games 51

pymunk_pegboard.html
pymunk_demo_top_down.html
pymunk_joint_builder.html
pymunk_platformer_tutorial.html

Python Arcade Library, Release 3.0.0.dev26

Fig. 97: minimap

Fig. 98: light_demo

Fig. 99: transform_feedback

Fig. 100: game_of_life_fbo

52 Chapter 5. How-To Example Code

minimap.html
light_demo.html
transform_feedback.html
game_of_life_fbo.html

Python Arcade Library, Release 3.0.0.dev26

Fig. 101: perspective

Fig. 102: normal_mapping

Fig. 103: spritelist_interaction_visualize_dist_los

5.9. Grid-Based Games 53

perspective.html
normal_mapping.html
spritelist_interaction_visualize_dist_los.html

Python Arcade Library, Release 3.0.0.dev26

5.10 Advanced

5.10.1 Using PyMunk for Physics

5.10.2 Frame Buffers

5.10.3 OpenGL

5.11 Concept Games

Fig. 104: asteroid_smasher

Fig. 105: Asteroids with Shaders

54 Chapter 5. How-To Example Code

asteroid_smasher.html
https://github.com/pythonarcade/asteroids
https://github.com/pythonarcade/asteroids

Python Arcade Library, Release 3.0.0.dev26

Fig. 106: slime_invaders

Fig. 107: Community RPG

Fig. 108: 2048

Fig. 109: Rogue-Like

5.11. Concept Games 55

slime_invaders.html
https://github.com/pythonarcade/community-rpg
https://github.com/pythonarcade/community-rpg
https://github.com/pvcraven/2048
https://github.com/pvcraven/2048
https://github.com/pythonarcade/roguelike
https://github.com/pythonarcade/roguelike

Python Arcade Library, Release 3.0.0.dev26

5.12 Odds and Ends

Fig. 110: timer

Fig. 111: performance_statistics_example

Fig. 112: text_loc_example

5.12.1 Particle System

5.13 Tutorials

5.14 Stress Tests

56 Chapter 5. How-To Example Code

timer.html
performance_statistics_example.html
text_loc_example.html

Python Arcade Library, Release 3.0.0.dev26

Fig. 113: particle_fireworks

Fig. 114: particle_systems

Fig. 115: Simple Platformer

Fig. 116: Solitaire

5.14. Stress Tests 57

particle_fireworks.html
particle_systems.html
platformer_tutorial.html
solitaire_tutorial.html

Python Arcade Library, Release 3.0.0.dev26

Fig. 117: CRT Filter

Fig. 118: Ray-casting Shadows

Fig. 119: Pymunk Platformer

Fig. 120: Shader Toy - Glow

58 Chapter 5. How-To Example Code

crt_filter.html
raycasting_tutorial.html
pymunk_platformer_tutorial.html
shader_toy_tutorial_glow.html

Python Arcade Library, Release 3.0.0.dev26

Fig. 121: stress_test_draw_moving

Fig. 122: stress_test_collision

5.14. Stress Tests 59

stress_test_draw_moving.html
stress_test_collision.html

Python Arcade Library, Release 3.0.0.dev26

60 Chapter 5. How-To Example Code

CHAPTER

SIX

PYTHON DISCORD GAMEJAM 2020

The Python Discord 2020 Game Jam finished on April 26, 2020. Participants completed a game in one week. Twenty-
three teams completed games, all of which are on the Game Jam 2020 GitHub.

We played the top 10 games on the Game Jam live-stream, which is available for replay.

Here are the games that made it to the top 10:

Fig. 1: 1st Place: 3 Keys on the Run

61

https://pythondiscord.com/
https://github.com/python-discord/game-jam-2020
https://youtu.be/KkLXMvKfEgs
https://github.com/python-discord/game-jam-2020/tree/master/Finalists/Score_AAA
https://github.com/python-discord/game-jam-2020/tree/master/Finalists/Score_AAA

Python Arcade Library, Release 3.0.0.dev26

Fig. 2: 2nd Place: Triple Blocks

Fig. 3: 3nd Place: Triple Vision

Fig. 4: Honourable Mention: Hatchlings

Fig. 5: Honourable Mention: Gem Matcher

62 Chapter 6. Python Discord GameJam 2020

https://github.com/python-discord/game-jam-2020/tree/master/Finalists/gamer_gang
https://github.com/python-discord/game-jam-2020/tree/master/Finalists/gamer_gang
https://github.com/python-discord/game-jam-2020/tree/master/Finalists/monkeys-and-frogs-on-fire
https://github.com/python-discord/game-jam-2020/tree/master/Finalists/monkeys-and-frogs-on-fire
https://github.com/python-discord/game-jam-2020/tree/master/Finalists/KTGames
https://github.com/python-discord/game-jam-2020/tree/master/Finalists/KTGames
https://github.com/python-discord/game-jam-2020/tree/master/Finalists/artemis
https://github.com/python-discord/game-jam-2020/tree/master/Finalists/artemis

Python Arcade Library, Release 3.0.0.dev26

Fig. 6: Tri-Chess

Fig. 7: Insane Irradiated Insectz

Fig. 8: Flimsy Billy’s Coin Dash 3: Super Tag 3 Electric Tree

63

https://github.com/python-discord/game-jam-2020/tree/master/Finalists/TriChess
https://github.com/python-discord/game-jam-2020/tree/master/Finalists/TriChess
https://github.com/python-discord/game-jam-2020/tree/master/Finalists/beanoculars
https://github.com/python-discord/game-jam-2020/tree/master/Finalists/beanoculars
https://github.com/python-discord/game-jam-2020/tree/master/Finalists/the-friendly-snakes
https://github.com/python-discord/game-jam-2020/tree/master/Finalists/the-friendly-snakes

Python Arcade Library, Release 3.0.0.dev26

Fig. 9: ZeYoughEzh

Fig. 10: Coin Collector

64 Chapter 6. Python Discord GameJam 2020

https://github.com/python-discord/game-jam-2020/tree/master/Finalists/zeyoghezh
https://github.com/python-discord/game-jam-2020/tree/master/Finalists/zeyoghezh
https://github.com/python-discord/game-jam-2020/tree/master/Finalists/AtieP
https://github.com/python-discord/game-jam-2020/tree/master/Finalists/AtieP

CHAPTER

SEVEN

GAMES MADE WITH ARCADE

Here are some sample games made with Arcade. Have a game you’d like to share here? E-mail paul@cravenfamily.com.

You also might want to check out sample Arcade games from:

• Python Discord GameJam 2020

• Concept Games

• Simple Platformer

7.1 Temporum

Temporum, by DragonMoffon

7.2 SOL Defender

SOL Defender, by DragonMoffon

7.3 Binary Defense

Binary Defense by KommentatorForAll

65

mailto:paul@cravenfamily.com
https://github.com/DragonMoffon/Temporum
https://github.com/KommentatorForAll/Binary-defense

Python Arcade Library, Release 3.0.0.dev26

7.4 Space Invaders

Space Invaders

7.5 Ready or Not?

Ready or Not? a local multiplayer action RPG by Akash S Panickar.

7.6 Age of Divisiveness

Age of Divisiveness by Patryk Majewski, Krzysztof Szymaniak, Gabriel Wechta, Błażej Wróbel

Multiplayer LAN game with strong Civilization I and old Settlers vibe! Very extensive.

66 Chapter 7. Games Made With Arcade

https://github.com/pvcraven/space_invaders
https://github.com/mochatek/ReadyOrNot
https://github.com/chceswieta/age-of-divisiveness

Python Arcade Library, Release 3.0.0.dev26

7.7 Fishy-Game

Fishy Game by LiorAvrahami

7.8 Adventure

Adventure GitHub

7.9 Transcience Animation

Transcience Animation

7.10 Stellar Arena Demo

Stellar Arena Demo

7.11 Battle Bros

Battle Bros Mortal Kombat style game.

7.12 Rabbit Herder

Rabbit Herder, use carrots and potions to herd a rabbit through a maze.

7.13 The Great Skeleton War

The Great Skeleton War, an intense tower defense game, where there’s always something new to discover.

7.14 Python Knife Hit

https://github.com/akmalhakimi1991/python-knife-hit

7.7. Fishy-Game 67

https://github.com/LiorAvrahami/fishy-game
https://github.com/clareHuisman/learn-arcade-work/tree/master/Lab%2012%20-%20Final%20Lab
https://github.com/SunTzunami/Transience_animation_PyArcade
https://github.com/BramCetusAlt/Stellar-Arena
https://github.com/njbittner/battle-bros-pyarcade
https://github.com/ryancollingwood/arcade-rabbit-herder
https://github.com/BlakeDalmas/Python/tree/master/The%20Great%20Skeleton%20War
https://github.com/akmalhakimi1991/python-knife-hit

Python Arcade Library, Release 3.0.0.dev26

68 Chapter 7. Games Made With Arcade

Python Arcade Library, Release 3.0.0.dev26

7.15 Kayzee

Fig. 1: Kayzee Game

7.16 lixingqiu Games

Fig. 2: An Eight planet simulation

Fig. 3: Midway Island War

7.15. Kayzee 69

https://github.com/wamiqurrehman093/Kayzee
https://github.com/lixingqiu/eight_planet
https://github.com/lixingqiu/python3_arcade_midway_island_war_simple_simulate

Python Arcade Library, Release 3.0.0.dev26

Fig. 4: Angry Bird

Fig. 5: Octopus

7.17 Space Typer

Space Typer - A typing game

7.18 FlapPy Bird

70 Chapter 7. Games Made With Arcade

https://github.com/lixingqiu/python_arcade_simple_angry_bird
https://github.com/lixingqiu/Python-arcade-Octopus-animation-demo
https://github.com/thecodeah/space-typer

Python Arcade Library, Release 3.0.0.dev26

FlapPy-Bird - A bird-game clone.

7.19 PyOverheadGame

PyOverheadGame, a 2D overhead game where you go through several rooms and pick up keys and other objects.

7.19. PyOverheadGame 71

https://github.com/iJohnMaged/FlapPy-Bird
https://github.com/albertz/PyOverheadGame

Python Arcade Library, Release 3.0.0.dev26

7.20 Dungeon

Dungeon, explore a maze picking up arrows and coins.

7.21 Two Worlds

Two Worlds, a castle adventure with a dungeon and caverns underneath it.

72 Chapter 7. Games Made With Arcade

https://github.com/BlakeDalmas/Python/tree/master/Dungeon%20Game
https://github.com/pvcraven/two_worlds

Python Arcade Library, Release 3.0.0.dev26

7.21.1 Simpson College Spring 2017 CMSC 150 Course

These games were created by first-semester programming students.

7.21. Two Worlds 73

Python Arcade Library, Release 3.0.0.dev26

74 Chapter 7. Games Made With Arcade

CHAPTER

EIGHT

SIMPLE PLATFORMER

This tutorial shows how to use Python and the Arcade library to create a 2D platformer game. You’ll learn to work with
Sprites and the Tiled Map Editor to create your own games. You can add coins, ramps, moving platforms, enemies,
and more.

At the end of each chapter of this tutorial you will find the full source code that chapter, as well as a command to run
that chapter directly. As long as you have Arcade installed the commands will run the exact code for that chapter, so
you can compare your game against the tutorial.

75

https://www.mapeditor.org/

Python Arcade Library, Release 3.0.0.dev26

8.1 Step 1 - Install and Open a Window

Our first step is to make sure everything is installed, and that we can at least get a window open.

8.1.1 Installation

• Make sure Python is installed. Download Python here if you don’t already have it.

• Make sure the Arcade library is installed.

– You should first setup a virtual environment (venv) and activate it.

– Install Arcade with pip install arcade.

– Here are the longer, official Installation.

8.1.2 Open a Window

The example below opens up a blank window. Set up a project and get the code below working.

Note: This is a fixed-size window. It is possible to have a resizable_window or a full_screen_example, but there are
more interesting things we can do first. Therefore we’ll stick with a fixed-size window for this tutorial.

Listing 1: 01_open_window.py - Open a Window

1 """
2 Platformer Game
3

4 python -m arcade.examples.platform_tutorial.01_open_window
5 """
6 import arcade
7

8 # Constants
9 SCREEN_WIDTH = 800

10 SCREEN_HEIGHT = 600
11 SCREEN_TITLE = "Platformer"
12

13

14 class MyGame(arcade.Window):
15 """
16 Main application class.
17 """
18

19 def __init__(self):
20

21 # Call the parent class to set up the window
22 super().__init__(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)
23

24 self.background_color = arcade.csscolor.CORNFLOWER_BLUE
25

26 def setup(self):
27 """Set up the game here. Call this function to restart the game."""

(continues on next page)

76 Chapter 8. Simple Platformer

https://www.python.org/downloads/
https://pypi.org/project/arcade/

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

28 pass
29

30 def on_draw(self):
31 """Render the screen."""
32

33 # The clear method should always be called at the start of on_draw.
34 # It clears the whole screen to whatever the background color is
35 # set to. This ensures that you have a clean slate for drawing each
36 # frame of the game.
37 self.clear()
38

39 # Code to draw other things will go here
40

41

42 def main():
43 """Main function"""
44 window = MyGame()
45 window.setup()
46 arcade.run()
47

48

49 if __name__ == "__main__":
50 main()

You should end up with a window like this:

Once you get the code working, try figuring out how to adjust the code so you can:

• Change the screen size(or even make the Window resizable or fullscreen)

• Change the title

• Change the background color

8.1. Step 1 - Install and Open a Window 77

Python Arcade Library, Release 3.0.0.dev26

– See the documentation for arcade.color package

– See the documentation for arcade.csscolor package

• Look through the documentation for the arcade.Window class to get an idea of everything it can do.

8.1.3 Run This Chapter

python -m arcade.examples.platform_tutorial.01_open_window

8.2 Step 2 - Textures and Sprites

Our next step in this tutorial is to draw something on the Screen. In order to do that we need to cover two topics,
Textures and Sprites.

At the end of this chapter, we’ll have something that looks like this. It’s largely the same as last chapter, but now we
are drawing a character onto the screen:

8.2.1 Textures

Textures are largely just an object to contain image data. Whenever you load an image file in Arcade, for example a
.png or .jpeg file. It becomes a Texture.

To do this, internally Arcade uses Pyglet to load the image data, and the texture is responsible for keeping track of this
image data.

We can create a texture with a simple command, this can be done inside of our __init__ function. Go ahead and
create a texture that we will use to draw a player.

78 Chapter 8. Simple Platformer

Python Arcade Library, Release 3.0.0.dev26

self.player_texture = arcade.load_texture(":resources:images/animated_characters/female_
→˓adventurer/femaleAdventurer_idle.png")

Note: You might be wondering where this image file is coming from? And what is :resources: about?

The :resources: section of the string above is what Arcade calls a resource handle. You can register your own
resource handles to different asset directories. For example you might want to have a :characters: and a :objects:
handle.

However, you don’t have to use a resource handle here, anywhere that you can load files in Arcade will accept resource
handles, or just strings to filepaths, or Path objects from pathlib

Arcade includes the :resources: handle with a bunch of built-in assets from kenney.

For more information checkout Built-In Resources

8.2.2 Sprites

If Textures are an instance of a particular image, then arcade.Sprite is an instance of that image on the screen. Say
we have a ground or wall texture. We only have one instance of the texture, but we can create multiple instances of
Sprite, because we want to have many walls. These will use the same texture, but draw it in different positions, or even
with different scaling, rotation, or colors/post-processing effects.

Creating a Sprite is simple, we can make one for our player in our __init__ function, and then set it’s position.

self.player_sprite = arcade.Sprite(self.player_texture)
self.player_sprite.center_x = 64
self.player_sprite.center_y = 128

Note: You can also skip arcade.load_texture from the previous step and pass the image file to arcade.Sprite
in place of the Texture object. A Texture will automatically be created for you. However, it may desirable in larger
projects to manage your textures directly.

Now we can draw the sprite by adding this to our on_draw function:

self.player_sprite.draw()

We’re now drawing a Sprite to the screen! In the next chapter, we will introduce techniques to draw many(even hundreds
of thousands) sprites at once.

8.2.3 Source Code

Listing 2: 02_draw_sprites - Draw and Position Sprites

1 """
2 Platformer Game
3

4 python -m arcade.examples.platform_tutorial.02_draw_sprites
5 """
6 import arcade

(continues on next page)

8.2. Step 2 - Textures and Sprites 79

https://kenney.nl

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

7

8 # Constants
9 SCREEN_WIDTH = 800

10 SCREEN_HEIGHT = 600
11 SCREEN_TITLE = "Platformer"
12

13

14 class MyGame(arcade.Window):
15 """
16 Main application class.
17 """
18

19 def __init__(self):
20

21 # Call the parent class and set up the window
22 super().__init__(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)
23

24 # Variable to hold our texture for our player
25 self.player_texture = arcade.load_texture(":resources:images/animated_characters/

→˓female_adventurer/femaleAdventurer_idle.png")
26

27 # Separate variable that holds the player sprite
28 self.player_sprite = arcade.Sprite(self.player_texture)
29 self.player_sprite.center_x = 64
30 self.player_sprite.center_y = 128
31

32 self.background_color = arcade.csscolor.CORNFLOWER_BLUE
33

34 def setup(self):
35 """Set up the game here. Call this function to restart the game."""
36 pass
37

38 def on_draw(self):
39 """Render the screen."""
40

41 # Clear the screen to the background color
42 self.clear()
43

44 # Draw our sprites
45 self.player_sprite.draw()
46

47

48 def main():
49 """Main function"""
50 window = MyGame()
51 window.setup()
52 arcade.run()
53

54

55 if __name__ == "__main__":
56 main()

Running this code should result in a character being drawn on the screen, like in the image at the start of the chapter.

80 Chapter 8. Simple Platformer

Python Arcade Library, Release 3.0.0.dev26

• Documentation for the arcade.Texture class

• Documentation for the arcade.Sprite class

Note: Once you have the code up and working, try adjusting the code for the following:

• Adjust the code and try putting the sprite in new positions(Try setting the positions using other attributes of
Sprite)

• Use different images for the texture (see Built-In Resources for the built-in images, or try using your own images.)

• Practice placing more sprites in different ways(like placing many with a loop)

8.2.4 Run This Chapter

python -m arcade.examples.platform_tutorial.02_draw_sprites

8.3 Step 3 - Many Sprites with SpriteList

So far our game is coming along nicely, we have a character on the screen! Wouldn’t it be nice if our character had a
world to live in? In order to do that we’ll need to draw a lot more sprites. In this chapter we will explore SpriteList, a
class Arcade provides to draw tons of Sprites at once.

At the end, we’ll have something like this:

8.3. Step 3 - Many Sprites with SpriteList 81

Python Arcade Library, Release 3.0.0.dev26

8.3.1 SpriteList

arcade.SpriteList exists to draw a collection of Sprites all at once. Let’s say for example that you have 100,000
box Sprites that you want to draw. Without SpriteList you would have to put all of your sprites into a list, and then run
a for loop over that which calls draw() on every sprite.

This approach is extremely un-performant. Instead, you can add all of your boxes to a arcade.SpriteList and then
draw the SpriteList. Doing this, you are able to draw all 100,000 sprites for approximately the exact same cost as
drawing one sprite.

Note: This is due to Arcade being a heavily GPU based library. GPUs are really good at doing things in batches. This
means we can send all the information about our sprites to the GPU, and then tell it to draw them all at once. However
if we just draw one sprite at a time, then we have to go on a round trip from our CPU to our GPU every time.

Even if you are only drawing one Sprite, you should still create a SpriteList for it. Outside of small debugging it is
never better to draw an individual Sprite than it is to add it to a SpriteList. In fact, calling draw() on a Sprite just
creates a SpriteList internally to draw that Sprite with.

Let’s go ahead and create one for our player inside our __init__ function, and add the player to it.

self.player_list = arcade.SpriteList()
self.player_list.append(self.player_sprite)

Then in our on_draw function, we can draw the SpriteList for the character instead of drawing the Sprite directly:

self.player_list.draw()

Now let’s try and build a world for our character. To do this, we’ll create a new SpriteList for the objects we’ll draw,
we can do this in our __init__ function.

self.wall_list = arcade.SpriteList(use_spatial_hash=True)

There’s a little bit to unpack in this snippet of code. Let’s address each issue:

1. Why not just use the same SpriteList we used for our player, and why is it named walls?

Eventually we will want to do collision detection between our character and these objects. In addition
to drawing, SpriteLists also serve as a utility for collision detection. You can for example check for
collisions between two SpriteLists, or pass SpriteLists into several physics engines. We will explore
these topics in later chapters.

2. What is use_spatial_hash?

This is also for collision detection. Spatial Hashing is a special algorithm which will make it much
more performant, at the cost of being more expensive to move sprites. You will often see this option
enabled on SpriteLists which are not expected to move much, such as walls or a floor.

With our newly created SpriteList, let’s go ahead and add some objects to it. We can add these lines to our __init__
function.

for x in range(0, 1250, 64):
wall = arcade.Sprite(":resources:images/tiles/grassMid.png", TILE_SCALING)
wall.center_x = x
wall.center_y = 32
self.wall_list.append(wall)

(continues on next page)

82 Chapter 8. Simple Platformer

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

coordinate_list = [[512, 96], [256, 96], [768, 96]]
for coordinate in coordinate_list:

wall = arcade.Sprite(
":resources:images/tiles/boxCrate_double.png", scale=0.5

)
wall.position = coordinate
self.wall_list.append(wall)

In these lines, we’re adding some grass and some crates to our SpriteList.

For the ground we’re using Python’s range function to iterate on a list of X positions, which will give us a horizontal
line of Sprites. For the boxes, we’re inserting them at specified coordinates from a list.

We’re also doing a few new things in the arcade.Sprite creation. First off we are passing the image file directly
instead of creating a texture first. This is ultimately doing the same thing, we’re just not managing the texture ourselves,
and letting Arcade handle it. We are also adding a scale to these sprites. For fun you can remove the scale, and see how
the images will be much larger.

Finally all we need to do in order to draw our new world, is draw the SpriteList for walls in on_draw:

self.wall_list.draw()

8.3.2 Source Code

Listing 3: 03_more_sprites - Many Sprites with a SpriteList

1 """
2 Platformer Game
3

4 python -m arcade.examples.platform_tutorial.03_more_sprites
5 """
6 import arcade
7

8 # Constants
9 SCREEN_WIDTH = 800

10 SCREEN_HEIGHT = 600
11 SCREEN_TITLE = "Platformer"
12

13 # Constants used to scale our sprites from their original size
14 TILE_SCALING = 0.5
15

16

17 class MyGame(arcade.Window):
18 """
19 Main application class.
20 """
21

22 def __init__(self):
23

24 # Call the parent class and set up the window
25 super().__init__(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)
26

(continues on next page)

8.3. Step 3 - Many Sprites with SpriteList 83

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

27 # Variable to hold our texture for our player
28 self.player_texture = arcade.load_texture(":resources:images/animated_characters/

→˓female_adventurer/femaleAdventurer_idle.png")
29

30 # Separate variable that holds the player sprite
31 self.player_sprite = arcade.Sprite(self.player_texture)
32 self.player_sprite.center_x = 64
33 self.player_sprite.center_y = 128
34

35 # SpriteList for our player
36 self.player_list = arcade.SpriteList()
37 self.player_list.append(self.player_sprite)
38

39 # SpriteList for our boxes and ground
40 # Putting our ground and box Sprites in the same SpriteList
41 # will make it easier to perform collision detection against
42 # them later on. Setting the spatial hash to True will make
43 # collision detection much faster if the objects in this
44 # SpriteList do not move.
45 self.wall_list = arcade.SpriteList(use_spatial_hash=True)
46

47 # Create the ground
48 # This shows using a loop to place multiple sprites horizontally
49 for x in range(0, 1250, 64):
50 wall = arcade.Sprite(":resources:images/tiles/grassMid.png", scale=0.5)
51 wall.center_x = x
52 wall.center_y = 32
53 self.wall_list.append(wall)
54

55 # Put some crates on the ground
56 # This shows using a coordinate list to place sprites
57 coordinate_list = [[512, 96], [256, 96], [768, 96]]
58

59 for coordinate in coordinate_list:
60 # Add a crate on the ground
61 wall = arcade.Sprite(
62 ":resources:images/tiles/boxCrate_double.png", scale=0.5
63)
64 wall.position = coordinate
65 self.wall_list.append(wall)
66

67 self.background_color = arcade.csscolor.CORNFLOWER_BLUE
68

69 def setup(self):
70 """Set up the game here. Call this function to restart the game."""
71 pass
72

73 def on_draw(self):
74 """Render the screen."""
75

76 # Clear the screen to the background color
77 self.clear()

(continues on next page)

84 Chapter 8. Simple Platformer

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

78

79 # Draw our sprites
80 self.player_list.draw()
81 self.wall_list.draw()
82

83

84 def main():
85 """Main function"""
86 window = MyGame()
87 window.setup()
88 arcade.run()
89

90

91 if __name__ == "__main__":
92 main()

• Documentation for the arcade.SpriteList class

Note: Once you have the code up and working, try-out the following:

• See if you can change the colors of all the boxes and ground using the SpriteList

• Try and make a SpriteList invisible

8.3.3 Run This Chapter

python -m arcade.examples.platform_tutorial.03_more_sprites

8.4 Step 4 - Add User Control

Now we’ve got a character and a world for them to exist in, but what fun is a game if you can’t control the character
and move around? In this Chapter we’ll explore adding keyboard input in Arcade.

First, at the top of our program, we’ll want to add a new constant that controls how many pixels per update our character
travels:

PLAYER_MOVEMENT_SPEED = 5

In order to handle the keyboard input, we need to add to add two new functions to our Window class, on_key_press
and on_key_release. These functions will automatically be called by Arcade whenever a key on the keyboard is
pressed or released. Inside these functions, based on the key that was pressed or released, we will move our character.

def on_key_press(self, key, modifiers):
"""Called whenever a key is pressed."""

if key == arcade.key.UP or key == arcade.key.W:
self.player_sprite.change_y = PLAYER_MOVEMENT_SPEED

elif key == arcade.key.DOWN or key == arcade.key.S:
self.player_sprite.change_y = -PLAYER_MOVEMENT_SPEED

(continues on next page)

8.4. Step 4 - Add User Control 85

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

elif key == arcade.key.LEFT or key == arcade.key.A:
self.player_sprite.change_x = -PLAYER_MOVEMENT_SPEED

elif key == arcade.key.RIGHT or key == arcade.key.D:
self.player_sprite.change_x = PLAYER_MOVEMENT_SPEED

def on_key_release(self, key, modifiers):
"""Called whenever a key is released."""

if key == arcade.key.UP or key == arcade.key.W:
self.player_sprite.change_y = 0

elif key == arcade.key.DOWN or key == arcade.key.S:
self.player_sprite.change_y = 0

elif key == arcade.key.LEFT or key == arcade.key.A:
self.player_sprite.change_x = 0

elif key == arcade.key.RIGHT or key == arcade.key.D:
self.player_sprite.change_x = 0

In these boxes, we are modifying the change_x and change_y attributes on our player Sprite. Changing these values
will not actually perform the move on the Sprite. In order to apply this change, we need to create a physics engine with
our Sprite, and update the physics engine every frame. The physics engine will then be responsible for actually moving
the sprite.

The reason we give the physics engine this responsibility instead of doing it ourselves, is so that we can let the physics
engine do collision detections, and allow/disallow a movement based on the result. In later chapters, we’ll use more
advanced physics engines which can do things like allow jumping with gravity, or climbing on ladders for example.

Note: This method of tracking the speed to the key the player presses is simple, but isn’t perfect. If the player hits both
left and right keys at the same time, then lets off the left one, we expect the player to move right. This method won’t
support that. If you want a slightly more complex method that does, see sprite_move_keyboard_better.

Let’s create a simple physics engine in our __init__ function. We will do this by passing it our player sprite, and the
SpriteList containing our walls.

self.physics_engine = arcade.PhysicsEngineSimple(
self.player_sprite, self.wall_list

)

Now we have a physics engine, but we still need to update it every frame. In order to do this we will add a new function
to our Window class, called on_update. This function is similar to on_draw, it will be called by Arcade at a default
of 60 times per second. It will also give us a delta_time parameter that tells the amount of time between the last
call and the current one. This value will be used in some calculations in future chapters. Within this function, we will
update our physics engine. Which will process collision detections and move our player based on it’s change_x and
change_y values.

def on_update(self, delta_time):
"""Movement and Game Logic"""

self.physics_engine.update()

At this point you should be able to run the game, and move the character around with the keyboard. If the physics
engine is working properly, the character should not be able to move through the ground or the boxes.

For more information about the physics engine we are using in this tutorial, see arcade.PhysicsEngineSimple.

86 Chapter 8. Simple Platformer

Python Arcade Library, Release 3.0.0.dev26

Note: It is possible to have multiple physics engines, one per moving sprite. These are very simple, but easy physics
engines. See Pymunk Platformer for a more advanced physics engine.

Note: If you want to see how the collisions are checked, try using the draw_hit_boxes() function on the player and
wall SpriteLists inside the on_draw function. This will show you what the hitboxes that the physics engine uses look
like.

8.4.1 Source Code

Listing 4: 04_user_control.py - User Control

1 """
2 Platformer Game
3

4 python -m arcade.examples.platform_tutorial.04_user_control
5 """
6 import arcade
7

8 # Constants
9 SCREEN_WIDTH = 800

10 SCREEN_HEIGHT = 600
11 SCREEN_TITLE = "Platformer"
12

13 # Constants used to scale our sprites from their original size
14 TILE_SCALING = 0.5
15

16 # Movement speed of player, in pixels per frame
17 PLAYER_MOVEMENT_SPEED = 5
18

19

20 class MyGame(arcade.Window):
21 """
22 Main application class.
23 """
24

25 def __init__(self):
26

27 # Call the parent class and set up the window
28 super().__init__(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)
29

30 # Variable to hold our texture for our player
31 self.player_texture = arcade.load_texture(":resources:images/animated_characters/

→˓female_adventurer/femaleAdventurer_idle.png")
32

33 # Separate variable that holds the player sprite
34 self.player_sprite = arcade.Sprite(self.player_texture)
35 self.player_sprite.center_x = 64
36 self.player_sprite.center_y = 128
37

(continues on next page)

8.4. Step 4 - Add User Control 87

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

38 # SpriteList for our player
39 self.player_list = arcade.SpriteList()
40 self.player_list.append(self.player_sprite)
41

42 # SpriteList for our boxes and ground
43 # Putting our ground and box Sprites in the same SpriteList
44 # will make it easier to perform collision detection against
45 # them later on. Setting the spatial hash to True will make
46 # collision detection much faster if the objects in this
47 # SpriteList do not move.
48 self.wall_list = arcade.SpriteList(use_spatial_hash=True)
49

50 # Create the ground
51 # This shows using a loop to place multiple sprites horizontally
52 for x in range(0, 1250, 64):
53 wall = arcade.Sprite(":resources:images/tiles/grassMid.png", scale=TILE_

→˓SCALING)
54 wall.center_x = x
55 wall.center_y = 32
56 self.wall_list.append(wall)
57

58 # Put some crates on the ground
59 # This shows using a coordinate list to place sprites
60 coordinate_list = [[512, 96], [256, 96], [768, 96]]
61

62 for coordinate in coordinate_list:
63 # Add a crate on the ground
64 wall = arcade.Sprite(
65 ":resources:images/tiles/boxCrate_double.png", scale=TILE_SCALING
66)
67 wall.position = coordinate
68 self.wall_list.append(wall)
69

70 # Create a Simple Physics Engine, this will handle moving our
71 # player as well as collisions between the player sprite and
72 # whatever SpriteList we specify for the walls.
73 self.physics_engine = arcade.PhysicsEngineSimple(
74 self.player_sprite, self.wall_list
75)
76

77 self.background_color = arcade.csscolor.CORNFLOWER_BLUE
78

79 def setup(self):
80 """Set up the game here. Call this function to restart the game."""
81 pass
82

83 def on_draw(self):
84 """Render the screen."""
85

86 # Clear the screen to the background color
87 self.clear()
88

(continues on next page)

88 Chapter 8. Simple Platformer

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

89 # Draw our sprites
90 self.player_list.draw()
91 self.wall_list.draw()
92

93 def on_update(self, delta_time):
94 """Movement and Game Logic"""
95

96 # Move the player using our physics engine
97 self.physics_engine.update()
98

99 def on_key_press(self, key, modifiers):
100 """Called whenever a key is pressed."""
101

102 if key == arcade.key.UP or key == arcade.key.W:
103 self.player_sprite.change_y = PLAYER_MOVEMENT_SPEED
104 elif key == arcade.key.DOWN or key == arcade.key.S:
105 self.player_sprite.change_y = -PLAYER_MOVEMENT_SPEED
106 elif key == arcade.key.LEFT or key == arcade.key.A:
107 self.player_sprite.change_x = -PLAYER_MOVEMENT_SPEED
108 elif key == arcade.key.RIGHT or key == arcade.key.D:
109 self.player_sprite.change_x = PLAYER_MOVEMENT_SPEED
110

111 def on_key_release(self, key, modifiers):
112 """Called whenever a key is released."""
113

114 if key == arcade.key.UP or key == arcade.key.W:
115 self.player_sprite.change_y = 0
116 elif key == arcade.key.DOWN or key == arcade.key.S:
117 self.player_sprite.change_y = 0
118 elif key == arcade.key.LEFT or key == arcade.key.A:
119 self.player_sprite.change_x = 0
120 elif key == arcade.key.RIGHT or key == arcade.key.D:
121 self.player_sprite.change_x = 0
122

123

124 def main():
125 """Main function"""
126 window = MyGame()
127 window.setup()
128 arcade.run()
129

130

131 if __name__ == "__main__":
132 main()

8.4. Step 4 - Add User Control 89

Python Arcade Library, Release 3.0.0.dev26

8.4.2 Run This Chapter

python -m arcade.examples.platform_tutorial.04_user_control

8.5 Step 5 - Add Gravity

The previous example is great for top-down games, but what if it is a side view with jumping like our platformer? We
need to add gravity. First, let’s define a constant to represent the acceleration for gravity, and one for a jump speed.

GRAVITY = 1
PLAYER_JUMP_SPEED = 20

Now, let’s change the Physics Engine we created in the __init__ function to a arcade.PhysicsEnginePlatformer
instead of a arcade.PhysicsEngineSimple. This new physics engine will handle jumping and gravity for us, and
will do even more in later chapters.

self.physics_engine = arcade.PhysicsEnginePlatformer(
self.player_sprite, walls=self.wall_list, gravity_constant=GRAVITY

)

This is very similar to how we created the original simple physics engine, with two exceptions. The first being that
we have sent it our gravity constant. The second being that we have explicitly sent our wall SpriteList to the walls
parameter. This is a very important step. The platformer physics engine has two parameters for collidable objects, one
named platforms and one named walls.

The difference is that objects sent to platforms are intended to be moved. They are moved in the same way the player
is, by modifying their change_x and change_y values. Objects sent to the walls parameter will not be moved. The
reason this is so important is that non-moving walls have much faster performance than movable platforms.

Adding static sprites via the platforms parameter is roughly an O(n) operation, meaning performance will linearly
get worse as you add more sprites. If you add your static sprites via the walls parameter, then it is nearly O(1) and
there is essentially no difference between for example 100 and 50,000 non-moving sprites.

Lastly we will give our player the ability to jump. Modify the on_key_press and on_key_release functions. We’ll
remove the up/down statements we had before, and make UP jump when pressed.

if key == arcade.key.UP or key == arcade.key.W:
if self.physics_engine.can_jump():

self.player_sprite.change_y = PLAYER_JUMP_SPEED

The can_jump() check from our physics engine will make it so that we can only jump if we are touching the ground.
You can remove this function to allow jumping in mid-air for some interesting results. Think about how you might
implement a double-jump system using this.

Note: You can change how the user jumps by changing the gravity and jump constants. Lower values for both will
make for a more “floaty” character. Higher values make for a faster-paced game.

90 Chapter 8. Simple Platformer

Python Arcade Library, Release 3.0.0.dev26

8.5.1 Source Code

Listing 5: 05_add_gravity.py - Add Gravity

1 """
2 Platformer Game
3

4 python -m arcade.examples.platform_tutorial.05_add_gravity
5 """
6 import arcade
7

8 # Constants
9 SCREEN_WIDTH = 800

10 SCREEN_HEIGHT = 600
11 SCREEN_TITLE = "Platformer"
12

13 # Constants used to scale our sprites from their original size
14 TILE_SCALING = 0.5
15

16 # Movement speed of player, in pixels per frame
17 PLAYER_MOVEMENT_SPEED = 5
18 GRAVITY = 1
19 PLAYER_JUMP_SPEED = 20
20

21

22 class MyGame(arcade.Window):
23 """
24 Main application class.
25 """
26

27 def __init__(self):
28

29 # Call the parent class and set up the window
30 super().__init__(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)
31

32 # Variable to hold our texture for our player
33 self.player_texture = arcade.load_texture(":resources:images/animated_characters/

→˓female_adventurer/femaleAdventurer_idle.png")
34

35 # Separate variable that holds the player sprite
36 self.player_sprite = arcade.Sprite(self.player_texture)
37 self.player_sprite.center_x = 64
38 self.player_sprite.center_y = 128
39

40 # SpriteList for our player
41 self.player_list = arcade.SpriteList()
42 self.player_list.append(self.player_sprite)
43

44 # SpriteList for our boxes and ground
45 # Putting our ground and box Sprites in the same SpriteList
46 # will make it easier to perform collision detection against
47 # them later on. Setting the spatial hash to True will make
48 # collision detection much faster if the objects in this

(continues on next page)

8.5. Step 5 - Add Gravity 91

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

49 # SpriteList do not move.
50 self.wall_list = arcade.SpriteList(use_spatial_hash=True)
51

52 # Create the ground
53 # This shows using a loop to place multiple sprites horizontally
54 for x in range(0, 1250, 64):
55 wall = arcade.Sprite(":resources:images/tiles/grassMid.png", scale=TILE_

→˓SCALING)
56 wall.center_x = x
57 wall.center_y = 32
58 self.wall_list.append(wall)
59

60 # Put some crates on the ground
61 # This shows using a coordinate list to place sprites
62 coordinate_list = [[512, 96], [256, 96], [768, 96]]
63

64 for coordinate in coordinate_list:
65 # Add a crate on the ground
66 wall = arcade.Sprite(
67 ":resources:images/tiles/boxCrate_double.png", scale=TILE_SCALING
68)
69 wall.position = coordinate
70 self.wall_list.append(wall)
71

72 # Create a Platformer Physics Engine.
73 # This will handle moving our player as well as collisions between
74 # the player sprite and whatever SpriteList we specify for the walls.
75 # It is important to supply static platforms to the walls parameter. There is a
76 # platforms parameter that is intended for moving platforms.
77 # If a platform is supposed to move, and is added to the walls list,
78 # it will not be moved.
79 self.physics_engine = arcade.PhysicsEnginePlatformer(
80 self.player_sprite, walls=self.wall_list, gravity_constant=GRAVITY
81)
82

83 self.background_color = arcade.csscolor.CORNFLOWER_BLUE
84

85 def setup(self):
86 """Set up the game here. Call this function to restart the game."""
87 pass
88

89 def on_draw(self):
90 """Render the screen."""
91

92 # Clear the screen to the background color
93 self.clear()
94

95 # Draw our sprites
96 self.player_list.draw()
97 self.wall_list.draw()
98

99 def on_update(self, delta_time):

(continues on next page)

92 Chapter 8. Simple Platformer

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

100 """Movement and Game Logic"""
101

102 # Move the player using our physics engine
103 self.physics_engine.update()
104

105 def on_key_press(self, key, modifiers):
106 """Called whenever a key is pressed."""
107

108 if key == arcade.key.UP or key == arcade.key.W:
109 if self.physics_engine.can_jump():
110 self.player_sprite.change_y = PLAYER_JUMP_SPEED
111

112 if key == arcade.key.LEFT or key == arcade.key.A:
113 self.player_sprite.change_x = -PLAYER_MOVEMENT_SPEED
114 elif key == arcade.key.RIGHT or key == arcade.key.D:
115 self.player_sprite.change_x = PLAYER_MOVEMENT_SPEED
116

117 def on_key_release(self, key, modifiers):
118 """Called whenever a key is released."""
119

120 if key == arcade.key.LEFT or key == arcade.key.A:
121 self.player_sprite.change_x = 0
122 elif key == arcade.key.RIGHT or key == arcade.key.D:
123 self.player_sprite.change_x = 0
124

125

126 def main():
127 """Main function"""
128 window = MyGame()
129 window.setup()
130 arcade.run()
131

132

133 if __name__ == "__main__":
134 main()

8.5.2 Run This Chapter

python -m arcade.examples.platform_tutorial.05_add_gravity

8.6 Step 6 - Resetting

You might have noticed that throughout this tutorial, there has been a setup function in our Window class. So far, we
haven’t used this function at all, so what is it for?

Let’s imagine that we want a way to “reset” our game to it’s initial state. This could be because the player lost, and we
want to restart the game, or perhaps we just want to give the player the option to restart.

With our current architecture of creating everything in our __init__ function, we would have to duplicate all of that
logic in another function in order to make that happen, or completely re-create our Window, which will be an unpleasent

8.6. Step 6 - Resetting 93

Python Arcade Library, Release 3.0.0.dev26

experience for a player.

In this chapter, we will do a small amount of re-organizing our existing code to make use of this setup function in a
way that allows to simply call the setup function whenever we want our game to return to it’s original state.

First off, we will change our __init__ function to look like below. We are setting values to something like None, 0,
or similar. The purpose of this step is to ensure that the attributes are created on the class. In Python, we cannot add
new attributes to a class outside of the __init__ function.

def __init__(self):

super().__init__(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)

self.player_texture = None
self.player_sprite = None
self.player_list = None

self.wall_list = None

Next we will move the actual creation of these objects into our setup function. This looks almost identical to our original
__init__ function. Try and move these sections of code on your own, if you get stuck you can see the setup function
in the full source code listing below.

The last thing we need to do is create a way to reset the game. For now we’ll add a simple key press to do it. Add the
following in your on_key_press function to reset the game when the Escape key is pressed.

if key == arcade.key.ESCAPE:
self.setup()

8.6.1 Source Code

Listing 6: Resetting

1 """
2 Platformer Game
3

4 python -m arcade.examples.platform_tutorial.06_reset
5 """
6 import arcade
7

8 # Constants
9 SCREEN_WIDTH = 800

10 SCREEN_HEIGHT = 600
11 SCREEN_TITLE = "Platformer"
12

13 # Constants used to scale our sprites from their original size
14 TILE_SCALING = 0.5
15

16 # Movement speed of player, in pixels per frame
17 PLAYER_MOVEMENT_SPEED = 5
18 GRAVITY = 1
19 PLAYER_JUMP_SPEED = 20
20

21

(continues on next page)

94 Chapter 8. Simple Platformer

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

22 class MyGame(arcade.Window):
23 """
24 Main application class.
25 """
26

27 def __init__(self):
28

29 # Call the parent class and set up the window
30 super().__init__(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)
31

32 # Variable to hold our texture for our player
33 self.player_texture = None
34

35 # Separate variable that holds the player sprite
36 self.player_sprite = None
37

38 # SpriteList for our player
39 self.player_list = None
40

41 # SpriteList for our boxes and ground
42 # Putting our ground and box Sprites in the same SpriteList
43 # will make it easier to perform collision detection against
44 # them later on. Setting the spatial hash to True will make
45 # collision detection much faster if the objects in this
46 # SpriteList do not move.
47 self.wall_list = None
48

49 def setup(self):
50 """Set up the game here. Call this function to restart the game."""
51 self.player_texture = arcade.load_texture(":resources:images/animated_characters/

→˓female_adventurer/femaleAdventurer_idle.png")
52

53 self.player_sprite = arcade.Sprite(self.player_texture)
54 self.player_sprite.center_x = 64
55 self.player_sprite.center_y = 128
56

57 self.player_list = arcade.SpriteList()
58 self.player_list.append(self.player_sprite)
59

60 self.wall_list = arcade.SpriteList(use_spatial_hash=True)
61

62 # Create the ground
63 # This shows using a loop to place multiple sprites horizontally
64 for x in range(0, 1250, 64):
65 wall = arcade.Sprite(":resources:images/tiles/grassMid.png", scale=TILE_

→˓SCALING)
66 wall.center_x = x
67 wall.center_y = 32
68 self.wall_list.append(wall)
69

70 # Put some crates on the ground
71 # This shows using a coordinate list to place sprites

(continues on next page)

8.6. Step 6 - Resetting 95

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

72 coordinate_list = [[512, 96], [256, 96], [768, 96]]
73

74 for coordinate in coordinate_list:
75 # Add a crate on the ground
76 wall = arcade.Sprite(
77 ":resources:images/tiles/boxCrate_double.png", scale=TILE_SCALING
78)
79 wall.position = coordinate
80 self.wall_list.append(wall)
81

82 # Create a Platformer Physics Engine, this will handle moving our
83 # player as well as collisions between the player sprite and
84 # whatever SpriteList we specify for the walls.
85 # It is important to supply static to the walls parameter. There is a
86 # platforms parameter that is intended for moving platforms.
87 # If a platform is supposed to move, and is added to the walls list,
88 # it will not be moved.
89 self.physics_engine = arcade.PhysicsEnginePlatformer(
90 self.player_sprite, walls=self.wall_list, gravity_constant=GRAVITY
91)
92

93 self.background_color = arcade.csscolor.CORNFLOWER_BLUE
94

95 def on_draw(self):
96 """Render the screen."""
97

98 # Clear the screen to the background color
99 self.clear()

100

101 # Draw our sprites
102 self.player_list.draw()
103 self.wall_list.draw()
104

105 def on_update(self, delta_time):
106 """Movement and Game Logic"""
107

108 # Move the player using our physics engine
109 self.physics_engine.update()
110

111 def on_key_press(self, key, modifiers):
112 """Called whenever a key is pressed."""
113

114 if key == arcade.key.ESCAPE:
115 self.setup()
116

117 if key == arcade.key.UP or key == arcade.key.W:
118 if self.physics_engine.can_jump():
119 self.player_sprite.change_y = PLAYER_JUMP_SPEED
120

121 if key == arcade.key.LEFT or key == arcade.key.A:
122 self.player_sprite.change_x = -PLAYER_MOVEMENT_SPEED
123 elif key == arcade.key.RIGHT or key == arcade.key.D:

(continues on next page)

96 Chapter 8. Simple Platformer

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

124 self.player_sprite.change_x = PLAYER_MOVEMENT_SPEED
125

126 def on_key_release(self, key, modifiers):
127 """Called whenever a key is released."""
128

129 if key == arcade.key.LEFT or key == arcade.key.A:
130 self.player_sprite.change_x = 0
131 elif key == arcade.key.RIGHT or key == arcade.key.D:
132 self.player_sprite.change_x = 0
133

134

135 def main():
136 """Main function"""
137 window = MyGame()
138 window.setup()
139 arcade.run()
140

141

142 if __name__ == "__main__":
143 main()

8.6.2 Run This Chapter

python -m arcade.examples.platform_tutorial.06_reset

8.7 Step 7 - Adding a Camera

Now that our player can move and jump around, we need to give them a way to explore the world beyond the original
window. If you’ve ever played a platformer game, you might be familiar with the concept of the screen scrolling to
reveal more of the map as the player moves.

To achieve this, we can use a Camera, Arcade provides arcade.SimpleCamera and arcade.Camera. They both do
the same base thing, but Camera has a bit of extra functionality that SimpleCamera doesn’t. For now, we will just use
the SimpleCamera.

To start with, let’s go ahead and add a variable in our __init__ function to hold it:

self.camera = None

Next we can go to our setup function, and initialize it like so:

self.camera = arcade.SimpleCamera(viewport=(0, 0, self.width, self.height))

The viewport parameter here defines the size of the camera. In most circumstances, you will want this to be the size
of your window. So we specify the bottom and left coordinates of our camera viewport as (0, 0), and provide it the
width and height of our window.

In order to use our camera when drawing things to the screen, we only need to add one line to our on_draw function.
This line should typically come before anything you want to draw with the camera. In later chapters, we’ll explore
using multiple cameras to draw things in different positions. Go ahead and add this line before drawing our SpriteLists

8.7. Step 7 - Adding a Camera 97

Python Arcade Library, Release 3.0.0.dev26

self.camera.use()

If you run the game at this point, you might notice that nothing has changed, our game is still one static un-moving
screen. This is because we are never updating the camera’s position. In our platformer game, we want the camera to
follow the player, and keep them in the center of the screen. Arcade provides a helpful function to do this with one line
of code. In other types of games or more advanced usage you may want to set the cameras position directly in order to
create interesting effects, but for now all we need is the center() function of our camera.

If we add the following line to our on_update() function and run the game, you should now see the player stay at the
center of the screen, while being able to scroll the screen around to the rest of our map. For fun, see what happens if
you fall off of the map! Later on, we’ll revisit a more advanced camera setup that will take the bounds of our world
into consideration.

self.camera.center(self.player_sprite.position)

8.7.1 Source Code

Listing 7: Adding a Camera

1 """
2 Platformer Game
3

4 python -m arcade.examples.platform_tutorial.07_camera
5 """
6 import arcade
7

8 # Constants
9 SCREEN_WIDTH = 800

10 SCREEN_HEIGHT = 600
11 SCREEN_TITLE = "Platformer"
12

13 # Constants used to scale our sprites from their original size
14 TILE_SCALING = 0.5
15

16 # Movement speed of player, in pixels per frame
17 PLAYER_MOVEMENT_SPEED = 5
18 GRAVITY = 1
19 PLAYER_JUMP_SPEED = 20
20

21

22 class MyGame(arcade.Window):
23 """
24 Main application class.
25 """
26

27 def __init__(self):
28

29 # Call the parent class and set up the window
30 super().__init__(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)
31

32 # Variable to hold our texture for our player
33 self.player_texture = None

(continues on next page)

98 Chapter 8. Simple Platformer

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

34

35 # Separate variable that holds the player sprite
36 self.player_sprite = None
37

38 # SpriteList for our player
39 self.player_list = None
40

41 # SpriteList for our boxes and ground
42 # Putting our ground and box Sprites in the same SpriteList
43 # will make it easier to perform collision detection against
44 # them later on. Setting the spatial hash to True will make
45 # collision detection much faster if the objects in this
46 # SpriteList do not move.
47 self.wall_list = None
48

49 # A variable to store our camera object
50 self.camera = None
51

52 def setup(self):
53 """Set up the game here. Call this function to restart the game."""
54 self.player_texture = arcade.load_texture(":resources:images/animated_characters/

→˓female_adventurer/femaleAdventurer_idle.png")
55

56 self.player_sprite = arcade.Sprite(self.player_texture)
57 self.player_sprite.center_x = 64
58 self.player_sprite.center_y = 128
59

60 self.player_list = arcade.SpriteList()
61 self.player_list.append(self.player_sprite)
62

63 self.wall_list = arcade.SpriteList(use_spatial_hash=True)
64

65 # Create the ground
66 # This shows using a loop to place multiple sprites horizontally
67 for x in range(0, 1250, 64):
68 wall = arcade.Sprite(":resources:images/tiles/grassMid.png", scale=TILE_

→˓SCALING)
69 wall.center_x = x
70 wall.center_y = 32
71 self.wall_list.append(wall)
72

73 # Put some crates on the ground
74 # This shows using a coordinate list to place sprites
75 coordinate_list = [[512, 96], [256, 96], [768, 96]]
76

77 for coordinate in coordinate_list:
78 # Add a crate on the ground
79 wall = arcade.Sprite(
80 ":resources:images/tiles/boxCrate_double.png", scale=TILE_SCALING
81)
82 wall.position = coordinate
83 self.wall_list.append(wall)

(continues on next page)

8.7. Step 7 - Adding a Camera 99

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

84

85 # Create a Platformer Physics Engine, this will handle moving our
86 # player as well as collisions between the player sprite and
87 # whatever SpriteList we specify for the walls.
88 # It is important to supply static to the walls parameter. There is a
89 # platforms parameter that is intended for moving platforms.
90 # If a platform is supposed to move, and is added to the walls list,
91 # it will not be moved.
92 self.physics_engine = arcade.PhysicsEnginePlatformer(
93 self.player_sprite, walls=self.wall_list, gravity_constant=GRAVITY
94)
95

96 # Initialize our camera, setting a viewport the size of our window.
97 self.camera = arcade.SimpleCamera(viewport=(0, 0, self.width, self.height))
98

99 self.background_color = arcade.csscolor.CORNFLOWER_BLUE
100

101 def on_draw(self):
102 """Render the screen."""
103

104 # Clear the screen to the background color
105 self.clear()
106

107 # Activate our camera before drawing
108 self.camera.use()
109

110 # Draw our sprites
111 self.player_list.draw()
112 self.wall_list.draw()
113

114 def on_update(self, delta_time):
115 """Movement and Game Logic"""
116

117 # Move the player using our physics engine
118 self.physics_engine.update()
119

120 # Center our camera on the player
121 self.camera.center(self.player_sprite.position)
122

123 def on_key_press(self, key, modifiers):
124 """Called whenever a key is pressed."""
125

126 if key == arcade.key.ESCAPE:
127 self.setup()
128

129 if key == arcade.key.UP or key == arcade.key.W:
130 if self.physics_engine.can_jump():
131 self.player_sprite.change_y = PLAYER_JUMP_SPEED
132

133 if key == arcade.key.LEFT or key == arcade.key.A:
134 self.player_sprite.change_x = -PLAYER_MOVEMENT_SPEED
135 elif key == arcade.key.RIGHT or key == arcade.key.D:

(continues on next page)

100 Chapter 8. Simple Platformer

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

136 self.player_sprite.change_x = PLAYER_MOVEMENT_SPEED
137

138 def on_key_release(self, key, modifiers):
139 """Called whenever a key is released."""
140

141 if key == arcade.key.LEFT or key == arcade.key.A:
142 self.player_sprite.change_x = 0
143 elif key == arcade.key.RIGHT or key == arcade.key.D:
144 self.player_sprite.change_x = 0
145

146

147 def main():
148 """Main function"""
149 window = MyGame()
150 window.setup()
151 arcade.run()
152

153

154 if __name__ == "__main__":
155 main()

8.7.2 Run This Chapter

python -m arcade.examples.platform_tutorial.07_camera

8.8 Step 8 - Collecting Coins

Now that we can fully move around our game, we need to give the player an objective. A classic goal in video games
is collecting coins, so let’s go ahead and add that.

In this chapter you will learn how to check for collisions with our player, and find out exactly what they collided with
and do something with it. For now we will just remove the coin from the screen when they collect it, but in later chapters
we will give the character a score, and add to it when they collect a coin. We will also start playing sounds later.

First off we will create a new SpriteList to hold our coins. Exactly like our other spritelist for walls, go ahead and add
a variable to the __init__ function to store it, and then initialize it inside the setup function. We will want to turn
on spatial hashing for this list for now. If you decided to have moving coins, you would want to turn that off.

Inside __init__
self.coin_list = None

Inside setup
self.coin_list = arcade.SpriteList(use_spatial_hash=True)

See if you can experiment with a way to add the coins to the SpriteList using what we’ve already learned. The built-in
resource for them is :resources:images/items/coinGold.png. HINT: You’ll want to scale these just like we did
with our boxes and ground. If you get stuck, you can check the full source code below to see how we’ve placed them
following the same pattern we used for the ground.

Once you have placed the coins and added them to the coin_list, don’t forget to add them to on_draw.

8.8. Step 8 - Collecting Coins 101

Python Arcade Library, Release 3.0.0.dev26

self.coin_list.draw()

Now that we’re drawing our coins to the screen, how do we make them interact with the player? When the player hits
one, we want to remove it from the screen. To do this we will use arcade.check_for_collision_with_list()
function. This function takes a single Sprite, in this instance our player, and a SpriteList, for us, the coins. It will return
a list containing all of the Sprites from the given SpriteList that the Sprite collided with.

We can iterate over that list with a for loop to do something with each sprite that had a collision. This means we can
detect the user hitting multiple coins at once if we had them placed close together.

In order to do this, and remove the coin sprites when the player hits them, we will add this to the on_update function.

coin_hit_list = arcade.check_for_collision_with_list(
self.player_sprite, self.coin_list

)

for coin in coin_hit_list:
coin.remove_from_sprite_lists()

We use this arcade.BasicSprite.remove_from_sprite_lists() function in order to ensure our Sprite is com-
pletely removed from all SpriteLists it was a part of.

8.8.1 Source Code

Listing 8: Collecting Coins

1 """
2 Platformer Game
3

4 python -m arcade.examples.platform_tutorial.08_coins
5 """
6 import arcade
7

8 # Constants
9 SCREEN_WIDTH = 800

10 SCREEN_HEIGHT = 600
11 SCREEN_TITLE = "Platformer"
12

13 # Constants used to scale our sprites from their original size
14 TILE_SCALING = 0.5
15 COIN_SCALING = 0.5
16

17 # Movement speed of player, in pixels per frame
18 PLAYER_MOVEMENT_SPEED = 5
19 GRAVITY = 1
20 PLAYER_JUMP_SPEED = 20
21

22

23 class MyGame(arcade.Window):
24 """
25 Main application class.
26 """
27

(continues on next page)

102 Chapter 8. Simple Platformer

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

28 def __init__(self):
29

30 # Call the parent class and set up the window
31 super().__init__(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)
32

33 # Variable to hold our texture for our player
34 self.player_texture = None
35

36 # Separate variable that holds the player sprite
37 self.player_sprite = None
38

39 # SpriteList for our player
40 self.player_list = None
41

42 # SpriteList for our boxes and ground
43 # Putting our ground and box Sprites in the same SpriteList
44 # will make it easier to perform collision detection against
45 # them later on. Setting the spatial hash to True will make
46 # collision detection much faster if the objects in this
47 # SpriteList do not move.
48 self.wall_list = None
49

50 # SpriteList for coins the player can collect
51 self.coin_list = None
52

53 # A variable to store our camera object
54 self.camera = None
55

56 def setup(self):
57 """Set up the game here. Call this function to restart the game."""
58 self.player_texture = arcade.load_texture(":resources:images/animated_characters/

→˓female_adventurer/femaleAdventurer_idle.png")
59

60 self.player_sprite = arcade.Sprite(self.player_texture)
61 self.player_sprite.center_x = 64
62 self.player_sprite.center_y = 128
63

64 self.player_list = arcade.SpriteList()
65 self.player_list.append(self.player_sprite)
66

67 self.wall_list = arcade.SpriteList(use_spatial_hash=True)
68 self.coin_list = arcade.SpriteList(use_spatial_hash=True)
69

70 # Create the ground
71 # This shows using a loop to place multiple sprites horizontally
72 for x in range(0, 1250, 64):
73 wall = arcade.Sprite(":resources:images/tiles/grassMid.png", scale=TILE_

→˓SCALING)
74 wall.center_x = x
75 wall.center_y = 32
76 self.wall_list.append(wall)
77

(continues on next page)

8.8. Step 8 - Collecting Coins 103

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

78 # Put some crates on the ground
79 # This shows using a coordinate list to place sprites
80 coordinate_list = [[512, 96], [256, 96], [768, 96]]
81

82 for coordinate in coordinate_list:
83 # Add a crate on the ground
84 wall = arcade.Sprite(
85 ":resources:images/tiles/boxCrate_double.png", scale=TILE_SCALING
86)
87 wall.position = coordinate
88 self.wall_list.append(wall)
89

90 # Add coins to the world
91 for x in range(128, 1250, 256):
92 coin = arcade.Sprite(":resources:images/items/coinGold.png", scale=COIN_

→˓SCALING)
93 coin.center_x = x
94 coin.center_y = 96
95 self.coin_list.append(coin)
96

97 # Create a Platformer Physics Engine, this will handle moving our
98 # player as well as collisions between the player sprite and
99 # whatever SpriteList we specify for the walls.

100 # It is important to supply static to the walls parameter. There is a
101 # platforms parameter that is intended for moving platforms.
102 # If a platform is supposed to move, and is added to the walls list,
103 # it will not be moved.
104 self.physics_engine = arcade.PhysicsEnginePlatformer(
105 self.player_sprite, walls=self.wall_list, gravity_constant=GRAVITY
106)
107

108 # Initialize our camera, setting a viewport the size of our window.
109 self.camera = arcade.SimpleCamera(viewport=(0, 0, self.width, self.height))
110

111 self.background_color = arcade.csscolor.CORNFLOWER_BLUE
112

113 def on_draw(self):
114 """Render the screen."""
115

116 # Clear the screen to the background color
117 self.clear()
118

119 # Activate our camera before drawing
120 self.camera.use()
121

122 # Draw our sprites
123 self.player_list.draw()
124 self.wall_list.draw()
125 self.coin_list.draw()
126

127 def on_update(self, delta_time):
128 """Movement and Game Logic"""

(continues on next page)

104 Chapter 8. Simple Platformer

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

129

130 # Move the player using our physics engine
131 self.physics_engine.update()
132

133 # See if we hit any coins
134 coin_hit_list = arcade.check_for_collision_with_list(
135 self.player_sprite, self.coin_list
136)
137

138 # Loop through each coin we hit (if any) and remove it
139 for coin in coin_hit_list:
140 # Remove the coin
141 coin.remove_from_sprite_lists()
142

143 # Center our camera on the player
144 self.camera.center(self.player_sprite.position)
145

146 def on_key_press(self, key, modifiers):
147 """Called whenever a key is pressed."""
148

149 if key == arcade.key.ESCAPE:
150 self.setup()
151

152 if key == arcade.key.UP or key == arcade.key.W:
153 if self.physics_engine.can_jump():
154 self.player_sprite.change_y = PLAYER_JUMP_SPEED
155

156 if key == arcade.key.LEFT or key == arcade.key.A:
157 self.player_sprite.change_x = -PLAYER_MOVEMENT_SPEED
158 elif key == arcade.key.RIGHT or key == arcade.key.D:
159 self.player_sprite.change_x = PLAYER_MOVEMENT_SPEED
160

161 def on_key_release(self, key, modifiers):
162 """Called whenever a key is released."""
163

164 if key == arcade.key.LEFT or key == arcade.key.A:
165 self.player_sprite.change_x = 0
166 elif key == arcade.key.RIGHT or key == arcade.key.D:
167 self.player_sprite.change_x = 0
168

169

170 def main():
171 """Main function"""
172 window = MyGame()
173 window.setup()
174 arcade.run()
175

176

177 if __name__ == "__main__":
178 main()

8.8. Step 8 - Collecting Coins 105

Python Arcade Library, Release 3.0.0.dev26

8.8.2 Run This Chapter

python -m arcade.examples.platform_tutorial.08_coins

8.9 Step 9 - Adding Sound

Our game has a lot of graphics so far, but doesn’t have any sound yet. Let’s change that! In this chapter we will add a
sound when the player collects the coins, as well as when they jump.

Loading and playing sounds in Arcade is very easy. We will only need two functions for this:

• arcade.load_sound()

• arcade.play_sound()

In our __init__ function, we will add these two lines to load our coin collection and jump sounds.

self.collect_coin_sound = arcade.load_sound(":resources:sounds/coin1.wav")
self.jump_sound = arcade.load_sound(":resources:sounds/jump1.wav")

Note: Why are we not adding empty variables to __init__ and initializing them in setup like our other objects?

This is because sounds are a static asset within our game. If we reset the game, the sounds don’t change, so it’s not
worth re-loading them.

Now we can play these sounds by simple adding the play_sound function wherever we want them to occur. Let’s add
one alongside our removal of coins in the on_update function.

Within on_update
for coin in coin_hit_list:

coin.remove_from_sprite_lists()
arcade.play_sound(self.collect_coin_sound)

This will play a sound whenever we collect a coin. We can add a jump sound by adding this to our UP block for jumping
in the on_key_press function:

Within on_key_press
if key == arcade.key.UP or key == arcade.key.W:

if self.physics_engine.can_jump():
self.player_sprite.change_y = PLAYER_JUMP_SPEED
arcade.play_sound(self.jump_sound)

Now we will also have a sound whenever we jump.

Documentation for arcade.Sound

106 Chapter 8. Simple Platformer

Python Arcade Library, Release 3.0.0.dev26

8.9.1 Source Code

Listing 9: Load the Map

1 """
2 Platformer Game
3

4 python -m arcade.examples.platform_tutorial.09_sound
5 """
6 import arcade
7

8 # Constants
9 SCREEN_WIDTH = 800

10 SCREEN_HEIGHT = 600
11 SCREEN_TITLE = "Platformer"
12

13 # Constants used to scale our sprites from their original size
14 TILE_SCALING = 0.5
15 COIN_SCALING = 0.5
16

17 # Movement speed of player, in pixels per frame
18 PLAYER_MOVEMENT_SPEED = 5
19 GRAVITY = 1
20 PLAYER_JUMP_SPEED = 20
21

22

23 class MyGame(arcade.Window):
24 """
25 Main application class.
26 """
27

28 def __init__(self):
29

30 # Call the parent class and set up the window
31 super().__init__(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)
32

33 # Variable to hold our texture for our player
34 self.player_texture = None
35

36 # Separate variable that holds the player sprite
37 self.player_sprite = None
38

39 # SpriteList for our player
40 self.player_list = None
41

42 # SpriteList for our boxes and ground
43 # Putting our ground and box Sprites in the same SpriteList
44 # will make it easier to perform collision detection against
45 # them later on. Setting the spatial hash to True will make
46 # collision detection much faster if the objects in this
47 # SpriteList do not move.
48 self.wall_list = None
49

(continues on next page)

8.9. Step 9 - Adding Sound 107

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

50 # SpriteList for coins the player can collect
51 self.coin_list = None
52

53 # A variable to store our camera object
54 self.camera = None
55

56 # Load sounds
57 self.collect_coin_sound = arcade.load_sound(":resources:sounds/coin1.wav")
58 self.jump_sound = arcade.load_sound(":resources:sounds/jump1.wav")
59

60 def setup(self):
61 """Set up the game here. Call this function to restart the game."""
62 self.player_texture = arcade.load_texture(":resources:images/animated_characters/

→˓female_adventurer/femaleAdventurer_idle.png")
63

64 self.player_sprite = arcade.Sprite(self.player_texture)
65 self.player_sprite.center_x = 64
66 self.player_sprite.center_y = 128
67

68 self.player_list = arcade.SpriteList()
69 self.player_list.append(self.player_sprite)
70

71 self.wall_list = arcade.SpriteList(use_spatial_hash=True)
72 self.coin_list = arcade.SpriteList(use_spatial_hash=True)
73

74 # Create the ground
75 # This shows using a loop to place multiple sprites horizontally
76 for x in range(0, 1250, 64):
77 wall = arcade.Sprite(":resources:images/tiles/grassMid.png", scale=TILE_

→˓SCALING)
78 wall.center_x = x
79 wall.center_y = 32
80 self.wall_list.append(wall)
81

82 # Put some crates on the ground
83 # This shows using a coordinate list to place sprites
84 coordinate_list = [[512, 96], [256, 96], [768, 96]]
85

86 for coordinate in coordinate_list:
87 # Add a crate on the ground
88 wall = arcade.Sprite(
89 ":resources:images/tiles/boxCrate_double.png", scale=TILE_SCALING
90)
91 wall.position = coordinate
92 self.wall_list.append(wall)
93

94 # Add coins to the world
95 for x in range(128, 1250, 256):
96 coin = arcade.Sprite(":resources:images/items/coinGold.png", scale=COIN_

→˓SCALING)
97 coin.center_x = x
98 coin.center_y = 96

(continues on next page)

108 Chapter 8. Simple Platformer

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

99 self.coin_list.append(coin)
100

101 # Create a Platformer Physics Engine, this will handle moving our
102 # player as well as collisions between the player sprite and
103 # whatever SpriteList we specify for the walls.
104 # It is important to supply static to the walls parameter. There is a
105 # platforms parameter that is intended for moving platforms.
106 # If a platform is supposed to move, and is added to the walls list,
107 # it will not be moved.
108 self.physics_engine = arcade.PhysicsEnginePlatformer(
109 self.player_sprite, walls=self.wall_list, gravity_constant=GRAVITY
110)
111

112 # Initialize our camera, setting a viewport the size of our window.
113 self.camera = arcade.SimpleCamera(viewport=(0, 0, self.width, self.height))
114

115 self.background_color = arcade.csscolor.CORNFLOWER_BLUE
116

117 def on_draw(self):
118 """Render the screen."""
119

120 # Clear the screen to the background color
121 self.clear()
122

123 # Activate our camera before drawing
124 self.camera.use()
125

126 # Draw our sprites
127 self.player_list.draw()
128 self.wall_list.draw()
129 self.coin_list.draw()
130

131 def on_update(self, delta_time):
132 """Movement and Game Logic"""
133

134 # Move the player using our physics engine
135 self.physics_engine.update()
136

137 # See if we hit any coins
138 coin_hit_list = arcade.check_for_collision_with_list(
139 self.player_sprite, self.coin_list
140)
141

142 # Loop through each coin we hit (if any) and remove it
143 for coin in coin_hit_list:
144 # Remove the coin
145 coin.remove_from_sprite_lists()
146 arcade.play_sound(self.collect_coin_sound)
147

148 # Center our camera on the player
149 self.camera.center(self.player_sprite.position)
150

(continues on next page)

8.9. Step 9 - Adding Sound 109

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

151 def on_key_press(self, key, modifiers):
152 """Called whenever a key is pressed."""
153

154 if key == arcade.key.ESCAPE:
155 self.setup()
156

157 if key == arcade.key.UP or key == arcade.key.W:
158 if self.physics_engine.can_jump():
159 self.player_sprite.change_y = PLAYER_JUMP_SPEED
160 arcade.play_sound(self.jump_sound)
161

162 if key == arcade.key.LEFT or key == arcade.key.A:
163 self.player_sprite.change_x = -PLAYER_MOVEMENT_SPEED
164 elif key == arcade.key.RIGHT or key == arcade.key.D:
165 self.player_sprite.change_x = PLAYER_MOVEMENT_SPEED
166

167 def on_key_release(self, key, modifiers):
168 """Called whenever a key is released."""
169

170 if key == arcade.key.LEFT or key == arcade.key.A:
171 self.player_sprite.change_x = 0
172 elif key == arcade.key.RIGHT or key == arcade.key.D:
173 self.player_sprite.change_x = 0
174

175

176 def main():
177 """Main function"""
178 window = MyGame()
179 window.setup()
180 arcade.run()
181

182

183 if __name__ == "__main__":
184 main()

8.9.2 Run This Chapter

python -m arcade.examples.platform_tutorial.09_sound

8.10 Step 10 - Adding a Score

Our game is starting to take shape, but we still need to give the player a reward for their hard work collecting coins. To
do this we will add a score which will be increased everytime they collect a coin, and display that on the screen.

In this chapter we will cover using arcade.Text objects, as well as a technique for using two cameras to draw objects
in “screen space” and objects in “world space”.

Note: What is screen space and world space? Think about other games you may have played, and let’s compare it
to our game. A player moves around in the world, and we scroll a camera around based on that position. This is an

110 Chapter 8. Simple Platformer

Python Arcade Library, Release 3.0.0.dev26

example of “world space” coordinates. They can expand beyond our window and need to be positioned within the
window accordingly.

An example of “screen space” coordinates is our score indicator. We will draw this on our screen, but we don’t want
it to move around the screen when the camera scrolls around. To achieve this we will use two different cameras, and
move the world space camera, but not move the screen space camera.

In our code, we will call this screen space camera, gui_camera

Let’s go ahead and add a variable for our new camera and initialize it in setup. We will also add a variable for our
score. This will just be an integer initially set to 0. We will set this in both __init__ and setup.

Within __init__
self.gui_camera = None
self.score = 0

Within setup
self.gui_camera = arcade.SimpleCamera(viewport=(0, 0, width, height))
self.score = 0

Now we can go into our on_update function, and when the player collects a coin, we can increment our score variable.
For now we will give the player 75 points for collecting a coin. You can change this, or as an exercise try adding different
types of coins with different point values. In later chapters we’ll explore dynamically providing point values for coins
from a map editor.

Within on_update
for coin in coin_hit_list:

coin.remove_from_sprite_lists()
arcade.play_sound(self.collect_coin_sound)
self.score += 75

Now that we’re incrementing our score, how do we draw it onto the screen? Well we will be using our GUI camera,
but so far we haven’t talked about drawing Text in Arcade. There are a couple of ways we can do this in Arcade, the
first way is using the arcade.draw_text() function. This is a simple function that you can put directly in on_draw
to draw a string of text.

This function however, is not very performant, and there is a better way. We will instead use arcade.Text objects.
These have many advantages, like not needing to re-calculate the text everytime it’s drawn, and also can be batch drawn
much like how we do with Sprite and SpriteList. We will explore batch drawing Text later.

For now, let’s create an arcade.Text object to hold our score text. First create the empty variable in __init__ and
initialize in setup.

Within __init__
self.score_text = None

Within setup
self.score_text = arcade.Text(f"Score: {self.score}", start_x = 0, start_y = 5)

The first parameter we send to arcade.Text is a String containing the text we want to draw. In our example we provide
an f-string which adds our value from self.score into the text. The other parameters are defining the bottom left
point that our text will be drawn at.

I’ve set it to draw in the bottom left of our screen here. You can try moving it around.

Now we need to add this to our on_draw function in order to get it to display on the screen.

8.10. Step 10 - Adding a Score 111

Python Arcade Library, Release 3.0.0.dev26

Within on_draw
self.gui_camera.use()
self.score_text.draw()

This will now draw our text in the bottom left of the screen. However, we stil have one problem left, we’re not updating
the text when our user gets a new score. In order to do this we will go back to our on_update function, where we
incremented the score when the user collects a coin, and add one more line to it:

for coin in coin_hit_list:
coin.remove_from_sprite_lists()
arcade.play_sound(self.collect_coin_sound)
self.score += 75
self.score_text.text = f"Score: {self.score}"

In this new line we’re udpating the actual text of our Text object to contain the new score value.

8.10.1 Source Code

Listing 10: Multiple Levels

1 """
2 Platformer Game
3

4 python -m arcade.examples.platform_tutorial.10_score
5 """
6 import arcade
7

8 # Constants
9 SCREEN_WIDTH = 800

10 SCREEN_HEIGHT = 600
11 SCREEN_TITLE = "Platformer"
12

13 # Constants used to scale our sprites from their original size
14 TILE_SCALING = 0.5
15 COIN_SCALING = 0.5
16

17 # Movement speed of player, in pixels per frame
18 PLAYER_MOVEMENT_SPEED = 5
19 GRAVITY = 1
20 PLAYER_JUMP_SPEED = 20
21

22

23 class MyGame(arcade.Window):
24 """
25 Main application class.
26 """
27

28 def __init__(self):
29

30 # Call the parent class and set up the window
31 super().__init__(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)
32

(continues on next page)

112 Chapter 8. Simple Platformer

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

33 # Variable to hold our texture for our player
34 self.player_texture = None
35

36 # Separate variable that holds the player sprite
37 self.player_sprite = None
38

39 # SpriteList for our player
40 self.player_list = None
41

42 # SpriteList for our boxes and ground
43 # Putting our ground and box Sprites in the same SpriteList
44 # will make it easier to perform collision detection against
45 # them later on. Setting the spatial hash to True will make
46 # collision detection much faster if the objects in this
47 # SpriteList do not move.
48 self.wall_list = None
49

50 # SpriteList for coins the player can collect
51 self.coin_list = None
52

53 # A variable to store our camera object
54 self.camera = None
55

56 # A variable to store our gui camera object
57 self.gui_camera = None
58

59 # This variable will store our score as an integer.
60 self.score = 0
61

62 # This variable will store the text for score that we will draw to the screen.
63 self.score_text = None
64

65 # Load sounds
66 self.collect_coin_sound = arcade.load_sound(":resources:sounds/coin1.wav")
67 self.jump_sound = arcade.load_sound(":resources:sounds/jump1.wav")
68

69 def setup(self):
70 """Set up the game here. Call this function to restart the game."""
71 self.player_texture = arcade.load_texture(":resources:images/animated_characters/

→˓female_adventurer/femaleAdventurer_idle.png")
72

73 self.player_sprite = arcade.Sprite(self.player_texture)
74 self.player_sprite.center_x = 64
75 self.player_sprite.center_y = 128
76

77 self.player_list = arcade.SpriteList()
78 self.player_list.append(self.player_sprite)
79

80 self.wall_list = arcade.SpriteList(use_spatial_hash=True)
81 self.coin_list = arcade.SpriteList(use_spatial_hash=True)
82

83 # Create the ground

(continues on next page)

8.10. Step 10 - Adding a Score 113

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

84 # This shows using a loop to place multiple sprites horizontally
85 for x in range(0, 1250, 64):
86 wall = arcade.Sprite(":resources:images/tiles/grassMid.png", scale=TILE_

→˓SCALING)
87 wall.center_x = x
88 wall.center_y = 32
89 self.wall_list.append(wall)
90

91 # Put some crates on the ground
92 # This shows using a coordinate list to place sprites
93 coordinate_list = [[512, 96], [256, 96], [768, 96]]
94

95 for coordinate in coordinate_list:
96 # Add a crate on the ground
97 wall = arcade.Sprite(
98 ":resources:images/tiles/boxCrate_double.png", scale=TILE_SCALING
99)

100 wall.position = coordinate
101 self.wall_list.append(wall)
102

103 # Add coins to the world
104 for x in range(128, 1250, 256):
105 coin = arcade.Sprite(":resources:images/items/coinGold.png", scale=COIN_

→˓SCALING)
106 coin.center_x = x
107 coin.center_y = 96
108 self.coin_list.append(coin)
109

110 # Create a Platformer Physics Engine, this will handle moving our
111 # player as well as collisions between the player sprite and
112 # whatever SpriteList we specify for the walls.
113 # It is important to supply static to the walls parameter. There is a
114 # platforms parameter that is intended for moving platforms.
115 # If a platform is supposed to move, and is added to the walls list,
116 # it will not be moved.
117 self.physics_engine = arcade.PhysicsEnginePlatformer(
118 self.player_sprite, walls=self.wall_list, gravity_constant=GRAVITY
119)
120

121 # Initialize our camera, setting a viewport the size of our window.
122 self.camera = arcade.SimpleCamera(viewport=(0, 0, self.width, self.height))
123

124 # Initialize our gui camera, initial settings are the same as our world camera.
125 self.gui_camera = arcade.SimpleCamera(viewport=(0, 0, self.width, self.height))
126

127 # Reset our score to 0
128 self.score = 0
129

130 # Initialize our arcade.Text object for score
131 self.score_text = arcade.Text(f"Score: {self.score}", start_x = 0, start_y = 5)
132

133 self.background_color = arcade.csscolor.CORNFLOWER_BLUE

(continues on next page)

114 Chapter 8. Simple Platformer

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

134

135 def on_draw(self):
136 """Render the screen."""
137

138 # Clear the screen to the background color
139 self.clear()
140

141 # Activate our camera before drawing
142 self.camera.use()
143

144 # Draw our sprites
145 self.player_list.draw()
146 self.wall_list.draw()
147 self.coin_list.draw()
148

149 # Activate our GUI camera
150 self.gui_camera.use()
151

152 # Draw our Score
153 self.score_text.draw()
154

155 def on_update(self, delta_time):
156 """Movement and Game Logic"""
157

158 # Move the player using our physics engine
159 self.physics_engine.update()
160

161 # See if we hit any coins
162 coin_hit_list = arcade.check_for_collision_with_list(
163 self.player_sprite, self.coin_list
164)
165

166 # Loop through each coin we hit (if any) and remove it
167 for coin in coin_hit_list:
168 # Remove the coin
169 coin.remove_from_sprite_lists()
170 arcade.play_sound(self.collect_coin_sound)
171 self.score += 75
172 self.score_text.text = f"Score: {self.score}"
173

174 # Center our camera on the player
175 self.camera.center(self.player_sprite.position)
176

177 def on_key_press(self, key, modifiers):
178 """Called whenever a key is pressed."""
179

180 if key == arcade.key.ESCAPE:
181 self.setup()
182

183 if key == arcade.key.UP or key == arcade.key.W:
184 if self.physics_engine.can_jump():
185 self.player_sprite.change_y = PLAYER_JUMP_SPEED

(continues on next page)

8.10. Step 10 - Adding a Score 115

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

186 arcade.play_sound(self.jump_sound)
187

188 if key == arcade.key.LEFT or key == arcade.key.A:
189 self.player_sprite.change_x = -PLAYER_MOVEMENT_SPEED
190 elif key == arcade.key.RIGHT or key == arcade.key.D:
191 self.player_sprite.change_x = PLAYER_MOVEMENT_SPEED
192

193 def on_key_release(self, key, modifiers):
194 """Called whenever a key is released."""
195

196 if key == arcade.key.LEFT or key == arcade.key.A:
197 self.player_sprite.change_x = 0
198 elif key == arcade.key.RIGHT or key == arcade.key.D:
199 self.player_sprite.change_x = 0
200

201

202 def main():
203 """Main function"""
204 window = MyGame()
205 window.setup()
206 arcade.run()
207

208

209 if __name__ == "__main__":
210 main()

8.10.2 Run This Chapter

python -m arcade.examples.platform_tutorial.10_score

8.11 Step 11 - Using a Scene

So far in our game, we have three SpriteLists. One for our player, one for our walls(ground and boxes), and one for our
coins. This is still manageable, but whatabout as our game grows? You can probably imagine a game could end up
with hundreds of SpriteLists. Using just our current approach, we would have to keep track of variables for each one,
and ensure we’re drawing them in the proper order.

Arcade provides a better way to handle this, with the arcade.Scene class. This class will hold all of our spritelists
for us, allow us to create new ones, change around the order they get drawn in, and more. In later chapters we will we
use a special function to load a map from a map editor tool, and automatically create a Scene based on the map.

At the end of this chapter, you will have the same result as before, but the code will be a bit different to use the Scene
object.

First-off, we can remove all of our SpriteList variables from __init__ and replace them with on variable to hold the
scene object:

self.scene = None

Now at the very top of our setup function we can initialize the scene by doing:

116 Chapter 8. Simple Platformer

Python Arcade Library, Release 3.0.0.dev26

self.scene = arcade.Scene()

Next, we will remove the line in setup that initializes our Player spritelist, that line looked like this:

self.player_list = arcade.SpriteList()

Then, instead of adding our player to the SpriteList using self.player_sprite.append(). We will add the player
to the Scene directly:

self.player_sprite = arcade.Sprite(self.player_texture)
self.player_sprite.center_x = 64
self.player_sprite.center_y = 128
self.scene.add_sprite("Player", self.player_sprite)

Let’s analyze what happens when we do arcade.Scene.add_sprite(). The first parameter to it is a String, this
defines the layer name that we want to add a Sprite to. This can be an already existing layer or a new one. If the layer
already exists, the Sprite will be added to it, and if it doesn’t, Scene will automatically create it. Under the hood, a layer
is just a SpriteList with a name. So when we specify Player as our Layer. Scene is creating a new SpriteList, giving
it that name, and then adding our Player Sprite to it.

Next we will replace our initialization of the wall and coin SpriteLists with these functions:

self.scene.add_sprite_list("Walls", use_spatial_hash=True)
self.scene.add_sprite_list("Coins", use_spatial_hash=True)

Here we are taking a little bit different approach than we did for our Player layer. For our player, we just added a
Sprite directly. Here we are initialization new empty layers, named Walls and Coins. The advantage to this approach
is that we can specify that this layer should use spatial hashing, like we specified for those SpriteLists before.

Now when we use the add_sprite function on these lists later, those Sprites will be added into these existing layers.

In order to add Sprites to these, let’s modify the self.wall_list.append() functions within the for loops for placing
our walls and coins in the setup function. The only part we’re actually changing of these loops is the last line where
we were adding it to the SpriteList, but I’ve included the loops so you can see where all it should be changed.

Create the ground
for x in range(0, 1250, 64):

wall = arcade.Sprite(":resources:images/tiles/grassMid.png", scale=TILE_SCALING)
wall.center_x = x
wall.center_y = 32
self.scene.add_sprite("Walls", wall)

Putting Crates on the Ground
coordinate_list = [[512, 96], [256, 96], [768, 96]]

for coordinate in coordinate_li
wall = arcade.Sprite(

":resources:images/tiles/boxCrate_double.png", scale=TILE_SCALING
)
wall.position = coordinate
self.scene.add_sprite("Walls", wall)

Add coins to the world
for x in range(128, 1250, 256):

coin = arcade.Sprite(":resources:images/items/coinGold.png", scale=COIN_SCALING)
(continues on next page)

8.11. Step 11 - Using a Scene 117

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

coin.center_x = x
coin.center_y = 96
self.scene.add_sprite("Coins", coin)

The next thing we need to do is fix our Physics Engine. If you remember back in Chapter 4, we added a physics engine
and sent our Wall spritelist to in the walls parameter.

We’ll need to modify that our PhysicsEnginePlatformer initialization to this:

self.physics_engine = arcade.PhysicsEnginePlatformer(
self.player_sprite, walls=self.scene["Walls"], gravity_constant=GRAVITY

)

This is mostly the same as before, but we are pulling the Walls SpriteList from our Scene. If you are familiar with
Python dictionaries, the arcade.Scene class can be interacted with in a very similar way. You can get any specific
SpriteList within the scene by passing the name in brackets to the scene.

We need to also change our arcade.check_for_collision_with_list() function in on_update that we are using
to get the coins we hit to use this new syntax.

coin_hit_list = arcade.check_for_collision_with_list(
self.player_sprite, self.scene["Coins"]

)

The last thing that we need to do is update our on_draw function. In here we will remove all our SpriteLists draws,
and replace them with one line drawing our Scene.

self.scene.draw()

Note: Make sure to keep this after our world camera is activated and before our GUI camera is activated. If you draw
the scene while the GUI camera is activated, the centering on the player and scrolling will not work.

8.11.1 Source Code

Listing 11: Using a Scene

1 """
2 Platformer Game
3

4 python -m arcade.examples.platform_tutorial.11_scene
5 """
6 import arcade
7

8 # Constants
9 SCREEN_WIDTH = 800

10 SCREEN_HEIGHT = 600
11 SCREEN_TITLE = "Platformer"
12

13 # Constants used to scale our sprites from their original size
14 TILE_SCALING = 0.5
15 COIN_SCALING = 0.5

(continues on next page)

118 Chapter 8. Simple Platformer

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

16

17 # Movement speed of player, in pixels per frame
18 PLAYER_MOVEMENT_SPEED = 5
19 GRAVITY = 1
20 PLAYER_JUMP_SPEED = 20
21

22

23 class MyGame(arcade.Window):
24 """
25 Main application class.
26 """
27

28 def __init__(self):
29

30 # Call the parent class and set up the window
31 super().__init__(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)
32

33 # Variable to hold our texture for our player
34 self.player_texture = None
35

36 # Separate variable that holds the player sprite
37 self.player_sprite = None
38

39 # Replacing all of our SpriteLists with a Scene variable
40 self.scene = None
41

42 # A variable to store our camera object
43 self.camera = None
44

45 # A variable to store our gui camera object
46 self.gui_camera = None
47

48 # This variable will store our score as an integer.
49 self.score = 0
50

51 # This variable will store the text for score that we will draw to the screen.
52 self.score_text = None
53

54 # Load sounds
55 self.collect_coin_sound = arcade.load_sound(":resources:sounds/coin1.wav")
56 self.jump_sound = arcade.load_sound(":resources:sounds/jump1.wav")
57

58 def setup(self):
59 """Set up the game here. Call this function to restart the game."""
60 self.scene = arcade.Scene()
61

62 self.player_texture = arcade.load_texture(":resources:images/animated_characters/
→˓female_adventurer/femaleAdventurer_idle.png")

63

64 self.player_sprite = arcade.Sprite(self.player_texture)
65 self.player_sprite.center_x = 64
66 self.player_sprite.center_y = 128

(continues on next page)

8.11. Step 11 - Using a Scene 119

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

67 self.scene.add_sprite("Player", self.player_sprite)
68

69 self.scene.add_sprite_list("Walls", use_spatial_hash=True)
70 self.scene.add_sprite_list("Coins", use_spatial_hash=True)
71

72 # Create the ground
73 # This shows using a loop to place multiple sprites horizontally
74 for x in range(0, 1250, 64):
75 wall = arcade.Sprite(":resources:images/tiles/grassMid.png", scale=TILE_

→˓SCALING)
76 wall.center_x = x
77 wall.center_y = 32
78 self.scene.add_sprite("Walls", wall)
79

80 # Put some crates on the ground
81 # This shows using a coordinate list to place sprites
82 coordinate_list = [[512, 96], [256, 96], [768, 96]]
83

84 for coordinate in coordinate_list:
85 # Add a crate on the ground
86 wall = arcade.Sprite(
87 ":resources:images/tiles/boxCrate_double.png", scale=TILE_SCALING
88)
89 wall.position = coordinate
90 self.scene.add_sprite("Walls", wall)
91

92 # Add coins to the world
93 for x in range(128, 1250, 256):
94 coin = arcade.Sprite(":resources:images/items/coinGold.png", scale=COIN_

→˓SCALING)
95 coin.center_x = x
96 coin.center_y = 96
97 self.scene.add_sprite("Coins", coin)
98

99 # Create a Platformer Physics Engine, this will handle moving our
100 # player as well as collisions between the player sprite and
101 # whatever SpriteList we specify for the walls.
102 # It is important to supply static to the walls parameter. There is a
103 # platforms parameter that is intended for moving platforms.
104 # If a platform is supposed to move, and is added to the walls list,
105 # it will not be moved.
106 self.physics_engine = arcade.PhysicsEnginePlatformer(
107 self.player_sprite, walls=self.scene["Walls"], gravity_constant=GRAVITY
108)
109

110 # Initialize our camera, setting a viewport the size of our window.
111 self.camera = arcade.SimpleCamera(viewport=(0, 0, self.width, self.height))
112

113 # Initialize our gui camera, initial settings are the same as our world camera.
114 self.gui_camera = arcade.SimpleCamera(viewport=(0, 0, self.width, self.height))
115

116 # Reset our score to 0

(continues on next page)

120 Chapter 8. Simple Platformer

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

117 self.score = 0
118

119 # Initialize our arcade.Text object for score
120 self.score_text = arcade.Text(f"Score: {self.score}", start_x = 0, start_y = 5)
121

122 self.background_color = arcade.csscolor.CORNFLOWER_BLUE
123

124 def on_draw(self):
125 """Render the screen."""
126

127 # Clear the screen to the background color
128 self.clear()
129

130 # Activate our camera before drawing
131 self.camera.use()
132

133 # Draw our Scene
134 self.scene.draw()
135

136 # Activate our GUI camera
137 self.gui_camera.use()
138

139 # Draw our Score
140 self.score_text.draw()
141

142 def on_update(self, delta_time):
143 """Movement and Game Logic"""
144

145 # Move the player using our physics engine
146 self.physics_engine.update()
147

148 # See if we hit any coins
149 coin_hit_list = arcade.check_for_collision_with_list(
150 self.player_sprite, self.scene["Coins"]
151)
152

153 # Loop through each coin we hit (if any) and remove it
154 for coin in coin_hit_list:
155 # Remove the coin
156 coin.remove_from_sprite_lists()
157 arcade.play_sound(self.collect_coin_sound)
158 self.score += 75
159 self.score_text.text = f"Score: {self.score}"
160

161 # Center our camera on the player
162 self.camera.center(self.player_sprite.position)
163

164 def on_key_press(self, key, modifiers):
165 """Called whenever a key is pressed."""
166

167 if key == arcade.key.ESCAPE:
168 self.setup()

(continues on next page)

8.11. Step 11 - Using a Scene 121

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

169

170 if key == arcade.key.UP or key == arcade.key.W:
171 if self.physics_engine.can_jump():
172 self.player_sprite.change_y = PLAYER_JUMP_SPEED
173 arcade.play_sound(self.jump_sound)
174

175 if key == arcade.key.LEFT or key == arcade.key.A:
176 self.player_sprite.change_x = -PLAYER_MOVEMENT_SPEED
177 elif key == arcade.key.RIGHT or key == arcade.key.D:
178 self.player_sprite.change_x = PLAYER_MOVEMENT_SPEED
179

180 def on_key_release(self, key, modifiers):
181 """Called whenever a key is released."""
182

183 if key == arcade.key.LEFT or key == arcade.key.A:
184 self.player_sprite.change_x = 0
185 elif key == arcade.key.RIGHT or key == arcade.key.D:
186 self.player_sprite.change_x = 0
187

188

189 def main():
190 """Main function"""
191 window = MyGame()
192 window.setup()
193 arcade.run()
194

195

196 if __name__ == "__main__":
197 main()

8.11.2 Run This Chapter

python -m arcade.examples.platform_tutorial.11_scene

8.12 Step 12 - Loading a Map From a Map Editor

In this chapter we will start using a map editor called Tiled. Tiled is a popular 2D map editor, it can be used with any
game engine, but Arcade has specific integrations for working with Tiled.

We’ll explore how to load maps from Tiled in this tutorial using Arcade’s built-in arcade.TileMap class using some
maps from the built-in resources that Arcade comes with. We won’t cover actually building a map in Tiled this tutorial,
but if you want to learn more about Tiled check out the resources below:

• Download Tiled: https://www.mapeditor.org/

• Tiled’s Documentation: https://doc.mapeditor.org/en/stable/

You won’t actually need Tiled to continue following this tutorial. We will be using all pre-built maps included with
Arcade. However if you want to experiment with your own maps or changing things, I recommend getting Tiled and
getting familiar with it, it is a really useful tool for 2D Game Development.

122 Chapter 8. Simple Platformer

https://www.mapeditor.org/
https://www.mapeditor.org/
https://doc.mapeditor.org/en/stable/

Python Arcade Library, Release 3.0.0.dev26

To start off with, we’re going to remove a bunch of code. Namely we’ll remove the creation of our ground, boxes, and
coin sprites(We’ll leave the player one). Go ahead and remove the following blocks of code from the setup function.

self.scene.add_sprite_list("Walls", use_spatial_hash=True)
self.scene.add_sprite_list("Coins", use_spatial_hash=True)

for x in range(0, 1250, 64):
wall = arcade.Sprite(":resources:images/tiles/grassMid.png", scale=TILE_SCALING)
wall.center_x = x
wall.center_y = 32
self.scene.add_sprite("Walls", wall)

coordinate_list = [[512, 96], [256, 96], [768, 96]]

for coordinate in coordinate_list:
wall = arcade.Sprite(

":resources:images/tiles/boxCrate_double.png", scale=TILE_SCALING
)
wall.position = coordinate
self.scene.add_sprite("Walls", wall)

for x in range(128, 1250, 256):
coin = arcade.Sprite(":resources:images/items/coinGold.png", scale=COIN_SCALING)
coin.center_x = x
coin.center_y = 96
self.scene.add_sprite("Coins", coin)

These things will now be handled by our map file automatically once we start loading it.

In order to load our map, we will first create a variable for it in __init__:

self.tile_map = None

Next we will load our map in our setup function, and then create a Scene from it using a built-in function Arcade
provides. This will give us a drawable scene completely based off of the map file automatically. This code will all go
at the top of the setup function.

Make sure to replace the line that sets self.scene with the new one below.

layer_options = {
"Platforms": {

"use_spatial_hash": True
}

}

self.tile_map = arcade.load_tilemap(
":resources:tiled_maps/map.json",
scaling=TILE_SCALING,
layer_options=layer_options

)

self.scene = arcade.Scene.from_tilemap(self.tile_map)

This code will load in our built-in Tiled Map and automatically build a Scene from it. The Scene at this stage is ready
for drawing and we don’t need to do anything else to it(other than add our player).

8.12. Step 12 - Loading a Map From a Map Editor 123

Python Arcade Library, Release 3.0.0.dev26

Note: What is layer_options and where are those values in it coming from?

layer_options is a special dictionary that can be provided to the load_tilemap function. This will send special
options for each layer into the map loader. In this example our map has a layer called Platforms, and we want to
enable spatial hashing on it. Much like we did for our wall SpriteList before. For more info on the layer options
dictionary and the available keys, check out :class`arcade.TileMap`

At this point we only have one piece of code left to change. In switching to our new map, you may have noticed by the
layer_options dictionary that we now have a layer named Platforms. Previously in our Scene we were calling this
layer Walls. We’ll need to go update that reference when we create our Physics Engine.

In the setup function update the Physics Engine creation to use the the new Platforms layer:

self.physics_engine = arcade.PhysicsEnginePlatformer(
self.player_sprite, walls=self.scene["Platforms"], gravity_constant=GRAVITY

)

8.12.1 Source Code

Listing 12: Loading a Map From a Map Editor

1 """
2 Platformer Game
3

4 python -m arcade.examples.platform_tutorial.12_tiled
5 """
6 import arcade
7

8 # Constants
9 SCREEN_WIDTH = 800

10 SCREEN_HEIGHT = 600
11 SCREEN_TITLE = "Platformer"
12

13 # Constants used to scale our sprites from their original size
14 TILE_SCALING = 0.5
15 COIN_SCALING = 0.5
16

17 # Movement speed of player, in pixels per frame
18 PLAYER_MOVEMENT_SPEED = 5
19 GRAVITY = 1
20 PLAYER_JUMP_SPEED = 20
21

22

23 class MyGame(arcade.Window):
24 """
25 Main application class.
26 """
27

28 def __init__(self):
29

30 # Call the parent class and set up the window
(continues on next page)

124 Chapter 8. Simple Platformer

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

31 super().__init__(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)
32

33 # Variable to hold our texture for our player
34 self.player_texture = None
35

36 # Separate variable that holds the player sprite
37 self.player_sprite = None
38

39 # Variable to hold our Tiled Map
40 self.tile_map = None
41

42 # Replacing all of our SpriteLists with a Scene variable
43 self.scene = None
44

45 # A variable to store our camera object
46 self.camera = None
47

48 # A variable to store our gui camera object
49 self.gui_camera = None
50

51 # This variable will store our score as an integer.
52 self.score = 0
53

54 # This variable will store the text for score that we will draw to the screen.
55 self.score_text = None
56

57 # Load sounds
58 self.collect_coin_sound = arcade.load_sound(":resources:sounds/coin1.wav")
59 self.jump_sound = arcade.load_sound(":resources:sounds/jump1.wav")
60

61 def setup(self):
62 """Set up the game here. Call this function to restart the game."""
63 layer_options = {
64 "Platforms": {
65 "use_spatial_hash": True
66 }
67 }
68

69 # Load our TileMap
70 self.tile_map = arcade.load_tilemap(":resources:tiled_maps/map.json",␣

→˓scaling=TILE_SCALING, layer_options=layer_options)
71

72 # Create our Scene Based on the TileMap
73 self.scene = arcade.Scene.from_tilemap(self.tile_map)
74

75 self.player_texture = arcade.load_texture(":resources:images/animated_characters/
→˓female_adventurer/femaleAdventurer_idle.png")

76

77 self.player_sprite = arcade.Sprite(self.player_texture)
78 self.player_sprite.center_x = 128
79 self.player_sprite.center_y = 128
80 self.scene.add_sprite("Player", self.player_sprite)

(continues on next page)

8.12. Step 12 - Loading a Map From a Map Editor 125

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

81

82 # Create a Platformer Physics Engine, this will handle moving our
83 # player as well as collisions between the player sprite and
84 # whatever SpriteList we specify for the walls.
85 # It is important to supply static to the walls parameter. There is a
86 # platforms parameter that is intended for moving platforms.
87 # If a platform is supposed to move, and is added to the walls list,
88 # it will not be moved.
89 self.physics_engine = arcade.PhysicsEnginePlatformer(
90 self.player_sprite, walls=self.scene["Platforms"], gravity_constant=GRAVITY
91)
92

93 # Initialize our camera, setting a viewport the size of our window.
94 self.camera = arcade.SimpleCamera(viewport=(0, 0, self.width, self.height))
95

96 # Initialize our gui camera, initial settings are the same as our world camera.
97 self.gui_camera = arcade.SimpleCamera(viewport=(0, 0, self.width, self.height))
98

99 # Reset our score to 0
100 self.score = 0
101

102 # Initialize our arcade.Text object for score
103 self.score_text = arcade.Text(f"Score: {self.score}", start_x = 0, start_y = 5)
104

105 self.background_color = arcade.csscolor.CORNFLOWER_BLUE
106

107 def on_draw(self):
108 """Render the screen."""
109

110 # Clear the screen to the background color
111 self.clear()
112

113 # Activate our camera before drawing
114 self.camera.use()
115

116 # Draw our Scene
117 self.scene.draw()
118

119 # Activate our GUI camera
120 self.gui_camera.use()
121

122 # Draw our Score
123 self.score_text.draw()
124

125 def on_update(self, delta_time):
126 """Movement and Game Logic"""
127

128 # Move the player using our physics engine
129 self.physics_engine.update()
130

131 # See if we hit any coins
132 coin_hit_list = arcade.check_for_collision_with_list(

(continues on next page)

126 Chapter 8. Simple Platformer

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

133 self.player_sprite, self.scene["Coins"]
134)
135

136 # Loop through each coin we hit (if any) and remove it
137 for coin in coin_hit_list:
138 # Remove the coin
139 coin.remove_from_sprite_lists()
140 arcade.play_sound(self.collect_coin_sound)
141 self.score += 75
142 self.score_text.text = f"Score: {self.score}"
143

144 # Center our camera on the player
145 self.camera.center(self.player_sprite.position)
146

147 def on_key_press(self, key, modifiers):
148 """Called whenever a key is pressed."""
149

150 if key == arcade.key.ESCAPE:
151 self.setup()
152

153 if key == arcade.key.UP or key == arcade.key.W:
154 if self.physics_engine.can_jump():
155 self.player_sprite.change_y = PLAYER_JUMP_SPEED
156 arcade.play_sound(self.jump_sound)
157

158 if key == arcade.key.LEFT or key == arcade.key.A:
159 self.player_sprite.change_x = -PLAYER_MOVEMENT_SPEED
160 elif key == arcade.key.RIGHT or key == arcade.key.D:
161 self.player_sprite.change_x = PLAYER_MOVEMENT_SPEED
162

163 def on_key_release(self, key, modifiers):
164 """Called whenever a key is released."""
165

166 if key == arcade.key.LEFT or key == arcade.key.A:
167 self.player_sprite.change_x = 0
168 elif key == arcade.key.RIGHT or key == arcade.key.D:
169 self.player_sprite.change_x = 0
170

171

172 def main():
173 """Main function"""
174 window = MyGame()
175 window.setup()
176 arcade.run()
177

178

179 if __name__ == "__main__":
180 main()

8.12. Step 12 - Loading a Map From a Map Editor 127

Python Arcade Library, Release 3.0.0.dev26

8.13 Step 13 - More Types of Layers

For this example, we’ll switch to a different built-in map that has more layers we can do things with.

In our setup function, load this map instead of the one from Chapter 12:

self.tile_map = arcade.load_tilemap(":resources:tiled_maps/map2_level_1.json",␣
→˓scaling=TILE_SCALING, layer_options=layer_options)

You can run this and check out the map we will be working with this chapter. You’ll notice in addition to the normal
platforms and coins we’ve had. We now have some extra signs and decoration objects, as well as a pit of lava.

Back in chapter 6 we made use of our setup function to reset the game. Let’s go ahead and use that system here to
reset the game when the player touches the lava pit. You can remove the section for resetting when the Escape key is
pressed if you want, or you can leave it in place. We can also play a game over sound when this happens.

Let’s first add a new sound to our __init__ function for this:

self.gameover_sound = arcade.load_sound(":resources:sounds/gameover1.wav")

In order to do this, we’ll add this code in our on_update function:

if arcade.check_for_collision_with_list(
self.player_sprite, self.scene["Don't Touch"]

):
arcade.play_sound(self.gameover_sound)
self.setup()

The map we are using here has some extra layers in it we haven’t used yet. In the code above we made use of the Don't
Touch to reset the game when the player touches it. In this section we will make use of two other layers in our new
map, Background and Foreground.

We will use these layers as a way to separate objects that should be drawn in front of our player, and objects that should
be drawn behind the player. In our setup function, before we create the player sprite, add this code.

self.scene.add_sprite_list_after("Player", "Foreground")

This code will cause our player spritelist to be inserted at a specific point in the Scene. Causing spritelists which are in
front of it to be drawn before it, and ones behind it to be drawn after. By doing this we can make objects appear to be
in front of or behind our player like the images below:

128 Chapter 8. Simple Platformer

Python Arcade Library, Release 3.0.0.dev26

8.13. Step 13 - More Types of Layers 129

Python Arcade Library, Release 3.0.0.dev26

8.13.1 Source Code

Listing 13: More Layers

1 """
2 Platformer Game
3

4 python -m arcade.examples.platform_tutorial.13_more_layers
5 """
6 import arcade
7

8 # Constants
9 SCREEN_WIDTH = 800

10 SCREEN_HEIGHT = 600
11 SCREEN_TITLE = "Platformer"
12

13 # Constants used to scale our sprites from their original size
14 TILE_SCALING = 0.5
15 COIN_SCALING = 0.5
16

17 # Movement speed of player, in pixels per frame
18 PLAYER_MOVEMENT_SPEED = 5
19 GRAVITY = 1
20 PLAYER_JUMP_SPEED = 20

(continues on next page)

130 Chapter 8. Simple Platformer

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

21

22

23 class MyGame(arcade.Window):
24 """
25 Main application class.
26 """
27

28 def __init__(self):
29

30 # Call the parent class and set up the window
31 super().__init__(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)
32

33 # Variable to hold our texture for our player
34 self.player_texture = None
35

36 # Separate variable that holds the player sprite
37 self.player_sprite = None
38

39 # Variable to hold our Tiled Map
40 self.tile_map = None
41

42 # Replacing all of our SpriteLists with a Scene variable
43 self.scene = None
44

45 # A variable to store our camera object
46 self.camera = None
47

48 # A variable to store our gui camera object
49 self.gui_camera = None
50

51 # This variable will store our score as an integer.
52 self.score = 0
53

54 # This variable will store the text for score that we will draw to the screen.
55 self.score_text = None
56

57 # Load sounds
58 self.collect_coin_sound = arcade.load_sound(":resources:sounds/coin1.wav")
59 self.jump_sound = arcade.load_sound(":resources:sounds/jump1.wav")
60 self.gameover_sound = arcade.load_sound(":resources:sounds/gameover1.wav")
61

62 def setup(self):
63 """Set up the game here. Call this function to restart the game."""
64 layer_options = {
65 "Platforms": {
66 "use_spatial_hash": True
67 }
68 }
69

70 # Load our TileMap
71 self.tile_map = arcade.load_tilemap(":resources:tiled_maps/map2_level_1.json",␣

→˓scaling=TILE_SCALING, layer_options=layer_options)

(continues on next page)

8.13. Step 13 - More Types of Layers 131

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

72

73 # Create our Scene Based on the TileMap
74 self.scene = arcade.Scene.from_tilemap(self.tile_map)
75

76 self.player_texture = arcade.load_texture(":resources:images/animated_characters/
→˓female_adventurer/femaleAdventurer_idle.png")

77

78 # Add Player Spritelist before "Foreground" layer. This will make the foreground
79 # be drawn after the player, making it appear to be in front of the Player.
80 # Setting before using scene.add_sprite allows us to define where the SpriteList
81 # will be in the draw order. If we just use add_sprite, it will be appended to␣

→˓the
82 # end of the order.
83 self.scene.add_sprite_list_after("Player", "Foreground")
84

85 self.player_sprite = arcade.Sprite(self.player_texture)
86 self.player_sprite.center_x = 128
87 self.player_sprite.center_y = 128
88 self.scene.add_sprite("Player", self.player_sprite)
89

90 # Create a Platformer Physics Engine, this will handle moving our
91 # player as well as collisions between the player sprite and
92 # whatever SpriteList we specify for the walls.
93 # It is important to supply static to the walls parameter. There is a
94 # platforms parameter that is intended for moving platforms.
95 # If a platform is supposed to move, and is added to the walls list,
96 # it will not be moved.
97 self.physics_engine = arcade.PhysicsEnginePlatformer(
98 self.player_sprite, walls=self.scene["Platforms"], gravity_constant=GRAVITY
99)

100

101 # Initialize our camera, setting a viewport the size of our window.
102 self.camera = arcade.SimpleCamera(viewport=(0, 0, self.width, self.height))
103

104 # Initialize our gui camera, initial settings are the same as our world camera.
105 self.gui_camera = arcade.SimpleCamera(viewport=(0, 0, self.width, self.height))
106

107 # Reset our score to 0
108 self.score = 0
109

110 # Initialize our arcade.Text object for score
111 self.score_text = arcade.Text(f"Score: {self.score}", start_x = 0, start_y = 5)
112

113 self.background_color = arcade.csscolor.CORNFLOWER_BLUE
114

115 def on_draw(self):
116 """Render the screen."""
117

118 # Clear the screen to the background color
119 self.clear()
120

121 # Activate our camera before drawing

(continues on next page)

132 Chapter 8. Simple Platformer

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

122 self.camera.use()
123

124 # Draw our Scene
125 self.scene.draw()
126

127 # Activate our GUI camera
128 self.gui_camera.use()
129

130 # Draw our Score
131 self.score_text.draw()
132

133 def on_update(self, delta_time):
134 """Movement and Game Logic"""
135

136 # Move the player using our physics engine
137 self.physics_engine.update()
138

139 # See if we hit any coins
140 coin_hit_list = arcade.check_for_collision_with_list(
141 self.player_sprite, self.scene["Coins"]
142)
143

144 # Loop through each coin we hit (if any) and remove it
145 for coin in coin_hit_list:
146 # Remove the coin
147 coin.remove_from_sprite_lists()
148 arcade.play_sound(self.collect_coin_sound)
149 self.score += 75
150 self.score_text.text = f"Score: {self.score}"
151

152 if arcade.check_for_collision_with_list(
153 self.player_sprite, self.scene["Don't Touch"]
154):
155 arcade.play_sound(self.gameover_sound)
156 self.setup()
157

158 # Center our camera on the player
159 self.camera.center(self.player_sprite.position)
160

161 def on_key_press(self, key, modifiers):
162 """Called whenever a key is pressed."""
163

164 if key == arcade.key.ESCAPE:
165 self.setup()
166

167 if key == arcade.key.UP or key == arcade.key.W:
168 if self.physics_engine.can_jump():
169 self.player_sprite.change_y = PLAYER_JUMP_SPEED
170 arcade.play_sound(self.jump_sound)
171

172 if key == arcade.key.LEFT or key == arcade.key.A:
173 self.player_sprite.change_x = -PLAYER_MOVEMENT_SPEED

(continues on next page)

8.13. Step 13 - More Types of Layers 133

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

174 elif key == arcade.key.RIGHT or key == arcade.key.D:
175 self.player_sprite.change_x = PLAYER_MOVEMENT_SPEED
176

177 def on_key_release(self, key, modifiers):
178 """Called whenever a key is released."""
179

180 if key == arcade.key.LEFT or key == arcade.key.A:
181 self.player_sprite.change_x = 0
182 elif key == arcade.key.RIGHT or key == arcade.key.D:
183 self.player_sprite.change_x = 0
184

185

186 def main():
187 """Main function"""
188 window = MyGame()
189 window.setup()
190 arcade.run()
191

192

193 if __name__ == "__main__":
194 main()

8.14 Step 14 - Multiple Levels

Now we will make it so that our game has multiple levels. For now we will just have two levels, but this technique can
be easily expanded to include more.

To start off, create two new variables in the __init__ function to represent the position that marks the end of the map,
and what level we should be loading.

Where is the right edge of the map?
self.end_of_map = 0

Level number to load
self.level = 1

Next in the setup function we will change the map loading call to use an f-string to load a map file depending on the
level variable we created.

Load our TileMap
self.tile_map = arcade.load_tilemap(f":resources:tiled_maps/map2_level_{self.level}.json
→˓", scaling=TILE_SCALING, layer_options=layer_options)

Again in the setup function, we will calculate where the edge of the currently loaded map is, in pixels. To do this we
get the width of the map, which is represented in number of tiles, and multiply it by the tile width. We also need to
consider the scaling of the tiles, because we are measuring this in pixels.

Calculate the right edge of the map in pixels
self.end_of_map = (self.tile_map.width * self.tile_map.tile_width) * self.tile_map.
→˓scaling

134 Chapter 8. Simple Platformer

Python Arcade Library, Release 3.0.0.dev26

Now in the on_update function, we will add a block to check the player position against the end of the map value.
We will do this right before the center_camera_to_player function call at the end. This will increment our current
level, and leverage the setup function in order to re-load the game with the new level.

Check if the player got to the end of the level
if self.player_sprite.center_x >= self.end_of_map:

Advance to the next level
self.level += 1

Reload game with new level
self.setup()

If you run the game at this point, you will be able to reach the end of the first level and have the next level load and play
through it. We have two problems at this point, did you notice them? The first problem is that the player’s score resets
in between levels, maybe you want this to happen in your game, but we will fix it here so that when switching levels
we don’t reset the score.

To do this, first add a new variable to the __init__ function which will serve as a trigger to know if the score should
be reset or not. We want to be able to reset it when the player loses, so this trigger will help us only reset the score
when we want to.

Should we reset the score?
self.reset_score = True

Now in the setup function we can replace the score reset with this block of code. We change the reset_score
variable back to True after resetting the score, because the default in our game should be to reset it, and we only turn
off the reset when we want it off.

Reset the score if we should
if self.reset_score:

self.score = 0
self.reset_score = True

Finally, in the section of on_update that we advance the level, we can add this line to turn off the score reset

Turn off score reset when advancing level
self.reset_score = False

Now the player’s score will persist between levels, but we still have one more problem. If you reach the end of the
second level, the game crashes! This is because we only actually have two levels available, but we are still trying to
advance the level to 3 when we hit the end of level 2.

There’s a few ways this can be handled, one way is to simply make more levels. Eventually you have to have a final
level though, so this probably isn’t the best solution. As an exercise, see if you can find a way to gracefully handle the
final level. You could display an end screen, or restart the game from the beginning, or anything you want.

8.14. Step 14 - Multiple Levels 135

Python Arcade Library, Release 3.0.0.dev26

8.14.1 Source Code

Listing 14: Moving the enemies

1 """
2 Platformer Game
3

4 python -m arcade.examples.platform_tutorial.14_multiple_levels
5 """
6 import arcade
7

8 # Constants
9 SCREEN_WIDTH = 800

10 SCREEN_HEIGHT = 600
11 SCREEN_TITLE = "Platformer"
12

13 # Constants used to scale our sprites from their original size
14 TILE_SCALING = 0.5
15 COIN_SCALING = 0.5
16

17 # Movement speed of player, in pixels per frame
18 PLAYER_MOVEMENT_SPEED = 5
19 GRAVITY = 1
20 PLAYER_JUMP_SPEED = 20
21

22

23 class MyGame(arcade.Window):
24 """
25 Main application class.
26 """
27

28 def __init__(self):
29

30 # Call the parent class and set up the window
31 super().__init__(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)
32

33 # Variable to hold our texture for our player
34 self.player_texture = None
35

36 # Separate variable that holds the player sprite
37 self.player_sprite = None
38

39 # Variable to hold our Tiled Map
40 self.tile_map = None
41

42 # Replacing all of our SpriteLists with a Scene variable
43 self.scene = None
44

45 # A variable to store our camera object
46 self.camera = None
47

48 # A variable to store our gui camera object
49 self.gui_camera = None

(continues on next page)

136 Chapter 8. Simple Platformer

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

50

51 # This variable will store our score as an integer.
52 self.score = 0
53

54 # This variable will store the text for score that we will draw to the screen.
55 self.score_text = None
56

57 # Where is the right edge of the map?
58 self.end_of_map = 0
59

60 # Level number to load
61 self.level = 1
62

63 # Should we reset the score?
64 self.reset_score = True
65

66 # Load sounds
67 self.collect_coin_sound = arcade.load_sound(":resources:sounds/coin1.wav")
68 self.jump_sound = arcade.load_sound(":resources:sounds/jump1.wav")
69 self.gameover_sound = arcade.load_sound(":resources:sounds/gameover1.wav")
70

71 def setup(self):
72 """Set up the game here. Call this function to restart the game."""
73 layer_options = {
74 "Platforms": {
75 "use_spatial_hash": True
76 }
77 }
78

79 # Load our TileMap
80 self.tile_map = arcade.load_tilemap(f":resources:tiled_maps/map2_level_{self.

→˓level}.json", scaling=TILE_SCALING, layer_options=layer_options)
81

82 # Create our Scene Based on the TileMap
83 self.scene = arcade.Scene.from_tilemap(self.tile_map)
84

85 self.player_texture = arcade.load_texture(":resources:images/animated_characters/
→˓female_adventurer/femaleAdventurer_idle.png")

86

87 # Add Player Spritelist before "Foreground" layer. This will make the foreground
88 # be drawn after the player, making it appear to be in front of the Player.
89 # Setting before using scene.add_sprite allows us to define where the SpriteList
90 # will be in the draw order. If we just use add_sprite, it will be appended to␣

→˓the
91 # end of the order.
92 self.scene.add_sprite_list_after("Player", "Foreground")
93

94 self.player_sprite = arcade.Sprite(self.player_texture)
95 self.player_sprite.center_x = 128
96 self.player_sprite.center_y = 128
97 self.scene.add_sprite("Player", self.player_sprite)
98

(continues on next page)

8.14. Step 14 - Multiple Levels 137

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

99 # Create a Platformer Physics Engine, this will handle moving our
100 # player as well as collisions between the player sprite and
101 # whatever SpriteList we specify for the walls.
102 # It is important to supply static to the walls parameter. There is a
103 # platforms parameter that is intended for moving platforms.
104 # If a platform is supposed to move, and is added to the walls list,
105 # it will not be moved.
106 self.physics_engine = arcade.PhysicsEnginePlatformer(
107 self.player_sprite, walls=self.scene["Platforms"], gravity_constant=GRAVITY
108)
109

110 # Initialize our camera, setting a viewport the size of our window.
111 self.camera = arcade.SimpleCamera(viewport=(0, 0, self.width, self.height))
112

113 # Initialize our gui camera, initial settings are the same as our world camera.
114 self.gui_camera = arcade.SimpleCamera(viewport=(0, 0, self.width, self.height))
115

116 # Reset the score if we should
117 if self.reset_score:
118 self.score = 0
119 self.reset_score = True
120

121 # Initialize our arcade.Text object for score
122 self.score_text = arcade.Text(f"Score: {self.score}", start_x = 0, start_y = 5)
123

124 self.background_color = arcade.csscolor.CORNFLOWER_BLUE
125

126 # Calculate the right edge of the map in pixels
127 self.end_of_map = (self.tile_map.width * self.tile_map.tile_width) * self.tile_

→˓map.scaling
128 print(self.end_of_map)
129

130 def on_draw(self):
131 """Render the screen."""
132

133 # Clear the screen to the background color
134 self.clear()
135

136 # Activate our camera before drawing
137 self.camera.use()
138

139 # Draw our Scene
140 self.scene.draw()
141

142 # Activate our GUI camera
143 self.gui_camera.use()
144

145 # Draw our Score
146 self.score_text.draw()
147

148 def on_update(self, delta_time):
149 """Movement and Game Logic"""

(continues on next page)

138 Chapter 8. Simple Platformer

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

150

151 # Move the player using our physics engine
152 self.physics_engine.update()
153

154 # See if we hit any coins
155 coin_hit_list = arcade.check_for_collision_with_list(
156 self.player_sprite, self.scene["Coins"]
157)
158

159 # Loop through each coin we hit (if any) and remove it
160 for coin in coin_hit_list:
161 # Remove the coin
162 coin.remove_from_sprite_lists()
163 arcade.play_sound(self.collect_coin_sound)
164 self.score += 75
165 self.score_text.text = f"Score: {self.score}"
166

167 if arcade.check_for_collision_with_list(
168 self.player_sprite, self.scene["Don't Touch"]
169):
170 arcade.play_sound(self.gameover_sound)
171 self.setup()
172

173 # Check if the player got to the end of the level
174 if self.player_sprite.center_x >= self.end_of_map:
175 # Advance to the next level
176 self.level += 1
177

178 # Turn off score reset when advancing level
179 self.reset_score = False
180

181 # Reload game with new level
182 self.setup()
183

184 # Center our camera on the player
185 self.camera.center(self.player_sprite.position)
186

187 def on_key_press(self, key, modifiers):
188 """Called whenever a key is pressed."""
189

190 if key == arcade.key.ESCAPE:
191 self.setup()
192

193 if key == arcade.key.UP or key == arcade.key.W:
194 if self.physics_engine.can_jump():
195 self.player_sprite.change_y = PLAYER_JUMP_SPEED
196 arcade.play_sound(self.jump_sound)
197

198 if key == arcade.key.LEFT or key == arcade.key.A:
199 self.player_sprite.change_x = -PLAYER_MOVEMENT_SPEED
200 elif key == arcade.key.RIGHT or key == arcade.key.D:
201 self.player_sprite.change_x = PLAYER_MOVEMENT_SPEED

(continues on next page)

8.14. Step 14 - Multiple Levels 139

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

202

203 def on_key_release(self, key, modifiers):
204 """Called whenever a key is released."""
205

206 if key == arcade.key.LEFT or key == arcade.key.A:
207 self.player_sprite.change_x = 0
208 elif key == arcade.key.RIGHT or key == arcade.key.D:
209 self.player_sprite.change_x = 0
210

211

212 def main():
213 """Main function"""
214 window = MyGame()
215 window.setup()
216 arcade.run()
217

218

219 if __name__ == "__main__":
220 main()

Currently there are a few more examples that expand beyond where the tutorial leaves off. You can see the source code
for those examples as well as every chapter in the tutorial on the Arcade Github at https://github.com/pythonarcade/
arcade/tree/development/arcade/examples/platform_tutorial

140 Chapter 8. Simple Platformer

https://github.com/pythonarcade/arcade/tree/development/arcade/examples/platform_tutorial
https://github.com/pythonarcade/arcade/tree/development/arcade/examples/platform_tutorial

CHAPTER

NINE

PYMUNK PLATFORMER

This tutorial covers how to write a platformer using Arcade and its Pymunk API. This tutorial assumes the you are
somewhat familiar with Python, Arcade, and the Tiled Map Editor.

• If you aren’t familiar with programming in Python, check out https://learn.arcade.academy

• If you aren’t familiar with the Arcade library, work through the Simple Platformer.

• If you aren’t familiar with the Tiled Map Editor, the Simple Platformer also introduces how to create a map with
the Tiled Map Editor.

9.1 Common Issues

There are a few items with the Pymunk physics engine that should be pointed out before you get started:

• Object overlap - A fast moving object is allowed to overlap with the object it collides with, and Pymunk will push
them apart later. See collision bias for more information.

• Pass-through - A fast moving object can pass through another object if its speed is so quick it never overlaps the
other object between frames. See object tunneling.

• When stepping the physics engine forward in time, the default is to move forward 1/60th of a second. Whatever
increment is picked, increments should always be kept the same. Don’t use the variable delta_time from the
update method as a unit, or results will be unstable and unpredictable. For a more accurate simulation, you
can step forward 1/120th of a second twice per frame. This increases the time required, but takes more time to
calculate.

• A sprite moving across a floor made up of many rectangles can get “caught” on the edges. The corner of the
player sprite can get caught the corner of the floor sprite. To get around this, make sure the hit box for the bottom
of the player sprite is rounded. Also, look into the possibility of merging horizontal rows of sprites.

9.2 Open a Window

To begin with, let’s start with a program that will use Arcade to open a blank window. It also has stubs for methods
we’ll fill in later. Try this code and make sure you can run it. It should pop open a black window.

Listing 1: Starting Program

1 """
2 Example of Pymunk Physics Engine Platformer
3 """

(continues on next page)

141

https://www.mapeditor.org/
https://learn.arcade.academy
http://www.pymunk.org/en/latest/pymunk.html#pymunk.Space.collision_bias
http://www.pymunk.org/en/latest/overview.html#object-tunneling

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

4 import arcade
5

6 SCREEN_TITLE = "PyMunk Platformer"
7

8 # Size of screen to show, in pixels
9 SCREEN_WIDTH = 800

10 SCREEN_HEIGHT = 600
11

12

13 class GameWindow(arcade.Window):
14 """ Main Window """
15

16 def __init__(self, width, height, title):
17 """ Create the variables """
18

19 # Init the parent class
20 super().__init__(width, height, title)
21

22 def setup(self):
23 """ Set up everything with the game """
24 pass
25

26 def on_key_press(self, key, modifiers):
27 """Called whenever a key is pressed. """
28 pass
29

30 def on_key_release(self, key, modifiers):
31 """Called when the user releases a key. """
32 pass
33

34 def on_update(self, delta_time):
35 """ Movement and game logic """
36 pass
37

38 def on_draw(self):
39 """ Draw everything """
40 self.clear()
41

42

43 def main():
44 """ Main function """
45 window = GameWindow(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)
46 window.setup()
47 arcade.run()
48

49

50 if __name__ == "__main__":
51 main()

142 Chapter 9. Pymunk Platformer

Python Arcade Library, Release 3.0.0.dev26

9.3 Create Constants

Now let’s set up the import statements, and define the constants we are going to use. In this case, we’ve got sprite tiles
that are 128x128 pixels. They are scaled down to 50% of the width and 50% of the height (scale of 0.5). The screen
size is set to 25x15 grid.

To keep things simple, this example will not scroll the screen with the player. See Simple Platformer or
sprite_move_scrolling.

When you run this program, the screen should be larger.

Listing 2: Adding some constants

1 """
2 Example of Pymunk Physics Engine Platformer
3 """
4 import math
5 from typing import Optional
6 import arcade
7

8 SCREEN_TITLE = "PyMunk Platformer"
9

10 # How big are our image tiles?
11 SPRITE_IMAGE_SIZE = 128
12

13 # Scale sprites up or down
14 SPRITE_SCALING_PLAYER = 0.5
15 SPRITE_SCALING_TILES = 0.5
16

17 # Scaled sprite size for tiles
18 SPRITE_SIZE = int(SPRITE_IMAGE_SIZE * SPRITE_SCALING_PLAYER)
19

20 # Size of grid to show on screen, in number of tiles
21 SCREEN_GRID_WIDTH = 25
22 SCREEN_GRID_HEIGHT = 15
23

24 # Size of screen to show, in pixels
25 SCREEN_WIDTH = SPRITE_SIZE * SCREEN_GRID_WIDTH
26 SCREEN_HEIGHT = SPRITE_SIZE * SCREEN_GRID_HEIGHT
27

28

29 class GameWindow(arcade.Window):

• pymunk_demo_platformer_02

• pymunk_demo_platformer_02_diff

9.3. Create Constants 143

Python Arcade Library, Release 3.0.0.dev26

9.4 Create Instance Variables

Next, let’s create instance variables we are going to use, and set a background color that’s green: arcade.color.
AMAZON

If you aren’t familiar with type-casting on Python, you might not be familiar with lines of code like this:

self.player_list: Optional[arcade.SpriteList] = None

This means the player_list attribute is going to be an instance of SpriteList or None. If you don’t want to mess
with typing, then this code also works just as well:

self.player_list = None

Running this program should show the same window, but with a green background.

Listing 3: Create instance variables

1 class GameWindow(arcade.Window):
2 """ Main Window """
3

4 def __init__(self, width, height, title):
5 """ Create the variables """
6

7 # Init the parent class
8 super().__init__(width, height, title)
9

10 # Player sprite
11 self.player_sprite: Optional[arcade.Sprite] = None
12

13 # Sprite lists we need
14 self.player_list: Optional[arcade.SpriteList] = None
15 self.wall_list: Optional[arcade.SpriteList] = None
16 self.bullet_list: Optional[arcade.SpriteList] = None
17 self.item_list: Optional[arcade.SpriteList] = None
18

19 # Track the current state of what key is pressed
20 self.left_pressed: bool = False
21 self.right_pressed: bool = False
22

23 # Set background color
24 self.background_color = arcade.color.AMAZON

• pymunk_demo_platformer_03

• pymunk_demo_platformer_03_diff

144 Chapter 9. Pymunk Platformer

Python Arcade Library, Release 3.0.0.dev26

9.5 Load and Display Map

To get started, create a map with the Tiled Map Editor. Place items that you don’t want to move, and to act as platforms
in a layer named “Platforms”. Place items you want to push around in a layer called “Dynamic Items”. Name the file
“pymunk_test_map.tmx” and place in the exact same directory as your code.

If you aren’t sure how to use the Tiled Map Editor, see Step 8 - Collecting Coins.

Now, in the setup function, we are going add code to:

• Create instances of SpriteList for each group of sprites we are doing to work with.

• Create the player sprite.

• Read in the tiled map.

• Make sprites from the layers in the tiled map.

Note: When making sprites from the tiled map layer, the name of the layer you load must match exactly with the layer
created in the tiled map editor. It is case-sensitive.

Listing 4: Creating our sprites

1 def setup(self):
2 """ Set up everything with the game """
3

4 # Create the sprite lists
5 self.player_list = arcade.SpriteList()
6 self.bullet_list = arcade.SpriteList()
7

8 # Map name
9 map_name = ":resources:/tiled_maps/pymunk_test_map.json"

10

11 # Load in TileMap
12 tile_map = arcade.load_tilemap(map_name, SPRITE_SCALING_TILES)
13

14 # Pull the sprite layers out of the tile map
(continues on next page)

9.5. Load and Display Map 145

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

15 self.wall_list = tile_map.sprite_lists["Platforms"]
16 self.item_list = tile_map.sprite_lists["Dynamic Items"]
17

18 # Create player sprite
19 self.player_sprite = arcade.Sprite(":resources:images/animated_characters/female_

→˓person/femalePerson_idle.png",
20 SPRITE_SCALING_PLAYER)
21 # Set player location
22 grid_x = 1
23 grid_y = 1
24 self.player_sprite.center_x = SPRITE_SIZE * grid_x + SPRITE_SIZE / 2
25 self.player_sprite.center_y = SPRITE_SIZE * grid_y + SPRITE_SIZE / 2
26 # Add to player sprite list
27 self.player_list.append(self.player_sprite)

There’s no point in having sprites if we don’t draw them, so in the on_draw method, let’s draw out sprite lists.

Listing 5: Drawing our sprites

1 def on_draw(self):
2 """ Draw everything """
3 self.clear()
4 self.wall_list.draw()
5 self.bullet_list.draw()
6 self.item_list.draw()
7 self.player_list.draw()

With the additions in the program below, running your program should show the tiled map you created:

• pymunk_demo_platformer_04

• pymunk_demo_platformer_04_diff

146 Chapter 9. Pymunk Platformer

Python Arcade Library, Release 3.0.0.dev26

9.6 Add Physics Engine

The next step is to add in the physics engine.

First, add some constants for our physics. Here we are setting:

• A constant for the force of gravity.

• Values for “damping”. A damping of 1.0 will cause an item to lose all it’s velocity once a force no longer applies
to it. A damping of 0.5 causes 50% of speed to be lost in 1 second. A value of 0 is free-fall.

• Values for friction. 0.0 is ice, 1.0 is like rubber.

• Mass. Item default to 1. We make the player 2, so she can push items around easier.

• Limits are the players horizontal and vertical speed. It is easier to play if the player is limited to a constant speed.
And more realistic, because they aren’t on wheels.

Listing 6: Add Constants for Physics

1 # --- Physics forces. Higher number, faster accelerating.
2

3 # Gravity
4 GRAVITY = 1500
5

6 # Damping - Amount of speed lost per second
7 DEFAULT_DAMPING = 1.0
8 PLAYER_DAMPING = 0.4
9

10 # Friction between objects
11 PLAYER_FRICTION = 1.0
12 WALL_FRICTION = 0.7
13 DYNAMIC_ITEM_FRICTION = 0.6
14

15 # Mass (defaults to 1)
16 PLAYER_MASS = 2.0
17

18 # Keep player from going too fast
19 PLAYER_MAX_HORIZONTAL_SPEED = 450
20 PLAYER_MAX_VERTICAL_SPEED = 1600

Second, add the following attributer in the __init__ method to hold our physics engine:

Listing 7: Add Physics Engine Attribute

1 # Physics engine
2 self.physics_engine = Optional[arcade.PymunkPhysicsEngine]

Third, in the setup method we create the physics engine and add the sprites. The player, walls, and dynamic items all
have different properties so they are added individually.

Listing 8: Add Sprites to Physics Engine in ‘setup’ Method

1 # Add to player sprite list
2 self.player_list.append(self.player_sprite)
3

4 # --- Pymunk Physics Engine Setup ---
(continues on next page)

9.6. Add Physics Engine 147

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

5

6 # The default damping for every object controls the percent of velocity
7 # the object will keep each second. A value of 1.0 is no speed loss,
8 # 0.9 is 10% per second, 0.1 is 90% per second.
9 # For top-down games, this is basically the friction for moving objects.

10 # For platformers with gravity, this should probably be set to 1.0.
11 # Default value is 1.0 if not specified.
12 damping = DEFAULT_DAMPING
13

14 # Set the gravity. (0, 0) is good for outer space and top-down.
15 gravity = (0, -GRAVITY)
16

17 # Create the physics engine
18 self.physics_engine = arcade.PymunkPhysicsEngine(damping=damping,
19 gravity=gravity)
20

21 # Add the player.
22 # For the player, we set the damping to a lower value, which increases
23 # the damping rate. This prevents the character from traveling too far
24 # after the player lets off the movement keys.
25 # Setting the moment of inertia to PymunkPhysicsEngine.MOMENT_INF prevents it␣

→˓from
26 # rotating.
27 # Friction normally goes between 0 (no friction) and 1.0 (high friction)
28 # Friction is between two objects in contact. It is important to remember
29 # in top-down games that friction moving along the 'floor' is controlled
30 # by damping.
31 self.physics_engine.add_sprite(self.player_sprite,
32 friction=PLAYER_FRICTION,
33 mass=PLAYER_MASS,
34 moment_of_inertia=arcade.PymunkPhysicsEngine.

→˓MOMENT_INF,
35 collision_type="player",
36 max_horizontal_velocity=PLAYER_MAX_HORIZONTAL_

→˓SPEED,
37 max_vertical_velocity=PLAYER_MAX_VERTICAL_SPEED)
38

39 # Create the walls.
40 # By setting the body type to PymunkPhysicsEngine.STATIC the walls can't
41 # move.
42 # Movable objects that respond to forces are PymunkPhysicsEngine.DYNAMIC
43 # PymunkPhysicsEngine.KINEMATIC objects will move, but are assumed to be
44 # repositioned by code and don't respond to physics forces.
45 # Dynamic is default.
46 self.physics_engine.add_sprite_list(self.wall_list,
47 friction=WALL_FRICTION,
48 collision_type="wall",
49 body_type=arcade.PymunkPhysicsEngine.STATIC)
50

51 # Create the items

Fourth, in the on_update method we call the physics engine’s step method.

148 Chapter 9. Pymunk Platformer

Python Arcade Library, Release 3.0.0.dev26

Listing 9: Add Sprites to Physics Engine in ‘setup’ Method

1 def on_update(self, delta_time):
2 """ Movement and game logic """
3 self.physics_engine.step()

If you run the program, and you have dynamic items that are up in the air, you should see them fall when the game
starts.

• pymunk_demo_platformer_05

• pymunk_demo_platformer_05_diff

9.7 Add Player Movement

Next step is to get the player moving. In this section we’ll cover how to move left and right. In the next section we’ll
show how to jump.

The force that we will move the player is defined as PLAYER_MOVE_FORCE_ON_GROUND. We’ll apply a different force
later, if the player happens to be airborne.

Listing 10: Add Player Movement - Constants and Attributes

1 # Force applied while on the ground
2 PLAYER_MOVE_FORCE_ON_GROUND = 8000
3

4 class GameWindow(arcade.Window):
5 """ Main Window """
6

7 def __init__(self, width, height, title):
8 """ Create the variables """
9

10 # Init the parent class
11 super().__init__(width, height, title)
12

13 # Player sprite
14 self.player_sprite: Optional[arcade.Sprite] = None
15

16 # Sprite lists we need
17 self.player_list: Optional[arcade.SpriteList] = None
18 self.wall_list: Optional[arcade.SpriteList] = None
19 self.bullet_list: Optional[arcade.SpriteList] = None
20 self.item_list: Optional[arcade.SpriteList] = None
21

22 # Track the current state of what key is pressed
23 self.left_pressed: bool = False
24 self.right_pressed: bool = False

We need to track if the left/right keys are held down. To do this we define instance variables left_pressed and
right_pressed. These are set to appropriate values in the key press and release handlers.

9.7. Add Player Movement 149

Python Arcade Library, Release 3.0.0.dev26

Listing 11: Handle Key Up and Down Events

1 def on_key_press(self, key, modifiers):
2 """Called whenever a key is pressed. """
3

4 if key == arcade.key.LEFT:
5 self.left_pressed = True
6 elif key == arcade.key.RIGHT:
7 self.right_pressed = True
8

9 def on_key_release(self, key, modifiers):
10 """Called when the user releases a key. """
11

12 if key == arcade.key.LEFT:
13 self.left_pressed = False
14 elif key == arcade.key.RIGHT:
15 self.right_pressed = False

Finally, we need to apply the correct force in on_update. Force is specified in a tuple with horizontal force first, and
vertical force second.

We also set the friction when we are moving to zero, and when we are not moving to 1. This is important to get realistic
movement.

Listing 12: Apply Force to Move Player

1 def on_update(self, delta_time):
2 """ Movement and game logic """
3

4 # Update player forces based on keys pressed
5 if self.left_pressed and not self.right_pressed:
6 # Create a force to the left. Apply it.
7 force = (-PLAYER_MOVE_FORCE_ON_GROUND, 0)
8 self.physics_engine.apply_force(self.player_sprite, force)
9 # Set friction to zero for the player while moving

10 self.physics_engine.set_friction(self.player_sprite, 0)
11 elif self.right_pressed and not self.left_pressed:
12 # Create a force to the right. Apply it.
13 force = (PLAYER_MOVE_FORCE_ON_GROUND, 0)
14 self.physics_engine.apply_force(self.player_sprite, force)
15 # Set friction to zero for the player while moving
16 self.physics_engine.set_friction(self.player_sprite, 0)
17 else:
18 # Player's feet are not moving. Therefore up the friction so we stop.
19 self.physics_engine.set_friction(self.player_sprite, 1.0)
20

21 # Move items in the physics engine
22 self.physics_engine.step()

• pymunk_demo_platformer_06

• pymunk_demo_platformer_06_diff

150 Chapter 9. Pymunk Platformer

Python Arcade Library, Release 3.0.0.dev26

9.8 Add Player Jumping

To get the player to jump we need to:

• Make sure the player is on the ground.

• Apply an impulse force to the player upward.

• Change the left/right force to the player while they are in the air.

We can see if a sprite has a sprite below it with the is_on_ground function. Otherwise we’ll be able to jump while
we are in the air. (Double-jumps would allow this once.)

If we don’t allow the player to move left-right while in the air, they player will be very hard to control. If we allow them
to move left/right with the same force as on the ground, that’s typically too much. So we’ve got a different left/right
force depending if we are in the air or not.

For the code changes, first we’ll define some constants:

Listing 13: Add Player Jumping - Constants

1 # Force applied when moving left/right in the air
2 PLAYER_MOVE_FORCE_IN_AIR = 900
3

4 # Strength of a jump
5 PLAYER_JUMP_IMPULSE = 1800

We’ll add logic that will apply the impulse force when we jump:

Listing 14: Add Player Jumping - Jump Force

1 def on_key_press(self, key, modifiers):
2 """Called whenever a key is pressed. """
3

4 if key == arcade.key.LEFT:
5 self.left_pressed = True
6 elif key == arcade.key.RIGHT:
7 self.right_pressed = True
8 elif key == arcade.key.UP:
9 # find out if player is standing on ground

10 if self.physics_engine.is_on_ground(self.player_sprite):
11 # She is! Go ahead and jump
12 impulse = (0, PLAYER_JUMP_IMPULSE)
13 self.physics_engine.apply_impulse(self.player_sprite, impulse)

Then we will adjust the left/right force depending on if we are grounded or not:

Listing 15: Add Player Jumping - Left/Right Force Selection

1 def on_update(self, delta_time):
2 """ Movement and game logic """
3

4 is_on_ground = self.physics_engine.is_on_ground(self.player_sprite)
5 # Update player forces based on keys pressed
6 if self.left_pressed and not self.right_pressed:
7 # Create a force to the left. Apply it.
8 if is_on_ground:

(continues on next page)

9.8. Add Player Jumping 151

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

9 force = (-PLAYER_MOVE_FORCE_ON_GROUND, 0)
10 else:
11 force = (-PLAYER_MOVE_FORCE_IN_AIR, 0)
12 self.physics_engine.apply_force(self.player_sprite, force)
13 # Set friction to zero for the player while moving
14 self.physics_engine.set_friction(self.player_sprite, 0)
15 elif self.right_pressed and not self.left_pressed:
16 # Create a force to the right. Apply it.
17 if is_on_ground:
18 force = (PLAYER_MOVE_FORCE_ON_GROUND, 0)
19 else:
20 force = (PLAYER_MOVE_FORCE_IN_AIR, 0)
21 self.physics_engine.apply_force(self.player_sprite, force)
22 # Set friction to zero for the player while moving
23 self.physics_engine.set_friction(self.player_sprite, 0)
24 else:
25 # Player's feet are not moving. Therefore up the friction so we stop.
26 self.physics_engine.set_friction(self.player_sprite, 1.0)
27

• pymunk_demo_platformer_07

• pymunk_demo_platformer_07_diff

9.9 Add Player Animation

To create a player animation, we make a custom child class of Sprite. We load each frame of animation that we need,
including a mirror image of it.

We will flip the player to face left or right. If the player is in the air, we’ll also change between a jump up and a falling
graphics.

Because the physics engine works with small floating point numbers, it often flips above and below zero by small
amounts. It is a good idea not to change the animation as the x and y float around zero. For that reason, in this code
we have a “dead zone.” We don’t change the animation until it gets outside of that zone.

We also need to control how far the player moves before we change the walking animation, so that the feet appear
in-sync with the ground.

Listing 16: Add Player Animation - Constants

1 DEAD_ZONE = 0.1
2

3 # Constants used to track if the player is facing left or right
4 RIGHT_FACING = 0
5 LEFT_FACING = 1
6

7 # How many pixels to move before we change the texture in the walking animation
8 DISTANCE_TO_CHANGE_TEXTURE = 20
9

Next, we create a Player class that is a child to arcade.Sprite. This class will update the player animation.

152 Chapter 9. Pymunk Platformer

Python Arcade Library, Release 3.0.0.dev26

The __init__ method loads all of the textures. Here we use Kenney.nl’s Toon Characters 1 pack. It has six different
characters you can choose from with the same layout, so it makes changing as simple as changing which line is enabled.
There are eight textures for walking, and textures for idle, jumping, and falling.

As the character can face left or right, we use arcade.load_texture_pair which will load both a regular image,
and one that’s mirrored.

For the multi-frame walking animation, we use an “odometer.” We need to move a certain number of pixels before
changing the animation. If this value is too small our character moves her legs like Fred Flintstone, too large and it
looks like you are ice skating. We keep track of the index of our current texture, 0-7 since there are eight of them.

Any sprite moved by the Pymunk engine will have its pymunk_moved method called. This can be used to update the
animation.

Listing 17: Add Player Animation - Player Class

1 class PlayerSprite(arcade.Sprite):
2 """ Player Sprite """
3 def __init__(self):
4 """ Init """
5 # Let parent initialize
6 super().__init__()
7

8 # Set our scale
9 self.scale = SPRITE_SCALING_PLAYER

10

11 # Images from Kenney.nl's Character pack
12 # main_path = ":resources:images/animated_characters/female_adventurer/

→˓femaleAdventurer"
13 main_path = ":resources:images/animated_characters/female_person/femalePerson"
14 # main_path = ":resources:images/animated_characters/male_person/malePerson"
15 # main_path = ":resources:images/animated_characters/male_adventurer/

→˓maleAdventurer"
16 # main_path = ":resources:images/animated_characters/zombie/zombie"
17 # main_path = ":resources:images/animated_characters/robot/robot"
18

19 # Load textures for idle standing
20 self.idle_texture_pair = arcade.load_texture_pair(f"{main_path}_idle.png")
21 self.jump_texture_pair = arcade.load_texture_pair(f"{main_path}_jump.png")
22 self.fall_texture_pair = arcade.load_texture_pair(f"{main_path}_fall.png")
23

24 # Load textures for walking
25 self.walk_textures = []
26 for i in range(8):
27 texture = arcade.load_texture_pair(f"{main_path}_walk{i}.png")
28 self.walk_textures.append(texture)
29

30 # Set the initial texture
31 self.texture = self.idle_texture_pair[0]
32

33 # Default to face-right
34 self.character_face_direction = RIGHT_FACING
35

36 # Index of our current texture
37 self.cur_texture = 0

(continues on next page)

9.9. Add Player Animation 153

https://www.kenney.nl/assets/toon-characters-1

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

38

39 # How far have we traveled horizontally since changing the texture
40 self.x_odometer = 0
41

42 def pymunk_moved(self, physics_engine, dx, dy, d_angle):
43 """ Handle being moved by the pymunk engine """
44 # Figure out if we need to face left or right
45 if dx < -DEAD_ZONE and self.character_face_direction == RIGHT_FACING:
46 self.character_face_direction = LEFT_FACING
47 elif dx > DEAD_ZONE and self.character_face_direction == LEFT_FACING:
48 self.character_face_direction = RIGHT_FACING
49

50 # Are we on the ground?
51 is_on_ground = physics_engine.is_on_ground(self)
52

53 # Add to the odometer how far we've moved
54 self.x_odometer += dx
55

56 # Jumping animation
57 if not is_on_ground:
58 if dy > DEAD_ZONE:
59 self.texture = self.jump_texture_pair[self.character_face_direction]
60 return
61 elif dy < -DEAD_ZONE:
62 self.texture = self.fall_texture_pair[self.character_face_direction]
63 return
64

65 # Idle animation
66 if abs(dx) <= DEAD_ZONE:
67 self.texture = self.idle_texture_pair[self.character_face_direction]
68 return
69

70 # Have we moved far enough to change the texture?
71 if abs(self.x_odometer) > DISTANCE_TO_CHANGE_TEXTURE:
72

73 # Reset the odometer
74 self.x_odometer = 0
75

76 # Advance the walking animation
77 self.cur_texture += 1
78 if self.cur_texture > 7:
79 self.cur_texture = 0
80 self.texture = self.walk_textures[self.cur_texture][self.character_face_

→˓direction]

Important! At this point, we are still creating an instance of arcade.Sprite and not PlayerSprite. We need to go
back to the setup method and replace the line that creates the player instance with:

154 Chapter 9. Pymunk Platformer

Python Arcade Library, Release 3.0.0.dev26

Listing 18: Add Player Animation - Creating the Player Class

Create player sprite
self.player_sprite = PlayerSprite()

A really common mistake I’ve seen programmers make (and made myself) is to forget that last part. Then you can
spend a lot of time looking at the player class when the error is in the setup.

We also need to go back and change the data type for the player sprite attribute in our __init__ method:

Listing 19: Add Player Animation - Creating the Player Class

Player sprite
self.player_sprite: Optional[PlayerSprite] = None

• pymunk_demo_platformer_08

• pymunk_demo_platformer_08_diff

9.10 Shoot Bullets

Getting the player to shoot something can add a lot to our game. To begin with we’ll define a few constants to use.
How much force to shoot the bullet with, the bullet’s mass, and the gravity to use for the bullet.

If we use the same gravity for the bullet as everything else, it tends to drop too fast. We could set this to zero if we
wanted it to not drop at all.

Listing 20: Shoot Bullets - Constants

1 # How much force to put on the bullet
2 BULLET_MOVE_FORCE = 4500
3

4 # Mass of the bullet
5 BULLET_MASS = 0.1
6

7 # Make bullet less affected by gravity
8 BULLET_GRAVITY = 300

Next, we’ll put in a mouse press handler to put in the bullet shooting code.

We need to:

• Create the bullet sprite

• We need to calculate the angle from the player to the mouse click

• Create the bullet away from the player in the proper direction, as spawning it inside the player will confuse the
physics engine

• Add the bullet to the physics engine

• Apply the force to the bullet to make if move. Note that as we angled the bullet we don’t need to angle the force.

Warning: Does your platformer scroll?

If your window scrolls, you need to add in the coordinate off-set or else the angle calculation will be incorrect.

9.10. Shoot Bullets 155

Python Arcade Library, Release 3.0.0.dev26

Warning: Bullets don’t disappear yet!

If the bullet flies off-screen, it doesn’t go away and the physics engine still has to track it.

Listing 21: Shoot Bullets - Mouse Press

1 def on_mouse_press(self, x, y, button, modifiers):
2 """ Called whenever the mouse button is clicked. """
3

4 bullet = arcade.SpriteSolidColor(width=20, height=5, color=arcade.color.DARK_
→˓YELLOW)

5 self.bullet_list.append(bullet)
6

7 # Position the bullet at the player's current location
8 start_x = self.player_sprite.center_x
9 start_y = self.player_sprite.center_y

10 bullet.position = self.player_sprite.position
11

12 # Get from the mouse the destination location for the bullet
13 # IMPORTANT! If you have a scrolling screen, you will also need
14 # to add in self.view_bottom and self.view_left.
15 dest_x = x
16 dest_y = y
17

18 # Do math to calculate how to get the bullet to the destination.
19 # Calculation the angle in radians between the start points
20 # and end points. This is the angle the bullet will travel.
21 x_diff = dest_x - start_x
22 y_diff = dest_y - start_y
23 angle = math.atan2(y_diff, x_diff)
24

25 # What is the 1/2 size of this sprite, so we can figure out how far
26 # away to spawn the bullet
27 size = max(self.player_sprite.width, self.player_sprite.height) / 2
28

29 # Use angle to to spawn bullet away from player in proper direction
30 bullet.center_x += size * math.cos(angle)
31 bullet.center_y += size * math.sin(angle)
32

33 # Set angle of bullet
34 bullet.angle = math.degrees(angle)
35

36 # Gravity to use for the bullet
37 # If we don't use custom gravity, bullet drops too fast, or we have
38 # to make it go too fast.
39 # Force is in relation to bullet's angle.
40 bullet_gravity = (0, -BULLET_GRAVITY)
41

42 # Add the sprite. This needs to be done AFTER setting the fields above.
43 self.physics_engine.add_sprite(bullet,
44 mass=BULLET_MASS,
45 damping=1.0,

(continues on next page)

156 Chapter 9. Pymunk Platformer

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

46 friction=0.6,
47 collision_type="bullet",
48 gravity=bullet_gravity,
49 elasticity=0.9)
50

51 # Add force to bullet
52 force = (BULLET_MOVE_FORCE, 0)
53 self.physics_engine.apply_force(bullet, force)

• pymunk_demo_platformer_09

• pymunk_demo_platformer_09_diff

9.11 Destroy Bullets and Items

This section has two goals:

• Get rid of the bullet if it flies off-screen

• Handle collisions of the bullet and other items

9.11.1 Destroy Bullet If It Goes Off-Screen

First, we’ll create a custom bullet class. This class will define the pymunk_moved method, and check our location each
time the bullet moves. If our y value is too low, we’ll remove the bullet.

Listing 22: Destroy Bullets - Bullet Sprite

1 class BulletSprite(arcade.SpriteSolidColor):
2 """ Bullet Sprite """
3 def pymunk_moved(self, physics_engine, dx, dy, d_angle):
4 """ Handle when the sprite is moved by the physics engine. """
5 # If the bullet falls below the screen, remove it
6 if self.center_y < -100:
7 self.remove_from_sprite_lists()

And, of course, once we create the bullet we have to update our code to use it instead of the plain arcade.Sprite
class.

9.11. Destroy Bullets and Items 157

Python Arcade Library, Release 3.0.0.dev26

Listing 23: Destroy Bullets - Bullet Sprite

1 bullet = BulletSprite(width=20, height=5, color=arcade.color.DARK_YELLOW)
2 self.bullet_list.append(bullet)
3

4 # Position the bullet at the player's current location
5 start_x = self.player_sprite.center_x
6 start_y = self.player_sprite.center_y

9.11.2 Handle Collisions

To handle collisions, we can add custom collision handler call-backs. If you’ll remember when we added items to the
physics engine, we gave each item a collision type, such as “wall” or “bullet” or “item”. We can write a function and
register it to handle all bullet/wall collisions.

In this case, bullets that hit a wall go away. Bullets that hit items cause both the item and the bullet to go away. We
could also add code to track damage to a sprite, only removing it after so much damage was applied. Even changing
the texture depending on its health.

Listing 24: Destroy Bullets - Collision Handlers

1 def wall_hit_handler(bullet_sprite, _wall_sprite, _arbiter, _space, _data):
2 """ Called for bullet/wall collision """
3 bullet_sprite.remove_from_sprite_lists()
4

5 self.physics_engine.add_collision_handler("bullet", "wall", post_handler=wall_
→˓hit_handler)

6

7 def item_hit_handler(bullet_sprite, item_sprite, _arbiter, _space, _data):
8 """ Called for bullet/wall collision """
9 bullet_sprite.remove_from_sprite_lists()

10 item_sprite.remove_from_sprite_lists()
11

12 self.physics_engine.add_collision_handler("bullet", "item", post_handler=item_
→˓hit_handler)

• pymunk_demo_platformer_10

• pymunk_demo_platformer_10_diff

9.12 Add Moving Platforms

We can add support for moving platforms. Platforms can be added in an object layer. An object layer allows platforms
to be placed anywhere, and not just on exact grid locations. Object layers also allow us to add custom properties for
each tile we place.

Once we have the tile placed, we can add custom properties for it. Click the ‘+’ icon and add properties for all or some
of:

• change_x

• change_y

• left_boundary

158 Chapter 9. Pymunk Platformer

Python Arcade Library, Release 3.0.0.dev26

Fig. 1: Adding an object layer.

• right_boundary

• top_boundary

• bottom_boundary

If these are named exact matches, they’ll automatically copy their values into the sprite attributes of the same name.

Now we need to update our code. In GameWindow.__init__ add a line to create an attribute for
moving_sprites_list:

Listing 25: Moving Platforms - Adding the sprite list

self.moving_sprites_list: Optional[arcade.SpriteList] = None

In the setup method, load in the sprite list from the tmx layer.

Listing 26: Moving Platforms - Adding the sprite list

self.moving_sprites_list = tile_map.sprite_lists['Moving Platforms']

Also in the setup method, we need to add these sprites to the physics engine. In this case we’ll add the sprites as
KINEMATIC. Static sprites don’t move. Dynamic sprites move, and can have forces applied to them by other objects.
Kinematic sprites do move, but aren’t affected by other objects.

Listing 27: Moving Platforms - Loading the sprites

Add kinematic sprites
self.physics_engine.add_sprite_list(self.moving_sprites_list,

body_type=arcade.PymunkPhysicsEngine.
→˓KINEMATIC)

We need to draw the moving platform sprites. After adding this line, you should be able to run the program and see the
sprites from this layer, even if they don’t move yet.

9.12. Add Moving Platforms 159

Python Arcade Library, Release 3.0.0.dev26

Fig. 2: Adding custom properties.

Listing 28: Moving Platforms - Draw the sprites

1 def on_draw(self):
2 """ Draw everything """
3 self.clear()
4 self.wall_list.draw()
5 self.moving_sprites_list.draw()
6 self.bullet_list.draw()
7 self.item_list.draw()
8 self.player_list.draw()

Next up, we need to get the sprites moving. First, we’ll check to see if there are any boundaries set, and if we need to
reverse our direction.

After that we’ll create a velocity vector. Velocity is in pixels per second. In this case, I’m assuming the user set the
velocity in pixels per frame in Tiled instead, so we’ll convert.

Warning: Changing center_x and center_y will not move the sprite. If you want to change a sprite’s position, use
the physics engine’s set_position method.

Also, setting an item’s position “teleports” it there. The physics engine will happily move the object right into
another object. Setting the item’s velocity instead will cause the physics engine to move the item, pushing any
dynamic items out of the way.

160 Chapter 9. Pymunk Platformer

Python Arcade Library, Release 3.0.0.dev26

Listing 29: Moving Platforms - Moving the sprites

For each moving sprite, see if we've reached a boundary and need to
reverse course.
for moving_sprite in self.moving_sprites_list:

if moving_sprite.boundary_right and \
moving_sprite.change_x > 0 and \
moving_sprite.right > moving_sprite.boundary_right:

moving_sprite.change_x *= -1
elif moving_sprite.boundary_left and \

moving_sprite.change_x < 0 and \
moving_sprite.left > moving_sprite.boundary_left:

moving_sprite.change_x *= -1
if moving_sprite.boundary_top and \

moving_sprite.change_y > 0 and \
moving_sprite.top > moving_sprite.boundary_top:

moving_sprite.change_y *= -1
elif moving_sprite.boundary_bottom and \

moving_sprite.change_y < 0 and \
moving_sprite.bottom < moving_sprite.boundary_bottom:

moving_sprite.change_y *= -1

Figure out and set our moving platform velocity.
Pymunk uses velocity is in pixels per second. If we instead have
pixels per frame, we need to convert.
velocity = (moving_sprite.change_x * 1 / delta_time, moving_sprite.change_y␣

→˓* 1 / delta_time)
self.physics_engine.set_velocity(moving_sprite, velocity)

• pymunk_demo_platformer_11

• pymunk_demo_platformer_11_diff

9.13 Add Ladders

The first step to adding ladders to our platformer is modify the __init__ to track some more items:

• Have a reference to a list of ladder sprites

• Add textures for a climbing animation

• Keep track of our movement in the y direction

• Add a boolean to track if we are on/off a ladder

Listing 30: Add Ladders - PlayerSprite class

1 def __init__(self,
2 ladder_list: arcade.SpriteList,
3 hit_box_algorithm: arcade.hitbox.HitBoxAlgorithm):
4 """ Init """
5 # Let parent initialize
6 super().__init__()
7

(continues on next page)

9.13. Add Ladders 161

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

8 # Set our scale
9 self.scale = SPRITE_SCALING_PLAYER

10

11 # Images from Kenney.nl's Character pack
12 # main_path = ":resources:images/animated_characters/female_adventurer/

→˓femaleAdventurer"
13 main_path = ":resources:images/animated_characters/female_person/femalePerson"
14 # main_path = ":resources:images/animated_characters/male_person/malePerson"
15 # main_path = ":resources:images/animated_characters/male_adventurer/

→˓maleAdventurer"
16 # main_path = ":resources:images/animated_characters/zombie/zombie"
17 # main_path = ":resources:images/animated_characters/robot/robot"
18

19 # Load textures for idle standing
20 self.idle_texture_pair = arcade.load_texture_pair(f"{main_path}_idle.png",
21 hit_box_algorithm=hit_box_

→˓algorithm)
22 self.jump_texture_pair = arcade.load_texture_pair(f"{main_path}_jump.png")
23 self.fall_texture_pair = arcade.load_texture_pair(f"{main_path}_fall.png")
24

25 # Load textures for walking
26 self.walk_textures = []
27 for i in range(8):
28 texture = arcade.load_texture_pair(f"{main_path}_walk{i}.png")
29 self.walk_textures.append(texture)
30

31 # Load textures for climbing
32 self.climbing_textures = []
33 texture = arcade.load_texture(f"{main_path}_climb0.png")
34 self.climbing_textures.append(texture)
35 texture = arcade.load_texture(f"{main_path}_climb1.png")
36 self.climbing_textures.append(texture)
37

38 # Set the initial texture
39 self.texture = self.idle_texture_pair[0]
40

41 # Default to face-right
42 self.character_face_direction = RIGHT_FACING
43

44 # Index of our current texture
45 self.cur_texture = 0
46

47 # How far have we traveled horizontally since changing the texture
48 self.x_odometer = 0
49 self.y_odometer = 0
50

51 self.ladder_list = ladder_list
52 self.is_on_ladder = False

Next, in our pymunk_moved method we need to change physics when we are on a ladder, and to update our player
texture.

When we are on a ladder, we’ll turn off gravity, turn up damping, and turn down our max vertical velocity. If we are

162 Chapter 9. Pymunk Platformer

Python Arcade Library, Release 3.0.0.dev26

off the ladder, reset those attributes.

When we are on a ladder, but not on the ground, we’ll alternate between a couple climbing textures.

Listing 31: Add Ladders - PlayerSprite class

1 def pymunk_moved(self, physics_engine, dx, dy, d_angle):
2 """ Handle being moved by the pymunk engine """
3 # Figure out if we need to face left or right
4 if dx < -DEAD_ZONE and self.character_face_direction == RIGHT_FACING:
5 self.character_face_direction = LEFT_FACING
6 elif dx > DEAD_ZONE and self.character_face_direction == LEFT_FACING:
7 self.character_face_direction = RIGHT_FACING
8

9 # Are we on the ground?
10 is_on_ground = physics_engine.is_on_ground(self)
11

12 # Are we on a ladder?
13 if len(arcade.check_for_collision_with_list(self, self.ladder_list)) > 0:
14 if not self.is_on_ladder:
15 self.is_on_ladder = True
16 self.pymunk.gravity = (0, 0)
17 self.pymunk.damping = 0.0001
18 self.pymunk.max_vertical_velocity = PLAYER_MAX_HORIZONTAL_SPEED
19 else:
20 if self.is_on_ladder:
21 self.pymunk.damping = 1.0
22 self.pymunk.max_vertical_velocity = PLAYER_MAX_VERTICAL_SPEED
23 self.is_on_ladder = False
24 self.pymunk.gravity = None
25

26 # Add to the odometer how far we've moved
27 self.x_odometer += dx
28 self.y_odometer += dy
29

30 if self.is_on_ladder and not is_on_ground:
31 # Have we moved far enough to change the texture?
32 if abs(self.y_odometer) > DISTANCE_TO_CHANGE_TEXTURE:
33

34 # Reset the odometer
35 self.y_odometer = 0
36

37 # Advance the walking animation
38 self.cur_texture += 1
39

40 if self.cur_texture > 1:
41 self.cur_texture = 0
42 self.texture = self.climbing_textures[self.cur_texture]
43 return
44

45 # Jumping animation
46 if not is_on_ground:
47 if dy > DEAD_ZONE:
48 self.texture = self.jump_texture_pair[self.character_face_direction]

(continues on next page)

9.13. Add Ladders 163

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

49 return
50 elif dy < -DEAD_ZONE:
51 self.texture = self.fall_texture_pair[self.character_face_direction]
52 return
53

54 # Idle animation
55 if abs(dx) <= DEAD_ZONE:
56 self.texture = self.idle_texture_pair[self.character_face_direction]
57 return
58

59 # Have we moved far enough to change the texture?
60 if abs(self.x_odometer) > DISTANCE_TO_CHANGE_TEXTURE:
61

62 # Reset the odometer
63 self.x_odometer = 0
64

65 # Advance the walking animation
66 self.cur_texture += 1
67 if self.cur_texture > 7:
68 self.cur_texture = 0
69 self.texture = self.walk_textures[self.cur_texture][self.character_face_

→˓direction]

Then we just need to add a few variables to the __init__ to track ladders:

Listing 32: Add Ladders - Game Window Init

1 def __init__(self, width, height, title):
2 """ Create the variables """
3

4 # Init the parent class
5 super().__init__(width, height, title)
6

7 # Player sprite
8 self.player_sprite: Optional[PlayerSprite] = None
9

10 # Sprite lists we need
11 self.player_list: Optional[arcade.SpriteList] = None
12 self.wall_list: Optional[arcade.SpriteList] = None
13 self.bullet_list: Optional[arcade.SpriteList] = None
14 self.item_list: Optional[arcade.SpriteList] = None
15 self.moving_sprites_list: Optional[arcade.SpriteList] = None
16 self.ladder_list: Optional[arcade.SpriteList] = None
17

18 # Track the current state of what key is pressed
19 self.left_pressed: bool = False
20 self.right_pressed: bool = False
21 self.up_pressed: bool = False
22 self.down_pressed: bool = False
23

24 # Physics engine
25 self.physics_engine: Optional[arcade.PymunkPhysicsEngine] = None

(continues on next page)

164 Chapter 9. Pymunk Platformer

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

26

27 # Set background color
28 self.background_color = arcade.color.AMAZON

Then load the ladder layer in setup:

Listing 33: Add Ladders - Game Window Setup

Pull the sprite layers out of the tile map
self.wall_list = tile_map.sprite_lists["Platforms"]
self.item_list = tile_map.sprite_lists["Dynamic Items"]
self.ladder_list = tile_map.sprite_lists["Ladders"]
self.moving_sprites_list = tile_map.sprite_lists['Moving Platforms']

Also, pass the ladder list to the player class:

Listing 34: Add Ladders - Game Window Setup

Create player sprite
self.player_sprite = PlayerSprite(self.ladder_list, hit_box_algorithm=arcade.

→˓hitbox.algo_detailed)

Then change the jump button so that we don’t jump if we are on a ladder. Also, we want to track if the up key, or down
key are pressed.

Listing 35: Add Ladders - Game Window Key Down

1 def on_key_press(self, key, modifiers):
2 """Called whenever a key is pressed. """
3

4 if key == arcade.key.LEFT:
5 self.left_pressed = True
6 elif key == arcade.key.RIGHT:
7 self.right_pressed = True
8 elif key == arcade.key.UP:
9 self.up_pressed = True

10 # find out if player is standing on ground, and not on a ladder
11 if self.physics_engine.is_on_ground(self.player_sprite) \
12 and not self.player_sprite.is_on_ladder:
13 # She is! Go ahead and jump
14 impulse = (0, PLAYER_JUMP_IMPULSE)
15 self.physics_engine.apply_impulse(self.player_sprite, impulse)
16 elif key == arcade.key.DOWN:
17 self.down_pressed = True

Add to the key up handler tracking for which key is pressed.

Listing 36: Add Ladders - Game Window Key Up

1 def on_key_release(self, key, modifiers):
2 """Called when the user releases a key. """
3

4 if key == arcade.key.LEFT:
(continues on next page)

9.13. Add Ladders 165

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

5 self.left_pressed = False
6 elif key == arcade.key.RIGHT:
7 self.right_pressed = False
8 elif key == arcade.key.UP:
9 self.up_pressed = False

10 elif key == arcade.key.DOWN:
11 self.down_pressed = False

Next, change our update with new updates for the ladder.

Listing 37: Add Ladders - Game Window On Update

1 def on_update(self, delta_time):
2 """ Movement and game logic """
3

4 is_on_ground = self.physics_engine.is_on_ground(self.player_sprite)
5 # Update player forces based on keys pressed
6 if self.left_pressed and not self.right_pressed:
7 # Create a force to the left. Apply it.
8 if is_on_ground or self.player_sprite.is_on_ladder:
9 force = (-PLAYER_MOVE_FORCE_ON_GROUND, 0)

10 else:
11 force = (-PLAYER_MOVE_FORCE_IN_AIR, 0)
12 self.physics_engine.apply_force(self.player_sprite, force)
13 # Set friction to zero for the player while moving
14 self.physics_engine.set_friction(self.player_sprite, 0)
15 elif self.right_pressed and not self.left_pressed:
16 # Create a force to the right. Apply it.
17 if is_on_ground or self.player_sprite.is_on_ladder:
18 force = (PLAYER_MOVE_FORCE_ON_GROUND, 0)
19 else:
20 force = (PLAYER_MOVE_FORCE_IN_AIR, 0)
21 self.physics_engine.apply_force(self.player_sprite, force)
22 # Set friction to zero for the player while moving
23 self.physics_engine.set_friction(self.player_sprite, 0)
24 elif self.up_pressed and not self.down_pressed:
25 # Create a force to the right. Apply it.
26 if self.player_sprite.is_on_ladder:
27 force = (0, PLAYER_MOVE_FORCE_ON_GROUND)
28 self.physics_engine.apply_force(self.player_sprite, force)
29 # Set friction to zero for the player while moving
30 self.physics_engine.set_friction(self.player_sprite, 0)
31 elif self.down_pressed and not self.up_pressed:
32 # Create a force to the right. Apply it.
33 if self.player_sprite.is_on_ladder:
34 force = (0, -PLAYER_MOVE_FORCE_ON_GROUND)
35 self.physics_engine.apply_force(self.player_sprite, force)
36 # Set friction to zero for the player while moving
37 self.physics_engine.set_friction(self.player_sprite, 0)

And, of course, don’t forget to draw the ladders:

166 Chapter 9. Pymunk Platformer

Python Arcade Library, Release 3.0.0.dev26

Listing 38: Add Ladders - Game Window Key Down

1 def on_draw(self):
2 """ Draw everything """
3 self.clear()
4 self.wall_list.draw()
5 self.ladder_list.draw()
6 self.moving_sprites_list.draw()
7 self.bullet_list.draw()
8 self.item_list.draw()
9 self.player_list.draw()

• pymunk_demo_platformer_12

• pymunk_demo_platformer_12_diff

9.13. Add Ladders 167

Python Arcade Library, Release 3.0.0.dev26

168 Chapter 9. Pymunk Platformer

CHAPTER

TEN

USING VIEWS FOR START/END SCREENS

Views allow you to easily switch “views” for what you are showing on the window. You can use this to support adding
screens such as:

• Start screens

• Instruction screens

• Game over screens

• Pause screens

The View class is a lot like the Window class that you are already used to. The View class has methods for on_update
and on_draw just like Window. We can change the current view to quickly change the code that is managing what is
drawn on the window and handling user input.

If you know ahead of time you want to use views, you can build your code around the View Management. However,
typically a programmer wants to add these items to a game that already exists.

This tutorial steps you through how to do just that.

10.1 Change Main Program to Use a View

First, we’ll start with a simple collect coins example: 01_views

Then we’ll move our game into a game view. Take the code where we define our window class:

class MyGame(arcade.Window):

Change it to derive from arcade.View instead of arcade.Window. I also suggest using “View” as part of the name:

169

Python Arcade Library, Release 3.0.0.dev26

class GameView(arcade.View):

This will require a couple other updates. The View class does not control the size of the window, so we’ll need to take
that out of the call to the parent class. Change:

super().__init__(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)

to:

super().__init__()

The Window class still controls if the mouse is visible or not, so to hide the mouse, we’ll need to use the window
attribute that is part of the View class. Change:

self.set_mouse_visible(False)

to:

self.window.set_mouse_visible(False)

Now in the main function, instead of just creating a window, we’ll create a window, a view, and then show that view.

Listing 1: Add views - Main function

1 def main():
2 """ Main function """
3

4 window = arcade.Window(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)
5 start_view = GameView()
6 window.show_view(start_view)
7 start_view.setup()
8 arcade.run()

At this point, run your game and make sure that it still operates properly. It should run just like it did before, but now
we are set up to add additional views.

• 02_views ← Full listing of where we are right now

• 02_views_diff ← What we changed to get here

170 Chapter 10. Using Views for Start/End Screens

Python Arcade Library, Release 3.0.0.dev26

10.2 Add Instruction Screen

Now we are ready to add in our instruction screen as a view. Create a class for it:

class InstructionView(arcade.View):

Then we need to define the on_show_view method that will be run once when we switch to this view. In this case,
we don’t need to do much, just set the background color. If the game is one that scrolls, we’ll also need to reset the
viewport so that (0, 0) is back to the lower-left coordinate.

Listing 2: Add views - on_show_view

def on_show_view(self):
""" This is run once when we switch to this view """
self.window.background_color = arcade.csscolor.DARK_SLATE_BLUE

Reset the viewport, necessary if we have a scrolling game and we need
to reset the viewport back to the start so we can see what we draw.
arcade.set_viewport(0, self.window.width, 0, self.window.height)

The on_draw method works just like the window class’s method, but it will only be called when this view is active.

In this case, we’ll just draw some text for the instruction screen. Another alternative is to make a graphic in a paint
program, and show that image. We’ll do that below where we show the Game Over screen.

Listing 3: Add views - on_draw

def on_draw(self):
""" Draw this view """
self.clear()
arcade.draw_text("Instructions Screen", self.window.width / 2, self.window.

→˓height / 2,
arcade.color.WHITE, font_size=50, anchor_x="center")

arcade.draw_text("Click to advance", self.window.width / 2, self.window.height /␣
→˓2-75,

arcade.color.WHITE, font_size=20, anchor_x="center")

Then we’ll put in a method to respond to a mouse click. Here we’ll create our GameView and call the setup method.

10.2. Add Instruction Screen 171

Python Arcade Library, Release 3.0.0.dev26

Listing 4: Add views - on_mouse_press

def on_mouse_press(self, _x, _y, _button, _modifiers):
""" If the user presses the mouse button, start the game. """
game_view = GameView()
game_view.setup()
self.window.show_view(game_view)

Now we need to go back to the main function. Instead of creating a GameView it needs to now create an
InstructionView.

Listing 5: Add views - Main function

1 def main():
2 """ Main function """
3

4 window = arcade.Window(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)
5 start_view = InstructionView()
6 window.show_view(start_view)
7 arcade.run()

• 03_views ← Full listing of where we are right now

• 03_views_diff ← What we changed to get here

10.3 Game Over Screen

Another way of doing instruction, pause, and game over screens is with a graphic. In this example, we’ve created a
separate image with the same size as our window (800x600) and saved it as game_over.png. You can use the Windows
“Paint” app or get an app for your Mac to make images in order to do this yourself.

The new GameOverView view that we are adding loads in the game over screen image as a texture in its __init__.
The on_draw method draws that texture to the screen. By using an image, we can fancy up the game over screen using
an image editor as much as we want, while keeping the code simple.

When the user clicks the mouse button, we just start the game over.

172 Chapter 10. Using Views for Start/End Screens

Python Arcade Library, Release 3.0.0.dev26

Listing 6: Add views - Game Over View

1 class GameOverView(arcade.View):
2 """ View to show when game is over """
3

4 def __init__(self):
5 """ This is run once when we switch to this view """
6 super().__init__()
7 self.texture = arcade.load_texture("game_over.png")
8

9 # Reset the viewport, necessary if we have a scrolling game and we need
10 # to reset the viewport back to the start so we can see what we draw.
11 arcade.set_viewport(0, SCREEN_WIDTH - 1, 0, SCREEN_HEIGHT - 1)
12

13 def on_draw(self):
14 """ Draw this view """
15 self.clear()
16 self.texture.draw_sized(SCREEN_WIDTH / 2, SCREEN_HEIGHT / 2,
17 SCREEN_WIDTH, SCREEN_HEIGHT)
18

19 def on_mouse_press(self, _x, _y, _button, _modifiers):
20 """ If the user presses the mouse button, re-start the game. """
21 game_view = GameView()
22 game_view.setup()
23 self.window.show_view(game_view)

The last thing we need, is to trigger the “Game Over” view. In our GameView.on_update method, we can check the
list length. As soon as it hits zero, we’ll change our view.

Listing 7: Add views - Game Over View

1 def on_update(self, delta_time):
2 """ Movement and game logic """
3

4 # Call update on all sprites (The sprites don't do much in this
5 # example though.)
6 self.coin_list.update()
7

8 # Generate a list of all sprites that collided with the player.
9 coins_hit_list = arcade.check_for_collision_with_list(self.player_sprite, self.

→˓coin_list)
10

11 # Loop through each colliding sprite, remove it, and add to the score.
12 for coin in coins_hit_list:
13 coin.remove_from_sprite_lists()
14 self.score += 1
15

16 # Check length of coin list. If it is zero, flip to the
17 # game over view.
18 if len(self.coin_list) == 0:
19 view = GameOverView()
20 self.window.show_view(view)

• 04_views ← Full listing of where we are right now

10.3. Game Over Screen 173

Python Arcade Library, Release 3.0.0.dev26

• 04_views_diff ← What we changed to get here

174 Chapter 10. Using Views for Start/End Screens

CHAPTER

ELEVEN

SOLITAIRE

This solitaire tutorial takes you though the basics of creating a card game, and doing extensive drag/drop work.

11.1 Open a Window

To begin with, let’s start with a program that will use Arcade to open a blank window. The listing below also has stubs
for methods we’ll fill in later.

Get started with this code and make sure you can run it. It should pop open a green window.

Listing 1: Starting Program

1 """
2 Solitaire clone.
3 """
4 import arcade
5

6 # Screen title and size
7 SCREEN_WIDTH = 1024
8 SCREEN_HEIGHT = 768
9 SCREEN_TITLE = "Drag and Drop Cards"

10

11

12 class MyGame(arcade.Window):
13 """ Main application class. """
14

15 def __init__(self):
16 super().__init__(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)
17

18 self.background_color = arcade.color.AMAZON
19

(continues on next page)

175

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

20 def setup(self):
21 """ Set up the game here. Call this function to restart the game. """
22 pass
23

24 def on_draw(self):
25 """ Render the screen. """
26 # Clear the screen
27 self.clear()
28

29 def on_mouse_press(self, x, y, button, key_modifiers):
30 """ Called when the user presses a mouse button. """
31 pass
32

33 def on_mouse_release(self, x: float, y: float, button: int,
34 modifiers: int):
35 """ Called when the user presses a mouse button. """
36 pass
37

38 def on_mouse_motion(self, x: float, y: float, dx: float, dy: float):
39 """ User moves mouse """
40 pass
41

42

43 def main():
44 """ Main function """
45 window = MyGame()
46 window.setup()
47 arcade.run()
48

49

50 if __name__ == "__main__":
51 main()

11.2 Create Card Sprites

Our next step is the create a bunch of sprites, one for each card.

11.2.1 Constants

First, we’ll create some constants used in positioning the cards, and keeping track of what card is which.

We could just hard-code numbers, but I like to calculate things out. The “mat” will eventually be a square slightly
larger than each card that tracks where we can put cards. (A mat where we can put a pile of cards on.)

Listing 2: Create constants for positioning

1 # Constants for sizing
2 CARD_SCALE = 0.6
3

4 # How big are the cards?
(continues on next page)

176 Chapter 11. Solitaire

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

5 CARD_WIDTH = 140 * CARD_SCALE
6 CARD_HEIGHT = 190 * CARD_SCALE
7

8 # How big is the mat we'll place the card on?
9 MAT_PERCENT_OVERSIZE = 1.25

10 MAT_HEIGHT = int(CARD_HEIGHT * MAT_PERCENT_OVERSIZE)
11 MAT_WIDTH = int(CARD_WIDTH * MAT_PERCENT_OVERSIZE)
12

13 # How much space do we leave as a gap between the mats?
14 # Done as a percent of the mat size.
15 VERTICAL_MARGIN_PERCENT = 0.10
16 HORIZONTAL_MARGIN_PERCENT = 0.10
17

18 # The Y of the bottom row (2 piles)
19 BOTTOM_Y = MAT_HEIGHT / 2 + MAT_HEIGHT * VERTICAL_MARGIN_PERCENT
20

21 # The X of where to start putting things on the left side
22 START_X = MAT_WIDTH / 2 + MAT_WIDTH * HORIZONTAL_MARGIN_PERCENT
23

24 # Card constants
25 CARD_VALUES = ["A", "2", "3", "4", "5", "6", "7", "8", "9", "10", "J", "Q", "K"]
26 CARD_SUITS = ["Clubs", "Hearts", "Spades", "Diamonds"]

11.2.2 Card Class

Next up, we’ll create a card class. The card class is a subclass of arcade.Sprite. It will have attributes for the suit
and value of the card, and auto-load the image for the card based on that.

We’ll use the entire image as the hit box, so we don’t need to go through the time consuming hit box calculation.
Therefore we turn that off. Otherwise loading the sprites would take a long time.

11.2. Create Card Sprites 177

Python Arcade Library, Release 3.0.0.dev26

Listing 3: Create card sprites

1 class Card(arcade.Sprite):
2 """ Card sprite """
3

4 def __init__(self, suit, value, scale=1):
5 """ Card constructor """
6

7 # Attributes for suit and value
8 self.suit = suit
9 self.value = value

10

11 # Image to use for the sprite when face up
12 self.image_file_name = f":resources:images/cards/card{self.suit}{self.value}.png"
13

14 # Call the parent
15 super().__init__(self.image_file_name, scale, hit_box_algorithm="None")

11.2.3 Creating Cards

We’ll start by creating an attribute for the SpriteList that will hold all the cards in the game.

Listing 4: Create card sprites

1 def __init__(self):
2 super().__init__(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)
3

4 # Sprite list with all the cards, no matter what pile they are in.
5 self.card_list = None
6

7 self.background_color = arcade.color.AMAZON

In setup we’ll create the list and the cards. We don’t do this in __init__ because by separating the creation into its
own method, we can easily restart the game by calling setup.

178 Chapter 11. Solitaire

Python Arcade Library, Release 3.0.0.dev26

Listing 5: Create card sprites

1 def setup(self):
2 """ Set up the game here. Call this function to restart the game. """
3

4 # Sprite list with all the cards, no matter what pile they are in.
5 self.card_list = arcade.SpriteList()
6

7 # Create every card
8 for card_suit in CARD_SUITS:
9 for card_value in CARD_VALUES:

10 card = Card(card_suit, card_value, CARD_SCALE)
11 card.position = START_X, BOTTOM_Y
12 self.card_list.append(card)

11.2.4 Drawing Cards

Finally, draw the cards:

Listing 6: Create card sprites

1 def on_draw(self):
2 """ Render the screen. """
3 # Clear the screen
4 self.clear()
5

6 # Draw the cards
7 self.card_list.draw()

You should end up with all the cards stacked in the lower-left corner:

11.2. Create Card Sprites 179

Python Arcade Library, Release 3.0.0.dev26

• solitaire_02 ← Full listing of where we are right now

• solitaire_02_diff ← What we changed to get here

11.3 Implement Drag and Drop

Next up, let’s add the ability to pick up, drag, and drop the cards.

11.3.1 Track the Cards

First, let’s add attributes to track what cards we are moving. Because we can move multiple cards, we’ll keep this as a
list. If the user drops the card in an illegal spot, we’ll need to reset the card to its original position. So we’ll also track
that.

Create the attributes:

Listing 7: Add attributes to __init__

1 def __init__(self):
2 super().__init__(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)
3

4 # Sprite list with all the cards, no matter what pile they are in.
5 self.card_list = None
6

7 self.background_color = arcade.color.AMAZON
8

9 # List of cards we are dragging with the mouse
(continues on next page)

180 Chapter 11. Solitaire

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

10 self.held_cards = None
11

12 # Original location of cards we are dragging with the mouse in case
13 # they have to go back.
14 self.held_cards_original_position = None

Set the initial values (an empty list):

Listing 8: Create empty list attributes

1 def setup(self):
2 """ Set up the game here. Call this function to restart the game. """
3

4 # List of cards we are dragging with the mouse
5 self.held_cards = []
6

7 # Original location of cards we are dragging with the mouse in case
8 # they have to go back.
9 self.held_cards_original_position = []

10

11 # Sprite list with all the cards, no matter what pile they are in.
12 self.card_list = arcade.SpriteList()
13

14 # Create every card
15 for card_suit in CARD_SUITS:
16 for card_value in CARD_VALUES:
17 card = Card(card_suit, card_value, CARD_SCALE)
18 card.position = START_X, BOTTOM_Y
19 self.card_list.append(card)

11.3.2 Pull Card to Top of Draw Order

When we click on the card, we’ll want it to be the last card drawn, so it appears on top of all the other cards. Otherwise
we might drag a card underneath another card, which would look odd.

11.3. Implement Drag and Drop 181

Python Arcade Library, Release 3.0.0.dev26

Listing 9: Pull card to top

1 def pull_to_top(self, card: arcade.Sprite):
2 """ Pull card to top of rendering order (last to render, looks on-top) """
3

4 # Remove, and append to the end
5 self.card_list.remove(card)
6 self.card_list.append(card)

11.3.3 Mouse Button Pressed

When the user presses the mouse button, we will:

• See if they clicked on a card

• If so, put that card in our held cards list

• Save the original position of the card

• Pull it to the top of the draw order

Listing 10: Pull card to top

1 def on_mouse_press(self, x, y, button, key_modifiers):
2 """ Called when the user presses a mouse button. """
3

4 # Get list of cards we've clicked on
5 cards = arcade.get_sprites_at_point((x, y), self.card_list)
6

7 # Have we clicked on a card?
8 if len(cards) > 0:
9

10 # Might be a stack of cards, get the top one
11 primary_card = cards[-1]
12

13 # All other cases, grab the face-up card we are clicking on
14 self.held_cards = [primary_card]
15 # Save the position
16 self.held_cards_original_position = [self.held_cards[0].position]
17 # Put on top in drawing order
18 self.pull_to_top(self.held_cards[0])

11.3.4 Mouse Moved

If the user moves the mouse, we’ll move any held cards with it.

Listing 11: Pull card to top

1 def on_mouse_motion(self, x: float, y: float, dx: float, dy: float):
2 """ User moves mouse """
3

4 # If we are holding cards, move them with the mouse
5 for card in self.held_cards:

(continues on next page)

182 Chapter 11. Solitaire

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

6 card.center_x += dx
7 card.center_y += dy

11.3.5 Mouse Released

When the user releases the mouse button, we’ll clear the held card list.

Listing 12: Pull card to top

1 def on_mouse_release(self, x: float, y: float, button: int,
2 modifiers: int):
3 """ Called when the user presses a mouse button. """
4

5 # If we don't have any cards, who cares
6 if len(self.held_cards) == 0:
7 return
8

9 # We are no longer holding cards
10 self.held_cards = []

11.3.6 Test the Program

You should now be able to pick up and move cards around the screen. Try it out!

11.3. Implement Drag and Drop 183

Python Arcade Library, Release 3.0.0.dev26

• solitaire_03 ← Full listing of where we are right now

• solitaire_03_diff ← What we changed to get here

11.4 Draw Pile Mats

Next, we’ll create sprites that will act as guides to where the piles of cards go in our game. We’ll create these as sprites,
so we can use collision detection to figure out of we are dropping a card on them or not.

11.4.1 Create Constants

First, we’ll create constants for the middle row of seven piles, and for the top row of four piles. We’ll also create a
constant for how far apart each pile should be.

Again, we could hard-code numbers, but I like calculating them so I can change the scale easily.

Listing 13: Add constants

1 # The Y of the top row (4 piles)
2 TOP_Y = SCREEN_HEIGHT - MAT_HEIGHT / 2 - MAT_HEIGHT * VERTICAL_MARGIN_PERCENT
3

(continues on next page)

184 Chapter 11. Solitaire

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

4 # The Y of the middle row (7 piles)
5 MIDDLE_Y = TOP_Y - MAT_HEIGHT - MAT_HEIGHT * VERTICAL_MARGIN_PERCENT
6

7 # How far apart each pile goes
8 X_SPACING = MAT_WIDTH + MAT_WIDTH * HORIZONTAL_MARGIN_PERCENT

11.4.2 Create Mat Sprites

Create an attribute for the mat sprite list:

Listing 14: Create the mat sprites

1 def __init__(self):
2 super().__init__(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)
3

4 # Sprite list with all the cards, no matter what pile they are in.
5 self.card_list = None
6

7 self.background_color = arcade.color.AMAZON
8

9 # List of cards we are dragging with the mouse
10 self.held_cards = None
11

12 # Original location of cards we are dragging with the mouse in case
13 # they have to go back.
14 self.held_cards_original_position = None
15

16 # Sprite list with all the mats tha cards lay on.
17 self.pile_mat_list = None

Then create the mat sprites in the setup method

Listing 15: Create the mat sprites

1 def setup(self):
2 """ Set up the game here. Call this function to restart the game. """
3

4 # List of cards we are dragging with the mouse
5 self.held_cards = []
6

7 # Original location of cards we are dragging with the mouse in case
8 # they have to go back.
9 self.held_cards_original_position = []

10

11 # --- Create the mats the cards go on.
12

13 # Sprite list with all the mats tha cards lay on.
14 self.pile_mat_list: arcade.SpriteList = arcade.SpriteList()
15

16 # Create the mats for the bottom face down and face up piles
17 pile = arcade.SpriteSolidColor(MAT_WIDTH, MAT_HEIGHT, arcade.csscolor.DARK_OLIVE_

(continues on next page)

11.4. Draw Pile Mats 185

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

→˓GREEN)
18 pile.position = START_X, BOTTOM_Y
19 self.pile_mat_list.append(pile)
20

21 pile = arcade.SpriteSolidColor(MAT_WIDTH, MAT_HEIGHT, arcade.csscolor.DARK_OLIVE_
→˓GREEN)

22 pile.position = START_X + X_SPACING, BOTTOM_Y
23 self.pile_mat_list.append(pile)
24

25 # Create the seven middle piles
26 for i in range(7):
27 pile = arcade.SpriteSolidColor(MAT_WIDTH, MAT_HEIGHT, arcade.csscolor.DARK_

→˓OLIVE_GREEN)
28 pile.position = START_X + i * X_SPACING, MIDDLE_Y
29 self.pile_mat_list.append(pile)
30

31 # Create the top "play" piles
32 for i in range(4):
33 pile = arcade.SpriteSolidColor(MAT_WIDTH, MAT_HEIGHT, arcade.csscolor.DARK_

→˓OLIVE_GREEN)
34 pile.position = START_X + i * X_SPACING, TOP_Y
35 self.pile_mat_list.append(pile)
36

37 # Sprite list with all the cards, no matter what pile they are in.
38 self.card_list = arcade.SpriteList()
39

40 # Create every card
41 for card_suit in CARD_SUITS:
42 for card_value in CARD_VALUES:
43 card = Card(card_suit, card_value, CARD_SCALE)
44 card.position = START_X, BOTTOM_Y
45 self.card_list.append(card)

11.4.3 Draw Mat Sprites

Finally, the mats aren’t going to display if we don’t draw them:

186 Chapter 11. Solitaire

Python Arcade Library, Release 3.0.0.dev26

Listing 16: Draw the mat sprites

1 def on_draw(self):
2 """ Render the screen. """
3 # Clear the screen
4 self.clear()
5

6 # Draw the mats the cards go on to
7 self.pile_mat_list.draw()
8

9 # Draw the cards
10 self.card_list.draw()

11.4.4 Test the Program

Run the program, and see if the mats appear:

• solitaire_04 ← Full listing of where we are right now

• solitaire_04_diff ← What we changed to get here

11.4. Draw Pile Mats 187

Python Arcade Library, Release 3.0.0.dev26

11.5 Snap Cards to Piles

Right now, you can drag the cards anywhere. They don’t have to go onto a pile. Let’s add code that “snaps” the card
onto a pile. If we don’t drop on a pile, let’s reset back to the original location.

Listing 17: Snap to nearest pile

1 def on_mouse_release(self, x: float, y: float, button: int,
2 modifiers: int):
3 """ Called when the user presses a mouse button. """
4

5 # If we don't have any cards, who cares
6 if len(self.held_cards) == 0:
7 return
8

9 # Find the closest pile, in case we are in contact with more than one
10 pile, distance = arcade.get_closest_sprite(self.held_cards[0], self.pile_mat_

→˓list)
11 reset_position = True
12

13 # See if we are in contact with the closest pile
14 if arcade.check_for_collision(self.held_cards[0], pile):
15

16 # For each held card, move it to the pile we dropped on
17 for i, dropped_card in enumerate(self.held_cards):
18 # Move cards to proper position
19 dropped_card.position = pile.center_x, pile.center_y
20

21 # Success, don't reset position of cards
22 reset_position = False
23

24 # Release on top play pile? And only one card held?
25 if reset_position:
26 # Where-ever we were dropped, it wasn't valid. Reset the each card's position
27 # to its original spot.
28 for pile_index, card in enumerate(self.held_cards):
29 card.position = self.held_cards_original_position[pile_index]
30

31 # We are no longer holding cards
32 self.held_cards = []

• solitaire_05 ← Full listing of where we are right now

• solitaire_05_diff ← What we changed to get here

188 Chapter 11. Solitaire

Python Arcade Library, Release 3.0.0.dev26

11.6 Shuffle the Cards

Having all the cards in order is boring. Let’s shuffle them in the setup method:

Listing 18: Shuffle Cards

1 # Shuffle the cards
2 for pos1 in range(len(self.card_list)):
3 pos2 = random.randrange(len(self.card_list))
4 self.card_list.swap(pos1, pos2)

Don’t forget to import random at the top.

Run your program and make sure you can move cards around.

• solitaire_06 ← Full listing of where we are right now

• solitaire_06_diff ← What we changed to get here

11.7 Track Card Piles

Right now we are moving the cards around. But it isn’t easy to figure out what card is in which pile. We could check
by position, but then we start fanning the cards out, that will be very difficult.

Therefore we will keep a separate list for each pile of cards. When we move a card we need to move the position, and
switch which list it is in.

11.6. Shuffle the Cards 189

Python Arcade Library, Release 3.0.0.dev26

11.7.1 Add New Constants

To start with, let’s add some constants for each pile:

Listing 19: New Constants

1 # If we fan out cards stacked on each other, how far apart to fan them?
2 CARD_VERTICAL_OFFSET = CARD_HEIGHT * CARD_SCALE * 0.3
3

4 # Constants that represent "what pile is what" for the game
5 PILE_COUNT = 13
6 BOTTOM_FACE_DOWN_PILE = 0
7 BOTTOM_FACE_UP_PILE = 1
8 PLAY_PILE_1 = 2
9 PLAY_PILE_2 = 3

10 PLAY_PILE_3 = 4
11 PLAY_PILE_4 = 5
12 PLAY_PILE_5 = 6
13 PLAY_PILE_6 = 7
14 PLAY_PILE_7 = 8
15 TOP_PILE_1 = 9
16 TOP_PILE_2 = 10
17 TOP_PILE_3 = 11
18 TOP_PILE_4 = 12

11.7.2 Create the Pile Lists

Then in our __init__ add a variable to track the piles:

Listing 20: Init Method Additions

1 # Create a list of lists, each holds a pile of cards.
2 self.piles = None

In the setup method, create a list for each pile. Then, add all the cards to the face-down deal pile. (Later, we’ll add
support for face-down cards. Yes, right now all the cards in the face down pile are up.)

190 Chapter 11. Solitaire

Python Arcade Library, Release 3.0.0.dev26

Listing 21: Setup Method Additions

1 # Create a list of lists, each holds a pile of cards.
2 self.piles = [[] for _ in range(PILE_COUNT)]
3

4 # Put all the cards in the bottom face-down pile
5 for card in self.card_list:
6 self.piles[BOTTOM_FACE_DOWN_PILE].append(card)

11.7.3 Card Pile Management Methods

Next, we need some convenience methods we’ll use elsewhere.

First, given a card, return the index of which pile that card belongs to:

Listing 22: get_pile_for_card method

1 def get_pile_for_card(self, card):
2 """ What pile is this card in? """
3 for index, pile in enumerate(self.piles):
4 if card in pile:
5 return index

Next, remove a card from whatever pile it happens to be in.

Listing 23: remove_card_from_pile method

1 def remove_card_from_pile(self, card):
2 """ Remove card from whatever pile it was in. """
3 for pile in self.piles:
4 if card in pile:
5 pile.remove(card)
6 break

Finally, move a card from one pile to another.

11.7. Track Card Piles 191

Python Arcade Library, Release 3.0.0.dev26

Listing 24: move_card_to_new_pile method

1 def move_card_to_new_pile(self, card, pile_index):
2 """ Move the card to a new pile """
3 self.remove_card_from_pile(card)
4 self.piles[pile_index].append(card)

11.7.4 Dropping the Card

Next, we need to modify what happens when we release the mouse.

First, see if we release it onto the same pile it came from. If so, just reset the card back to its original location.

Listing 25: on_mouse_release method

1 def on_mouse_release(self, x: float, y: float, button: int,
2 modifiers: int):
3 """ Called when the user presses a mouse button. """
4

5 # If we don't have any cards, who cares
6 if len(self.held_cards) == 0:
7 return
8

9 # Find the closest pile, in case we are in contact with more than one
10 pile, distance = arcade.get_closest_sprite(self.held_cards[0], self.pile_mat_

→˓list)
11 reset_position = True
12

13 # See if we are in contact with the closest pile
14 if arcade.check_for_collision(self.held_cards[0], pile):
15

16 # What pile is it?
17 pile_index = self.pile_mat_list.index(pile)
18

19 # Is it the same pile we came from?
20 if pile_index == self.get_pile_for_card(self.held_cards[0]):
21 # If so, who cares. We'll just reset our position.
22 pass

What if it is on a middle play pile? Ugh, that’s a bit complicated. If the mat is empty, we need to place it in the middle
of the mat. If there are cards on the mat, we need to offset the card so we can see a spread of cards.

While we can only pick up one card at a time right now, we need to support dropping multiple cards for once we support
multiple card carries.

Listing 26: on_mouse_release method

1 # Is it on a middle play pile?
2 elif PLAY_PILE_1 <= pile_index <= PLAY_PILE_7:
3 # Are there already cards there?
4 if len(self.piles[pile_index]) > 0:
5 # Move cards to proper position
6 top_card = self.piles[pile_index][-1]

(continues on next page)

192 Chapter 11. Solitaire

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

7 for i, dropped_card in enumerate(self.held_cards):
8 dropped_card.position = top_card.center_x, \
9 top_card.center_y - CARD_VERTICAL_OFFSET␣

→˓* (i + 1)
10 else:
11 # Are there no cards in the middle play pile?
12 for i, dropped_card in enumerate(self.held_cards):
13 # Move cards to proper position
14 dropped_card.position = pile.center_x, \
15 pile.center_y - CARD_VERTICAL_OFFSET * i
16

17 for card in self.held_cards:
18 # Cards are in the right position, but we need to move them to the␣

→˓right list
19 self.move_card_to_new_pile(card, pile_index)
20

21 # Success, don't reset position of cards
22 reset_position = False

What if it is released on a top play pile? Make sure that we only have one card we are holding. We don’t want to drop
a stack up top. Then move the card to that pile.

Listing 27: on_mouse_release method

1 # Release on top play pile? And only one card held?
2 elif TOP_PILE_1 <= pile_index <= TOP_PILE_4 and len(self.held_cards) == 1:
3 # Move position of card to pile
4 self.held_cards[0].position = pile.position
5 # Move card to card list
6 for card in self.held_cards:
7 self.move_card_to_new_pile(card, pile_index)
8

9 reset_position = False

If the move is invalid, we need to reset all held cards to their initial location.

11.7. Track Card Piles 193

Python Arcade Library, Release 3.0.0.dev26

Listing 28: on_mouse_release method

1 if reset_position:
2 # Where-ever we were dropped, it wasn't valid. Reset the each card's position
3 # to its original spot.
4 for pile_index, card in enumerate(self.held_cards):
5 card.position = self.held_cards_original_position[pile_index]
6

7 # We are no longer holding cards
8 self.held_cards = []

11.7.5 Test

Test out your program, and see if the cards are being fanned out properly.

Note: The code isn’t enforcing any game rules. You can stack cards in any order. Also, with long stacks of cards, you
still have to drop the card on the mat. This is counter-intuitive when the stack of cards extends downwards past the mat.

We leave the solutions to these issues as an exercise for the reader.

• solitaire_07 ← Full listing of where we are right now

• solitaire_07_diff ← What we changed to get here

194 Chapter 11. Solitaire

Python Arcade Library, Release 3.0.0.dev26

11.8 Pick Up Card Stacks

How do we pick up a whole stack of cards? When the mouse is pressed, we need to figure out what pile the card is in.

Next, look at where in the pile the card is that we clicked on. If there are any cards later on on the pile, we want to pick
up those cards too. Add them to the list.

Listing 29: on_mouse_release method

1 def on_mouse_press(self, x, y, button, key_modifiers):
2 """ Called when the user presses a mouse button. """
3

4 # Get list of cards we've clicked on
5 cards = arcade.get_sprites_at_point((x, y), self.card_list)
6

7 # Have we clicked on a card?
8 if len(cards) > 0:
9

10 # Might be a stack of cards, get the top one
11 primary_card = cards[-1]
12 # Figure out what pile the card is in
13 pile_index = self.get_pile_for_card(primary_card)
14

15 # All other cases, grab the face-up card we are clicking on
16 self.held_cards = [primary_card]
17 # Save the position
18 self.held_cards_original_position = [self.held_cards[0].position]
19 # Put on top in drawing order
20 self.pull_to_top(self.held_cards[0])
21

22 # Is this a stack of cards? If so, grab the other cards too
23 card_index = self.piles[pile_index].index(primary_card)
24 for i in range(card_index + 1, len(self.piles[pile_index])):
25 card = self.piles[pile_index][i]
26 self.held_cards.append(card)
27 self.held_cards_original_position.append(card.position)
28 self.pull_to_top(card)

After this, you should be able to pick up a stack of cards from the middle piles with the mouse and move them around.

• solitaire_08 ← Full listing of where we are right now

• solitaire_08_diff ← What we changed to get here

11.9 Deal Out Cards

We can deal the cards into the seven middle piles by adding some code to the setup method. We need to change the
list each card is part of, along with its position.

Listing 30: Setup Method Additions

1 # - Pull from that pile into the middle piles, all face-down
2 # Loop for each pile

(continues on next page)

11.8. Pick Up Card Stacks 195

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

3 for pile_no in range(PLAY_PILE_1, PLAY_PILE_7 + 1):
4 # Deal proper number of cards for that pile
5 for j in range(pile_no - PLAY_PILE_1 + 1):
6 # Pop the card off the deck we are dealing from
7 card = self.piles[BOTTOM_FACE_DOWN_PILE].pop()
8 # Put in the proper pile
9 self.piles[pile_no].append(card)

10 # Move card to same position as pile we just put it in
11 card.position = self.pile_mat_list[pile_no].position
12 # Put on top in draw order
13 self.pull_to_top(card)

• solitaire_09 ← Full listing of where we are right now

• solitaire_09_diff ← What we changed to get here

11.10 Face Down Cards

We don’t play solitaire with all the cards facing up, so let’s add face-down support to our game.

11.10.1 New Constants

First define a constant for what image to use when face-down.

Listing 31: Face Down Image Constant

1 # Face down image
2 FACE_DOWN_IMAGE = ":resources:images/cards/cardBack_red2.png"

11.10.2 Updates to Card Class

Next, default each card in the Card class to be face up. Also, let’s add methods to flip the card up or down.

Listing 32: Updated Card Class

1 class Card(arcade.Sprite):
2 """ Card sprite """
3

4 def __init__(self, suit, value, scale=1):
5 """ Card constructor """
6

7 # Attributes for suit and value
8 self.suit = suit
9 self.value = value

10

11 # Image to use for the sprite when face up
12 self.image_file_name = f":resources:images/cards/card{self.suit}{self.value}.png"
13 self.is_face_up = False
14 super().__init__(FACE_DOWN_IMAGE, scale, hit_box_algorithm="None")

(continues on next page)

196 Chapter 11. Solitaire

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

15

16 def face_down(self):
17 """ Turn card face-down """
18 self.texture = arcade.load_texture(FACE_DOWN_IMAGE)
19 self.is_face_up = False
20

21 def face_up(self):
22 """ Turn card face-up """
23 self.texture = arcade.load_texture(self.image_file_name)
24 self.is_face_up = True
25

26 @property
27 def is_face_down(self):
28 """ Is this card face down? """
29 return not self.is_face_up

11.10.3 Flip Up Cards On Middle Seven Piles

Right now every card is face down. Let’s update the setup method so the top cards in the middle seven piles are face
up.

Listing 33: Flip Up Cards

1 # Flip up the top cards
2 for i in range(PLAY_PILE_1, PLAY_PILE_7 + 1):
3 self.piles[i][-1].face_up()

11.10.4 Flip Up Cards When Clicked

When we click on a card that is face down, instead of picking it up, let’s flip it over:

Listing 34: Flip Up Cards

1 def on_mouse_press(self, x, y, button, key_modifiers):
2 """ Called when the user presses a mouse button. """
3

4 # Get list of cards we've clicked on
5 cards = arcade.get_sprites_at_point((x, y), self.card_list)
6

7 # Have we clicked on a card?
8 if len(cards) > 0:
9

10 # Might be a stack of cards, get the top one
11 primary_card = cards[-1]
12 assert isinstance(primary_card, Card)
13

14 # Figure out what pile the card is in
15 pile_index = self.get_pile_for_card(primary_card)
16

17 if primary_card.is_face_down:
(continues on next page)

11.10. Face Down Cards 197

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

18 # Is the card face down? In one of those middle 7 piles? Then flip up
19 primary_card.face_up()
20 else:
21 # All other cases, grab the face-up card we are clicking on
22 self.held_cards = [primary_card]
23 # Save the position
24 self.held_cards_original_position = [self.held_cards[0].position]
25 # Put on top in drawing order
26 self.pull_to_top(self.held_cards[0])
27

28 # Is this a stack of cards? If so, grab the other cards too
29 card_index = self.piles[pile_index].index(primary_card)
30 for i in range(card_index + 1, len(self.piles[pile_index])):
31 card = self.piles[pile_index][i]
32 self.held_cards.append(card)
33 self.held_cards_original_position.append(card.position)
34 self.pull_to_top(card)

11.10.5 Test

Try out your program. As you move cards around, you should see face down cards as well, and be able to flip them
over.

• solitaire_10 ← Full listing of where we are right now

• solitaire_10_diff ← What we changed to get here

11.11 Restart Game

We can add the ability to restart are game any type we press the ‘R’ key:

Listing 35: Flip Up Cards

1 def on_key_press(self, symbol: int, modifiers: int):
2 """ User presses key """
3 if symbol == arcade.key.R:
4 # Restart
5 self.setup()

198 Chapter 11. Solitaire

Python Arcade Library, Release 3.0.0.dev26

11.12 Flip Three From Draw Pile

The draw pile at the bottom of our screen doesn’t work right yet. When we click on it, we need it to flip three cards to
the bottom-right pile. Also, if the have gone through all the cards in the pile, we need to reset the pile so we can go
through it again.

Listing 36: Flipping of Bottom Deck

1 def on_mouse_press(self, x, y, button, key_modifiers):
2 """ Called when the user presses a mouse button. """
3

4 # Get list of cards we've clicked on
5 cards = arcade.get_sprites_at_point((x, y), self.card_list)
6

7 # Have we clicked on a card?
8 if len(cards) > 0:
9

10 # Might be a stack of cards, get the top one
11 primary_card = cards[-1]
12 assert isinstance(primary_card, Card)
13

14 # Figure out what pile the card is in
15 pile_index = self.get_pile_for_card(primary_card)
16

17 # Are we clicking on the bottom deck, to flip three cards?
18 if pile_index == BOTTOM_FACE_DOWN_PILE:
19 # Flip three cards
20 for i in range(3):
21 # If we ran out of cards, stop
22 if len(self.piles[BOTTOM_FACE_DOWN_PILE]) == 0:
23 break
24 # Get top card
25 card = self.piles[BOTTOM_FACE_DOWN_PILE][-1]
26 # Flip face up
27 card.face_up()
28 # Move card position to bottom-right face up pile
29 card.position = self.pile_mat_list[BOTTOM_FACE_UP_PILE].position
30 # Remove card from face down pile
31 self.piles[BOTTOM_FACE_DOWN_PILE].remove(card)
32 # Move card to face up list
33 self.piles[BOTTOM_FACE_UP_PILE].append(card)
34 # Put on top draw-order wise
35 self.pull_to_top(card)
36

37 elif primary_card.is_face_down:
38 # Is the card face down? In one of those middle 7 piles? Then flip up
39 primary_card.face_up()
40 else:
41 # All other cases, grab the face-up card we are clicking on
42 self.held_cards = [primary_card]
43 # Save the position
44 self.held_cards_original_position = [self.held_cards[0].position]
45 # Put on top in drawing order

(continues on next page)

11.12. Flip Three From Draw Pile 199

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

46 self.pull_to_top(self.held_cards[0])
47

48 # Is this a stack of cards? If so, grab the other cards too
49 card_index = self.piles[pile_index].index(primary_card)
50 for i in range(card_index + 1, len(self.piles[pile_index])):
51 card = self.piles[pile_index][i]
52 self.held_cards.append(card)
53 self.held_cards_original_position.append(card.position)
54 self.pull_to_top(card)
55

56 else:
57

58 # Click on a mat instead of a card?
59 mats = arcade.get_sprites_at_point((x, y), self.pile_mat_list)
60

61 if len(mats) > 0:
62 mat = mats[0]
63 mat_index = self.pile_mat_list.index(mat)
64

65 # Is it our turned over flip mat? and no cards on it?
66 if mat_index == BOTTOM_FACE_DOWN_PILE and len(self.piles[BOTTOM_FACE_

→˓DOWN_PILE]) == 0:
67 # Flip the deck back over so we can restart
68 temp_list = self.piles[BOTTOM_FACE_UP_PILE].copy()
69 for card in reversed(temp_list):
70 card.face_down()
71 self.piles[BOTTOM_FACE_UP_PILE].remove(card)
72 self.piles[BOTTOM_FACE_DOWN_PILE].append(card)
73 card.position = self.pile_mat_list[BOTTOM_FACE_DOWN_PILE].

→˓position

11.12.1 Test

Now we’ve got a basic working solitaire game! Try it out!

200 Chapter 11. Solitaire

Python Arcade Library, Release 3.0.0.dev26

• solitaire_11 ← Full listing of where we are right now

• solitaire_11_diff ← What we changed to get here

11.13 Conclusion

There’s a lot more that could be added to this game, such as enforcing rules, adding animation to ‘slide’ a dropped card
to its position, sound, better graphics, and more. Or this could be adapted to a different card game.

Hopefully this is enough to get you started on your own game.

11.13. Conclusion 201

Python Arcade Library, Release 3.0.0.dev26

202 Chapter 11. Solitaire

CHAPTER

TWELVE

LIGHTS

This tutorial needs some documentation. Feel free to submit a PR to improve it!

Listing 1: light_demo.py

1 """
2 Show how to use lights.
3

4 .. note:: This uses features from the upcoming version 2.4. The API for these
5 functions may still change. To use, you will need to install one of the

(continues on next page)

203

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

6 pre-release packages, or install via GitHub.
7

8 Artwork from http://kenney.nl
9

10 """
11 import arcade
12 from arcade.experimental.lights import Light, LightLayer
13

14 SCREEN_WIDTH = 1024
15 SCREEN_HEIGHT = 768
16 SCREEN_TITLE = "Lighting Demo"
17 VIEWPORT_MARGIN = 200
18 MOVEMENT_SPEED = 5
19

20 # This is the color used for 'ambient light'. If you don't want any
21 # ambient light, set it to black.
22 AMBIENT_COLOR = (10, 10, 10)
23

24 class MyGame(arcade.Window):
25 """ Main Game Window """
26

27 def __init__(self, width, height, title):
28 """ Set up the class. """
29 super().__init__(width, height, title, resizable=True)
30

31 # Sprite lists
32 self.background_sprite_list = None
33 self.player_list = None
34 self.wall_list = None
35 self.player_sprite = None
36

37 # Physics engine
38 self.physics_engine = None
39

40 # Used for scrolling
41 self.view_left = 0
42 self.view_bottom = 0
43

44 # --- Light related ---
45 # List of all the lights
46 self.light_layer = None
47 # Individual light we move with player, and turn on/off
48 self.player_light = None
49

50 def setup(self):
51 """ Create everything """
52

53 # Create sprite lists
54 self.background_sprite_list = arcade.SpriteList()
55 self.player_list = arcade.SpriteList()
56 self.wall_list = arcade.SpriteList()
57

(continues on next page)

204 Chapter 12. Lights

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

58 # Create player sprite
59 self.player_sprite = arcade.Sprite(":resources:images/animated_characters/female_

→˓person/femalePerson_idle.png", 0.4)
60 self.player_sprite.center_x = 64
61 self.player_sprite.center_y = 270
62 self.player_list.append(self.player_sprite)
63

64 # --- Light related ---
65 # Lights must shine on something. If there is no background sprite or color,
66 # you will just see black. Therefore, we use a loop to create a whole bunch of␣

→˓brick tiles to go in the
67 # background.
68 for x in range(-128, 2000, 128):
69 for y in range(-128, 1000, 128):
70 sprite = arcade.Sprite(":resources:images/tiles/brickTextureWhite.png")
71 sprite.position = x, y
72 self.background_sprite_list.append(sprite)
73

74 # Create a light layer, used to render things to, then post-process and
75 # add lights. This must match the screen size.
76 self.light_layer = LightLayer(SCREEN_WIDTH, SCREEN_HEIGHT)
77 # We can also set the background color that will be lit by lights,
78 # but in this instance we just want a black background
79 self.light_layer.set_background_color(arcade.color.BLACK)
80

81 # Here we create a bunch of lights.
82

83 # Create a small white light
84 x = 100
85 y = 200
86 radius = 100
87 mode = 'soft'
88 color = arcade.csscolor.WHITE
89 light = Light(x, y, radius, color, mode)
90 self.light_layer.add(light)
91

92 # Create an overlapping, large white light
93 x = 300
94 y = 150
95 radius = 200
96 color = arcade.csscolor.WHITE
97 mode = 'soft'
98 light = Light(x, y, radius, color, mode)
99 self.light_layer.add(light)

100

101 # Create three, non-overlapping RGB lights
102 x = 50
103 y = 450
104 radius = 100
105 mode = 'soft'
106 color = arcade.csscolor.RED
107 light = Light(x, y, radius, color, mode)

(continues on next page)

205

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

108 self.light_layer.add(light)
109

110 x = 250
111 y = 450
112 radius = 100
113 mode = 'soft'
114 color = arcade.csscolor.GREEN
115 light = Light(x, y, radius, color, mode)
116 self.light_layer.add(light)
117

118 x = 450
119 y = 450
120 radius = 100
121 mode = 'soft'
122 color = arcade.csscolor.BLUE
123 light = Light(x, y, radius, color, mode)
124 self.light_layer.add(light)
125

126 # Create three, overlapping RGB lights
127 x = 650
128 y = 450
129 radius = 100
130 mode = 'soft'
131 color = arcade.csscolor.RED
132 light = Light(x, y, radius, color, mode)
133 self.light_layer.add(light)
134

135 x = 750
136 y = 450
137 radius = 100
138 mode = 'soft'
139 color = arcade.csscolor.GREEN
140 light = Light(x, y, radius, color, mode)
141 self.light_layer.add(light)
142

143 x = 850
144 y = 450
145 radius = 100
146 mode = 'soft'
147 color = arcade.csscolor.BLUE
148 light = Light(x, y, radius, color, mode)
149 self.light_layer.add(light)
150

151 # Create three, overlapping RGB lights
152 # But 'hard' lights that don't fade out.
153 x = 650
154 y = 150
155 radius = 100
156 mode = 'hard'
157 color = arcade.csscolor.RED
158 light = Light(x, y, radius, color, mode)
159 self.light_layer.add(light)

(continues on next page)

206 Chapter 12. Lights

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

160

161 x = 750
162 y = 150
163 radius = 100
164 mode = 'hard'
165 color = arcade.csscolor.GREEN
166 light = Light(x, y, radius, color, mode)
167 self.light_layer.add(light)
168

169 x = 850
170 y = 150
171 radius = 100
172 mode = 'hard'
173 color = arcade.csscolor.BLUE
174 light = Light(x, y, radius, color, mode)
175 self.light_layer.add(light)
176

177 # Create a light to follow the player around.
178 # We'll position it later, when the player moves.
179 # We'll only add it to the light layer when the player turns the light
180 # on. We start with the light off.
181 radius = 150
182 mode = 'soft'
183 color = arcade.csscolor.WHITE
184 self.player_light = Light(0, 0, radius, color, mode)
185

186 # Create the physics engine
187 self.physics_engine = arcade.PhysicsEngineSimple(self.player_sprite, self.wall_

→˓list)
188

189 # Set the viewport boundaries
190 # These numbers set where we have 'scrolled' to.
191 self.view_left = 0
192 self.view_bottom = 0
193

194 def on_draw(self):
195 """ Draw everything. """
196 self.clear()
197

198 # --- Light related ---
199 # Everything that should be affected by lights gets rendered inside this
200 # 'with' statement. Nothing is rendered to the screen yet, just the light
201 # layer.
202 with self.light_layer:
203 self.background_sprite_list.draw()
204 self.player_list.draw()
205

206 # Draw the light layer to the screen.
207 # This fills the entire screen with the lit version
208 # of what we drew into the light layer above.
209 self.light_layer.draw(ambient_color=AMBIENT_COLOR)
210

(continues on next page)

207

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

211 # Now draw anything that should NOT be affected by lighting.
212 arcade.draw_text("Press SPACE to turn character light on/off.",
213 10 + self.view_left, 10 + self.view_bottom,
214 arcade.color.WHITE, 20)
215

216 def on_resize(self, width, height):
217 """ User resizes the screen. """
218

219 # --- Light related ---
220 # We need to resize the light layer to
221 self.light_layer.resize(width, height)
222

223 # Scroll the screen so the user is visible
224 self.scroll_screen()
225

226 def on_key_press(self, key, _):
227 """Called whenever a key is pressed. """
228

229 if key == arcade.key.UP:
230 self.player_sprite.change_y = MOVEMENT_SPEED
231 elif key == arcade.key.DOWN:
232 self.player_sprite.change_y = -MOVEMENT_SPEED
233 elif key == arcade.key.LEFT:
234 self.player_sprite.change_x = -MOVEMENT_SPEED
235 elif key == arcade.key.RIGHT:
236 self.player_sprite.change_x = MOVEMENT_SPEED
237 elif key == arcade.key.SPACE:
238 # --- Light related ---
239 # We can add/remove lights from the light layer. If they aren't
240 # in the light layer, the light is off.
241 if self.player_light in self.light_layer:
242 self.light_layer.remove(self.player_light)
243 else:
244 self.light_layer.add(self.player_light)
245

246 def on_key_release(self, key, _):
247 """Called when the user releases a key. """
248

249 if key == arcade.key.UP or key == arcade.key.DOWN:
250 self.player_sprite.change_y = 0
251 elif key == arcade.key.LEFT or key == arcade.key.RIGHT:
252 self.player_sprite.change_x = 0
253

254 def scroll_screen(self):
255 """ Manage Scrolling """
256

257 # Scroll left
258 left_boundary = self.view_left + VIEWPORT_MARGIN
259 if self.player_sprite.left < left_boundary:
260 self.view_left -= left_boundary - self.player_sprite.left
261

262 # Scroll right

(continues on next page)

208 Chapter 12. Lights

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

263 right_boundary = self.view_left + self.width - VIEWPORT_MARGIN
264 if self.player_sprite.right > right_boundary:
265 self.view_left += self.player_sprite.right - right_boundary
266

267 # Scroll up
268 top_boundary = self.view_bottom + self.height - VIEWPORT_MARGIN
269 if self.player_sprite.top > top_boundary:
270 self.view_bottom += self.player_sprite.top - top_boundary
271

272 # Scroll down
273 bottom_boundary = self.view_bottom + VIEWPORT_MARGIN
274 if self.player_sprite.bottom < bottom_boundary:
275 self.view_bottom -= bottom_boundary - self.player_sprite.bottom
276

277 # Make sure our boundaries are integer values. While the viewport does
278 # support floating point numbers, for this application we want every pixel
279 # in the view port to map directly onto a pixel on the screen. We don't want
280 # any rounding errors.
281 self.view_left = int(self.view_left)
282 self.view_bottom = int(self.view_bottom)
283

284 arcade.set_viewport(self.view_left,
285 self.width + self.view_left,
286 self.view_bottom,
287 self.height + self.view_bottom)
288

289 def on_update(self, delta_time):
290 """ Movement and game logic """
291

292 # Call update on all sprites (The sprites don't do much in this
293 # example though.)
294 self.physics_engine.update()
295

296 # --- Light related ---
297 # We can easily move the light by setting the position,
298 # or by center_x, center_y.
299 self.player_light.position = self.player_sprite.position
300

301 # Scroll the screen so we can see the player
302 self.scroll_screen()
303

304

305 if __name__ == "__main__":
306 window = MyGame(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)
307 window.setup()
308 arcade.run()

209

Python Arcade Library, Release 3.0.0.dev26

210 Chapter 12. Lights

CHAPTER

THIRTEEN

BUNDLING A GAME WITH PYINSTALLER

You’ve written your game using Arcade and it is a masterpiece! Congrats! Now you want to share it with others. That
usually means helping people install Python, downloading the necessary modules, copying your code, and then getting
it all working. Sharing is not an easy task. Well, PyInstaller can change all that!

PyInstaller is a tool for Python that lets you bundle up an entire Python application into a one-file executable bundle
that you can easily share. Thankfully, it works great with Arcade!

We will be demonstrating usage with Windows, but everything should work exactly the same across Windows, Mac,
and Linux. Note that you can only build for the system you are on. This means that in order to make a Windows build,
you must be on a Windows machine, same thing for Linux and Mac.

13.1 Bundling a Simple Arcade Script

To demonstrate how PyInstaller works, we will:

• Install PyInstaller

• Create a simple example application that uses Arcade

• Bundle the application into a one-file executable

• Run the application

First, make sure both Arcade and PyInstaller are installed in your Python environment with:

pip install arcade pyinstaller

Then we need our game. In this case, we’ll start simple. We need a one-file game that doesn’t require any additional
images or sounds. Once we have that working, we can get more complicated. Create a file called main.py that contains
the following:

Listing 1: Sample game – main.py

import arcade

arcade.open_window(400, 400, "My Game")

self.clear()
arcade.draw_circle_filled(200, 200, 100, arcade.color.BLUE)
arcade.finish_render()

arcade.run()

211

https://pyinstaller.readthedocs.io/en/stable/
https://pyinstaller.readthedocs.io/en/stable/

Python Arcade Library, Release 3.0.0.dev26

Now, create a one-file executable bundle file by running PyInstaller from the command-line:

pyinstaller main.py --onefile

PyInstaller generates the executable that is a bundle of your game. It puts it in the dist\ folder under your current
working directory. Look for a file named main.exe in dist\. Run this and see the example application start up!

You can copy this file wherever you want on your computer and run it. Or, share it with others. Everything your script
needs is inside this executable file.

For simple games, this is all you need to know! But, if your game loads any kind of data files from disk, continue
reading.

13.2 Handling Data Files

When creating a bundle, PyInstaller first examines your project and automatically identifies nearly everything your
project needs (a Python interpreter, installed modules, etc). But, it can’t automatically determine what data files your
game is loading from disk (images, sounds, maps). So, you must explicitly tell PyInstaller about these files and where
it should put them in the bundle. This is done with PyInstaller’s --add-data flag:

pyinstaller main.py --add-data "stripes.jpg;."

The first item passed to --add-data is the “source” file or directory (ex: stripes.jpg) identifying what PyInstaller
should include in the bundle. The item after the semicolon is the “destination” (ex: “.”), which specifies where files
should be placed in the bundle, relative to the bundle’s root. In the example above, the stripes.jpg image is copied
to the root of the bundle (”.”).

After instructing PyInstaller to include data files in a bundle, you must make sure your code loads the data files from
the correct directory. When you share your game’s bundle, you have no control over what directory the user will run
your bundle from. This is complicated by the fact that a one-file PyInstaller bundle is uncompressed at runtime to a
random temporary directory and then executed from there. This document describes one simple approach that allows
your code to execute and load files when running in a PyInstaller bundle AND also be able to run when not bundled.

You need to do two things. First, the snippet below must be placed at the beginning of your script:

if getattr(sys, 'frozen', False) and hasattr(sys, '_MEIPASS'):
os.chdir(sys._MEIPASS)

This snippet uses sys.frozen and sys._MEIPASS, which are both set by PyInstaller. The sys.frozen setting indi-
cates whether code is running from a bundle (“frozen”). If the code is “frozen”, the working directory is changed to
the root of where the bundle has been uncompressed to (sys._MEIPASS). PyInstaller often uncompresses its one-file
bundles to a directory named something like: C:\Users\user\AppData\Local\Temp_MEI123456.

Second, once the code above has set the current working directory, all file paths in your code can be relative paths
(ex: resources\images\stripes.jpg) as opposed to absolute paths (ex: C:\projects\mygame\resources\
images\stripes.jpg). If you do these two things and add data files to your package as demonstrated below, your
code will be able to run “normally” as well as running in a bundle.

Below are some examples that show a few common patterns of how data files can be included in a PyInstaller bundle.
The examples first show a code snippet that demonstrates how data is loaded (relative path names), followed by the
PyInstaller command to copy data files into the bundle. They all assume that the os.chdir() snippet of code listed
above is being used.

212 Chapter 13. Bundling a Game with PyInstaller

Python Arcade Library, Release 3.0.0.dev26

13.2.1 One Data File

If you simply have one data file in the same directory as your script, refer to the data file using a relative path like this:

sprite = arcade.Sprite("stripes.jpg")

Then, you would use a PyInstaller command like this to include the data file in the bundled executable:

pyinstaller main.py --add-data "stripes.jpg;."
...or...
pyinstaller main.py --add-data "*.jpg;."

13.2.2 One Data Directory

If you have a directory of data files (such as images), refer to the data directory using a relative path like this:

sprite = arcade.Sprite("images/player.jpg")
sprite = arcade.Sprite("images/enemy.jpg")

Then, you would use a PyInstaller command like this to include the directory in the bundled executable:

pyinstaller main.py --add-data "images;images"

13.2.3 Multiple Data Files and Directories

You can use the --add-data flag multiple times to add multiple files and directories into the bundle:

pyinstaller main.py --add-data "player.jpg;." --add-data "enemy.jpg;." --add-data "music;
→˓music"

13.2.4 One Directory for Everything

Although you can include every data file and directory with separate --add-data flags, it is suggested that you write
your game so that all of your data files are under one root directory, often named resources. You can use subdirectories
to help organize everything. An example directory tree could look like:

project/
|--- main.py
|--- resources/

|--- images/
| |--- enemy.jpg
| |--- player.jpg
|--- sound/
| |--- game_over.wav
| |--- laser.wav
|--- text/

|--- names.txt

With this approach, it becomes easy to bundle all your data with just a single --add-data flag. Your code would use
relative pathnames to load resources, something like this:

13.2. Handling Data Files 213

Python Arcade Library, Release 3.0.0.dev26

sprite = arcade.Sprite("resources/images/player.jpg")
text = open("resources/text/names.txt").read()

And, you would include this entire directory tree into the bundle like this:

pyinstaller main.py --add-data "resources;resources"

It is worth spending a bit of time to plan out how you will layout and load your data files in order to keep the bundling
process simple.

The technique of handling data files described above is just one approach. If you want more control and flexibility
in handling data files, learn about the different path information that is available by reading the PyInstaller Run-Time
Information documentation.

Now that you know how to install PyInstaller, include data files, and bundle your game into an executable, you have
what you need to bundle your game and share it with your new fans!

13.3 Troubleshooting

13.3.1 Use a One-Folder Bundle for Troubleshooting

If you are having problems getting your bundle to work properly, it may help to temporarily omit the --onefile flag
from the pyinstaller command. This will bundle your game into a one-folder bundle with an executable inside it.
This allows you to inspect the contents of the folder and make sure all of the files are where you expect them to be. The
one-file bundle produced by --onefile is simply a self-uncompressing archive of this one-folder bundle.

13.3.2 PyInstaller Not Bundling a Needed Module

In most cases, PyInstaller is able to analyze your project and automatically determine what modules to place in the bun-
dle. But, if PyInstaller happens to miss a module, you can use the --hidden-import MODULENAME flag to explicitly
instruct PyInstaller to include a module. See the PyInstaller documentation for more details.

13.4 Extra Details

• You will notice that after running pyinstaller, a .spec file will appear in your directory. This file is generated
by PyInstaller and does not need to be saved or checked into your source code repo.

• Executable one-file bundles produced by PyInstaller’s --onefile flag will start up slower than your original
application or the one-folder bundle. This is expected because one-file bundles are ultimately just a compressed
folder, so they must take time to uncompress themselves each time the bundle is run.

• By default, when PyInstaller creates a bundled application, the application opens a console window. You can
suppress the creation of the console window by adding the --windowed flag to the pyinstaller command.

• See the PyInstaller documentation below for more details on the topics above, and much more.

• PyInstaller 4.x was used in this tutorial.

214 Chapter 13. Bundling a Game with PyInstaller

https://pyinstaller.readthedocs.io/en/stable/runtime-information.html
https://pyinstaller.readthedocs.io/en/stable/runtime-information.html
https://pyinstaller.readthedocs.io/en/stable/usage.html#what-to-bundle-where-to-search

Python Arcade Library, Release 3.0.0.dev26

13.5 PyInstaller Documentation

PyInstaller is a flexible tool that can handle a wide variety of different situations. For further reading, here are links to
the official PyInstaller documentation and GitHub page:

• PyInstaller Manual: https://pyinstaller.readthedocs.io/en/stable/

• PyInstaller GitHub: https://github.com/pyinstaller/pyinstaller

13.5. PyInstaller Documentation 215

https://pyinstaller.readthedocs.io/en/stable/
https://github.com/pyinstaller/pyinstaller

Python Arcade Library, Release 3.0.0.dev26

216 Chapter 13. Bundling a Game with PyInstaller

CHAPTER

FOURTEEN

COMPILING A GAME WITH NUITKA

So you have successfully written your dream game with Arcade and now, you want to share it with your friends and
family. Good idea! But there is a small issue. Sadly, they are not a tech geek as big as you are and don’t have any
knowledge about Python and its working :(. Though Bundling a Game with PyInstaller is a good option, the executables
it produces can sometime take up a good amount of space and antiviruses raise false positives almost every time. But
Nuitka is here to solve all your problems!

Nuitka is a tool which compiles your Python code to machine code directly, and bundles your application’s source code
in dll files. This way, you get two benefits:

• The source code is safe in dll files.

• The application gets a performance boosts in many cases.

• The resulting executable’s size is small.

We are using Windows for this tutorial, but most of the commands can be used as-it-is on other platforms including
Linux and Mac.

Warning: Builds are platform dependent!

For example, a Windows build will not work out-of-the-box on a different OS. The same goes for Linux and Mac
builds on other platforms.

You can use a Mac or a Linux system to compile your game for those platforms.

To compile for a different platform than your current one, you may be able to use a Virtual Machine or WINE/Proton.
However, these options are not officially supported and are not covered in this tutorial.

14.1 Compiling a Simple Arcade Script

For this tutorial, we will use the code from Simple Platformer.

• First, we have to install Nuitka with the following command:

pip install nuitka

We will be using the code from this file.

Converting that code to a standalone executable is as easy as:

python -m nuitka 17_views.py --standalone --enable-plugin=numpy

217

https://nuitka.net/
https://nuitka.net/
https://nuitka.net/
https://github.com/pythonarcade/arcade/blob/development/arcade/examples/platform_tutorial/17_views.py

Python Arcade Library, Release 3.0.0.dev26

Now sit back and relax. Might as well go and grab a cup of coffee since compilation takes time, sometimes maybe up to
2 hours, depending on your machine’s specs. After the process is finished, two new folders named 17_views.py.dist
and 17_views.py.build will popup. You can safely ignore the build folder for now. Just go to the dis folder and run
17_views.exe file , present in there. If there are no errors, then the application should work perfectly.

Congratulations! You have successfully compiled your Python code to a standalone executable!

Note: If you want to compile the code to a single file instead of a folder, just remove the standalone flag and add the
onefile flag!

14.2 But What About Data Files And Folders?

Sometimes, our application also uses custom data files which may include sound effects, fonts etc. . . In order to bundle
them with the application, just use the include-data-file or include-data-dir flag:

python -m nuitka 17_views.py --standalone --enable-plugin=numpy --include-data-file=C:/
→˓Users/Hunter/Desktop/my_game/my_image.png=.

This will copy the file named my_image.png at the specified location to the root of the executable.

To bundle a whole folder:

python -m nuitka 17_views.py --standalone --enable-plugin=numpy --include-data-dir=C:/
→˓Users/Hunter/Desktop/my_game/assets=.

This will copy the whole folder named assets at the specified location to the root of the executable.

14.3 Removing The Console Window

You might have noticed that while opening the executable, a console window automatically opens. Even though it is
helpful in debugging and errors, it does look ugly. You might think, is there a way to force the console output to a logs
file? Well, thanks to Nuitka, this is also possible:

python -m nuitka 17_views.py --standalone --windows-force-stderr-spec=%PROGRAM%logs.txt -
→˓-windows-force-stdout-spec=%PROGRAM%output.txt

This will automatically create two files, viz logs.txt and output.txt in the executable directory which will contain
the stderr and stdout output respectively!

14.4 What About A Custom Taskbar Icon?

Nuitka provides us with the windows-icon-from-ico and windows-icon-from-exe flags (varies for each OS) to
set custom icons. The first flag takes a .png or a .ico file and sets it as the app icon:

python -m nuitka 17_views.py --standalone --windows-icon-from-ico=icon.png

This will set the app icon to icon.png

python -m nuitka 17_views.py --standalone --windows-icon-from-exe=C:\Users\Hunter\
→˓AppData\Local\Programs\Python\Python310/python.exe

This will set the app icon to Python’s icon

218 Chapter 14. Compiling a Game with Nuitka

Python Arcade Library, Release 3.0.0.dev26

14.5 Additional Information

• This tutorial was tested with Nutika 0.7.x. Later releases are likely to work.

14.5. Additional Information 219

Python Arcade Library, Release 3.0.0.dev26

220 Chapter 14. Compiling a Game with Nuitka

CHAPTER

FIFTEEN

SHADERS

Shaders are small programs which specify how graphics hardware should draw & shade objects. They offer power,
flexibility, and efficiency far beyond what you could achieve using shapes or Sprite instances alone. The tutorials
below serve as an introduction to shaders.

15.1 Ray-casting Shadows

A common effect for many games is ray-casting. Having the user only be able to see what is directly in their line-of-
sight.

221

Python Arcade Library, Release 3.0.0.dev26

This can be done quickly using shaders. These are small programs that run on the graphics card. They can take
advantage of the Graphics Processing Unit. The GPU has a lot of mini-CPUs dedicated to processing graphics much
faster than your main computer’s CPU can.

15.1.1 Starting Program

Before we start adding shadows, we need a good starting program. Let’s create some crates to block our vision, some
bombs to hide in them, and a player character:

The listing for this starting program is available at raycasting_start.

15.1.2 Step 1: Add-In the Shadertoy

What is Shadertoy?

Where does the name Shadertoy come from? This class is designed to mimic the Shadertoy website. The website
makes it easy to experiment with shaders, and those shaders can be run using the Arcade library.

Now, let’s create a shader. We can program shaders using Arcade’s Shadertoy class.

We’ll modify our prior program to import the Shadertoy class:

Listing 1: Import Shadertoy

from arcade.experimental import Shadertoy

Next, we’ll need some shader-related variables. In addition to a variable to hold the shader, we are also going to need
to keep track of a couple frame buffer objects (FBOs). You can store image data in an FBO and send it to the shader
program. An FBO is held on the graphics card. Manipulating an FBO there is much faster than working with one in
loaded into main memory.

Not just for images!

FBOs can hold more than just image-related data, but for now, just think of them as images.

222 Chapter 15. Shaders

https://www.shadertoy.com/

Python Arcade Library, Release 3.0.0.dev26

Shadertoy has four built-in channels that our shader programs can work with. Channels can be mapped to FBOs. This
allows us to pass image data to our shader program for it to process. The four channels are numbered 0 to 3.

We’ll be using two channels to cast shadows. We will use the channel0 variable to hold our barriers that can cast
shadows. We will use the channel1 variable to hold the ground, bombs, or anything we want to be hidden by shadows.

Listing 2: Create & initialize shader variables

def __init__(self, width, height, title):
super().__init__(width, height, title)

The shader toy and 'channels' we'll be using
self.shadertoy = None
self.channel0 = None
self.channel1 = None
self.load_shader()

Sprites and sprite lists
self.player_sprite = None
self.wall_list = arcade.SpriteList()
self.player_list = arcade.SpriteList()
self.bomb_list = arcade.SpriteList()
self.physics_engine = None

self.generate_sprites()
self.background_color = arcade.color.ARMY_GREEN

These are just empty place-holders. We’ll load our shader and create FBOs to hold the image data we send the shader
in a load_shader method: This code creates the shader and the FBOs:

Listing 3: Create the shader, and the FBOs

def load_shader(self):
Size of the window
window_size = self.get_size()

Create the shader toy, passing in a path for the shader source
self.shadertoy = Shadertoy.create_from_file(window_size, "step_01.glsl")

Create the channels 0 and 1 frame buffers.
Make the buffer the size of the window, with 4 channels (RGBA)
self.channel0 = self.shadertoy.ctx.framebuffer(

color_attachments=[self.shadertoy.ctx.texture(window_size, components=4)]
)
self.channel1 = self.shadertoy.ctx.framebuffer(

color_attachments=[self.shadertoy.ctx.texture(window_size, components=4)]
)

Assign the frame buffers to the channels
self.shadertoy.channel_0 = self.channel0.color_attachments[0]
self.shadertoy.channel_1 = self.channel1.color_attachments[0]

As you’ll note, the method loads a “glsl” program from another file. Our ray-casting program will be made of two files.
One file will hold our Python program, and one file will hold our Shader program. Shader programs are written in a
language called OpenGL Shading Language (GLSL). This language’s syntax is similar to C, Java, or C#.

15.1. Ray-casting Shadows 223

Python Arcade Library, Release 3.0.0.dev26

Our first shader will be straight-forward. It will just take input from channel 0 and copy it to the output.

Listing 4: GLSL Program for Step 1

void mainImage(out vec4 fragColor, in vec2 fragCoord)
{

vec2 normalizedFragCoord = fragCoord/iResolution.xy;
fragColor = texture(iChannel0, normalizedFragCoord);

}

How does this shader work? For each point in our output, this mainImage function runs and calculates our output
color. For a window that is 800x600 pixels, this function runs 480,000 times for each frame. Modern GPUs can have
anywhere between 500-5,000 “cores” that can calculate these points in parallel for faster processing.

Our current coordinate we are calculating we’ve brought in as a parameter called fragCoord. The function needs to
calculate a color for this coordinate and store it the output variable fragColor. You can see both the input and output
variables in the parameters for the mainImage function. Note that the input data is labeled in and the output data is
labeled out. This may be a bit different than what you are used to.

The vec2 data type is an array of two numbers. Likewise there are vec3 and vec4 data types. These can be used to
store coordinates, and also colors.

Or first step is to normalize the x, y coordinate to a number between 0.0 and 1.0. This normalized two-number x/y
vector we store in normalizedFragCoord.

vec2 p = fragCoord/iResolution.xy;

We need to grab the color at this point curPoint from the channel 0 FBO. We can do this with the built-in texture
function:

texture(iChannel0, curPoint)

Then we store it to our “out” fragColor variable and we are done:

fragColor = texture(iChannel0, normalizedCoord);

Now that we have our shader, a couple FBOs, and our initial GLSL program, we can flip back to our Python program
and update the drawing code to use them:

Listing 5: Drawing using the shader

def on_draw(self):
Select the channel 0 frame buffer to draw on
self.channel0.use()
self.channel0.clear()
Draw the walls
self.wall_list.draw()

Select this window to draw on
self.use()
Clear to background color
self.clear()
Run the shader and render to the window
self.shadertoy.render()

When we run self.channel0.use(), all subsequent drawing commands will draw not to the screen, but our FBO
image buffer. When we run self.use() we’ll go back to drawing on our window.

224 Chapter 15. Shaders

Python Arcade Library, Release 3.0.0.dev26

Running the program, our output should look like:

• raycasting_step_01 ← Full listing of where we are right now

• raycasting_step_01_diff ← What we changed to get here

15.1.3 Step 2: Simple Shader Experiment

How do we know our shader is really working? As it is just straight copying everything across, it is hard to tell.

We can modify our shader to get the current texture color and store it in the variable inColor. A color has four
components, red-green-blue and alpha. If the alpha is above zero, we can output a red color. If the alpha is zero, we
output a blue color.

Note: Colors in OpenGL are specified in RGB or RGBA format. But instead of numbers going from 0-255, each
component is a floating point number from 0.0 to 1.0.

15.1. Ray-casting Shadows 225

Python Arcade Library, Release 3.0.0.dev26

Listing 6: GLSL Program for Step 2

void mainImage(out vec4 fragColor, in vec2 fragCoord)
{

vec2 normalizedFragCoord = fragCoord/iResolution.xy;
vec4 inColor = texture(iChannel0, normalizedFragCoord);
if (inColor.a > 0.0)

// Set to a red color
fragColor = vec4(1.0, 0.0, 0.0, 1.0);

else
// Set to a blue color
fragColor = vec4(0.0, 0.0, 1.0, 1.0);

}

Giving us a resulting image that looks like:

15.1.4 Step 3: Creating a Light

Our next step is to create a light. We’ll be fading between no light (black) and whatever we draw in Channel 1.

In this step, we won’t worry about drawing the walls yet.

226 Chapter 15. Shaders

Python Arcade Library, Release 3.0.0.dev26

This step will require us to pass additional data into our shader. We’ll do this using uniforms. We will pass in where
the light is, and the light size.

We first declare and use the variables in our shader program.

Listing 7: GLSL Program for Step 3

// x, y position of the light
uniform vec2 lightPosition;
// Size of light in pixels
uniform float lightSize;

Next, we need to know how far away this point is from the light. We do that by subtracting this point from the light
position. We can perform mathematical operations on vectors, so we just subtract. Then we use the build-in length
function to get a floating point number of how long the length of this vector is.

Listing 8: GLSL Program for Step 3

// Distance in pixels to the light
float distanceToLight = length(lightPosition - fragCoord);

Next, we need to get the coordinate of the pixel we are calculating, but normalized. The coordinates will range from
0.0 to 1.0, with the left bottom of the window at (0,0), and the top right at (1,1). Normalized coordinates are used in
shaders to make scaling up and down easy.

Listing 9: GLSL Program for Step 3

// Normalize the fragment coordinate from (0.0, 0.0) to (1.0, 1.0)
vec2 normalizedFragCoord = fragCoord/iResolution.xy;

Then we need to calculate how much light is falling on this coordinate. This number will also be normalized. A number
of 0.0 will be in complete shadow, and 1.0 will be fully lit.

Linear or Squared?

The smoothstep function scales linearly. (Well, actually is uses Hermite interpolation, but mostly linear.) In reality,
the intensity of light is inversely proportional to the square of the distance in reality. The implementation of this is
left up to the reader.

We will use the built-in smoothstep function that will take how large our light size is, and how far we are from the
light. Then scale it from a number 0.0 to 1.0.

If we are 0.0 pixels from the light, we’ll get a 0.0 back. If we are halfway to the light we’ll get 0.5. If we are at the
light’s edge, we’ll get 1.0. If we are beyond the light’s edge we’ll get 1.0.

Unfortunately this is backwards from what we want. We want 1.0 at the center, and 0.0 outside the light. So a simple
subtraction from 1.0 will solve this issue.

Listing 10: GLSL Program for Step 3

// Start our mixing variable at 1.0
float lightAmount = 1.0;

// Find out how much light we have based on the distance to our light
lightAmount *= 1.0 - smoothstep(0.0, lightSize, distanceToLight);

15.1. Ray-casting Shadows 227

Python Arcade Library, Release 3.0.0.dev26

Next, we are going to use the built-in mix function and the lightAmount variable to alternate between whatever is in
channel 1, and a black shadow color.

Listing 11: GLSL Program for Step 3

// We'll alternate our display between black and whatever is in channel 1
vec4 blackColor = vec4(0.0, 0.0, 0.0, 1.0);

// Our fragment color will be somewhere between black and channel 1
// dependent on the value of b.
fragColor = mix(blackColor, texture(iChannel1, normalizedFragCoord), lightAmount);

Finally we’ll go back to the Python program and update our on_draw method to:

• Draw the bombs into channel 1.

• Send the player position and the size of the light using the uniform.

• Draw the player character on the window.

Listing 12: Drawing using the shader

def on_draw(self):
Select the channel 0 frame buffer to draw on
self.channel0.use()
self.channel0.clear()
Draw the walls
self.wall_list.draw()

self.channel1.use()
self.channel1.clear()
Draw the bombs
self.bomb_list.draw()

Select this window to draw on
self.use()
Clear to background color
self.clear()
Run the shader and render to the window
self.shadertoy.program['lightPosition'] = self.player_sprite.position
self.shadertoy.program['lightSize'] = 300
self.shadertoy.render()
Draw the player
self.player_list.draw()

Note: If you set a uniform variable using program, that variable has to exist in the glsl program, and be used or you’ll
get an error. The glsl compiler will automatically drop unused variables, causing a confusing error when the program
says a variable is missing even if you’ve declared it.

• raycasting_step_03 ← Full listing of where we are right now with the Python program

• raycasting_step_03_diff ← What we changed to get here

• raycasting_step_03_gl ← Full listing of where we are right now with the GLSL program

• raycasting_step_03_gl_diff ← What we changed to get here

228 Chapter 15. Shaders

Python Arcade Library, Release 3.0.0.dev26

15.1.5 Step 4: Make the Walls Shadowed

In addition to the light, we want the walls to show up in shadow for this step. We don’t need to change our Python
program at all for this, just the GLSL program.

First, we’ll add to our GLSL program a terrain function. This will sample channel 0. If the pixel there has an alpha
of 0.1 or greater (a barrier to our light), we’ll use the step function and get 1.0. Otherwise we’ll get 0.0. Then, since
we want this reversed, (0.0 for barriers, 1.0 for no barrier) we’ll subtract from 1.0:

Listing 13: GLSL Program for Step 4

float terrain(vec2 samplePoint)
{

float samplePointAlpha = texture(iChannel0, samplePoint).a;
float sampleStepped = step(0.1, samplePointAlpha);
float returnValue = 1.0 - sampleStepped;

return returnValue;
}

Next, we’ll factor in this barrier to our light. So our light amount will be a combination of the distance from the light,
and if there’s a barrier object on this pixel.

15.1. Ray-casting Shadows 229

Python Arcade Library, Release 3.0.0.dev26

Listing 14: GLSL Program for Step 4

// Start our mixing variable at 1.0
float lightAmount = 1.0;

float shadowAmount = terrain(normalizedFragCoord);
lightAmount *= shadowAmount;

// Find out how much light we have based on the distance to our light
lightAmount *= 1.0 - smoothstep(0.0, lightSize, distanceToLight);

• raycasting_step_04_gl ← Full listing of where we are right now with the GLSL program

• raycasting_step_04_gl_diff ← What we changed to get here

15.1.6 Step 5: Cast the Shadows

Now it is time to cast the shadows.

This involves a lot of “sampling”. We start at our current point and draw a line to where the light is. We will sample
“N” times along that line. If we spot a barrier, our coordinate must be in shadow.

How many times do we sample? If we don’t sample enough times, we miss barriers and end up with weird shadows.
This first image is if we only sample twice. Once where we are, and once in the middle:

230 Chapter 15. Shaders

Python Arcade Library, Release 3.0.0.dev26

If N is three, we end up with three copies of the shadow:

With an N of 10:

We can use an N of 500 to get a good quality shadow. We might need more if your barriers are small, and the light
range is large.

15.1. Ray-casting Shadows 231

Python Arcade Library, Release 3.0.0.dev26

Keep in mind there is a speed trade-off. With 800x600 pixels, we have 480,000 pixels to calculate. If each of those
pixels has a loop that does 500 samples, we are sampling 480,000x500 = 240,000 sample per frame, or 14.4 million
samples per second, still very do-able with modern graphics cards.

But what if you scale up? A 4k monitor would need 247 billion samples per second! There are optimizations that would
be done, such as exiting out of the for loop once we are in shadow, and not calculating for points beyond the light’s
range. We aren’t covering that here, but even with 2D, it will be important to understand what the shader is doing to
keep reasonable performance.

• raycasting_step_05_gl ← Full listing of where we are right now with the GLSL program

• raycasting_step_05_gl_diff ← What we changed to get here

15.1.7 Step 6: Soft Shadows and Wall Drawing

With one more line of code, we can soften up the shadows so they don’t have such a “hard” edge to them.

To do this, modify the terrain function in our GLSL program. Rather than return 0.0 or 1.0, we’ll return 0.0 or 0.98.
This allows edges to only partially block the light.

232 Chapter 15. Shaders

Python Arcade Library, Release 3.0.0.dev26

Listing 15: GLSL Program for Step 6

float terrain(vec2 samplePoint)
{

float samplePointAlpha = texture(iChannel0, samplePoint).a;
float sampleStepped = step(0.1, samplePointAlpha);
float returnValue = 1.0 - sampleStepped;

// Soften the shadows. Comment out for hard shadows.
// The closer the first number is to 1.0, the softer the shadows.
returnValue = mix(0.98, 1.0, returnValue);

And then we can go ahead and draw the barriers back on the screen so we can see what is casting the shadows.

Listing 16: Step 6, Draw the Barriers

def on_draw(self):
Select the channel 0 frame buffer to draw on
self.channel0.use()
self.channel0.clear()
Draw the walls
self.wall_list.draw()

self.channel1.use()
self.channel1.clear()
Draw the bombs
self.bomb_list.draw()

Select this window to draw on
self.use()
Clear to background color
self.clear()
Run the shader and render to the window
self.shadertoy.program['lightPosition'] = self.player_sprite.position
self.shadertoy.program['lightSize'] = 300
self.shadertoy.render()

Draw the walls
self.wall_list.draw()

Draw the player
self.player_list.draw()

• raycasting_step_06 ← Full listing of where we are right now with the Python program

• raycasting_step_06_gl ← Full listing of where we are right now with the GLSL program

• raycasting_step_06_gl_diff ← What we changed to get here

15.1. Ray-casting Shadows 233

Python Arcade Library, Release 3.0.0.dev26

15.1.8 Step 7 - Support window resizing

What if you need to resize the window? First enable resizing:

You’ll need to enable resizing in the window’s __init__:

Listing 17: Enable resizing

def __init__(self, width, height, title):
super().__init__(width, height, title, resizable=True)

Then we need to override the Window.resize method to also resize the shadertoy:

Listing 18: Resizing the window

def on_resize(self, width: int, height: int):
super().on_resize(width, height)
self.shadertoy.resize((width, height))

• raycasting_step_07 ← Full listing of where we are right now with the Python program

• raycasting_step_07_diff ← What we changed to get here

15.1.9 Step 8 - Support scrolling

What if we want to scroll around the screen? Have a GUI that doesn’t scroll?

First, we’ll add a camera for the scrolling parts of the screen (sprites) and another camera for the non-scrolling GUI
bits. Also, we’ll create some text to toss on the screen as something for the GUI.

Listing 19: MyGame.__init__

1 def __init__(self, width, height, title):
2 super().__init__(width, height, title, resizable=True)
3

4 # The shader toy and 'channels' we'll be using
5 self.shadertoy = None
6 self.channel0 = None
7 self.channel1 = None
8 self.load_shader()
9

10 # Sprites and sprite lists
11 self.player_sprite = None
12 self.wall_list = arcade.SpriteList()
13 self.player_list = arcade.SpriteList()
14 self.bomb_list = arcade.SpriteList()
15 self.physics_engine = None
16

17 # Create cameras used for scrolling
18 self.camera_sprites = arcade.SimpleCamera()
19 self.camera_gui = arcade.SimpleCamera()
20

21 self.generate_sprites()
22

23 # Our sample GUI text
(continues on next page)

234 Chapter 15. Shaders

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

24 self.score_text = arcade.Text("Score: 0", 10, 10, arcade.color.WHITE, 24)
25

26 self.background_color = arcade.color.ARMY_GREEN

Next up, we need to draw and use the cameras. This complicates our shader as it doesn’t care about the scrolling, so
we have to pass it a position not affected by the camera position. Therefore, we subtract it out.

Listing 20: MyGame.on_draw

1 def on_draw(self):
2 # Use our scrolled camera
3 self.camera_sprites.use()
4

5 # Select the channel 0 frame buffer to draw on
6 self.channel0.use()
7 self.channel0.clear()
8 # Draw the walls
9 self.wall_list.draw()

10

11 self.channel1.use()
12 self.channel1.clear()
13 # Draw the bombs
14 self.bomb_list.draw()
15

16 # Select this window to draw on
17 self.use()
18 # Clear to background color
19 self.clear()
20

21 # Calculate the light position. We have to subtract the camera position
22 # from the player position to get screen-relative coordinates.
23 p = (self.player_sprite.position[0] - self.camera_sprites.position[0],
24 self.player_sprite.position[1] - self.camera_sprites.position[1])
25

26 # Set the uniform data
27 self.shadertoy.program['lightPosition'] = p
28 self.shadertoy.program['lightSize'] = 300
29

30 # Run the shader and render to the window
31 self.shadertoy.render()
32

33 # Draw the walls
34 self.wall_list.draw()
35

36 # Draw the player
37 self.player_list.draw()
38

39 # Switch to the un-scrolled camera to draw the GUI with
40 self.camera_gui.use()
41 # Draw our sample GUI text
42 self.score_text.draw()

When we update, we need to scroll the camera to where the user is:

15.1. Ray-casting Shadows 235

Python Arcade Library, Release 3.0.0.dev26

Listing 21: MyGame.on_update

1 def on_update(self, delta_time):
2 """ Movement and game logic """
3

4 # Call update on all sprites (The sprites don't do much in this
5 # example though.)
6 self.physics_engine.update()
7 # Scroll the screen to the player
8 self.scroll_to_player()

We need to implement the scroll_to_player method ourselves.

First, we import pyglet’s Vec2 class to make the math faster to implement:

Listing 22: Import pyglet’s 2D vector class to help with math

import random
from pyglet.math import Vec2

import arcade
from arcade.experimental import Shadertoy

Then, we implement the MyGame.scroll_to_player method:

Listing 23: MyGame.scroll_to_player

1 def scroll_to_player(self, speed=CAMERA_SPEED):
2 """
3 Scroll the window to the player.
4

5 if CAMERA_SPEED is 1, the camera will immediately move to the desired position.
6 Anything between 0 and 1 will have the camera move to the location with a␣

→˓smoother
7 pan.
8 """
9

10 position = Vec2(self.player_sprite.center_x - self.width / 2,
11 self.player_sprite.center_y - self.height / 2)
12 self.camera_sprites.move_to(position, speed)

Finally, when we resize the window, we have to resize our cameras:

Listing 24: MyGame.on_resize

1 def on_resize(self, width: int, height: int):
2 super().on_resize(width, height)
3 self.camera_sprites.resize(width, height)
4 self.camera_gui.resize(width, height)
5 self.shadertoy.resize((width, height))

• raycasting_step_08 ← Full listing of where we are right now with the Python program

• raycasting_step_08_diff ← What we changed to get here

236 Chapter 15. Shaders

https://pyglet.readthedocs.io/en/latest/modules/math.html#pyglet.math.Vec2

Python Arcade Library, Release 3.0.0.dev26

15.1.10 Bibliography

Before I wrote this tutorial I did not know how these shadows were made. I found the sample code Simple 2d Ray-Cast
Shadow by jt which allowed me to very slowly figure out how to cast shadows.

15.2 CRT Filter

If you’d like an 80s feel to your games, you can use the built-in CRT filter.

You can create a CRT filter with code like this:

15.2. CRT Filter 237

https://www.shadertoy.com/view/tddXzj
https://www.shadertoy.com/view/tddXzj

Python Arcade Library, Release 3.0.0.dev26

Create the crt filter
self.crt_filter = CRTFilter(width, height,

resolution_down_scale=6.0,
hard_scan=-8.0,
hard_pix=-3.0,
display_warp = Vec2(1.0 / 32.0, 1.0 / 24.0),
mask_dark=0.5,
mask_light=1.5)

You can play around with the parameters to get an idea of what they do. For example:

Resolution Down Sampling

Fig. 1: resolution_down_scale = 1

Fig. 2: resolution_down_scale = 6

To use the CRT Filter, your on_draw method should first draw everything to the CRT filter. At this point, nothing
draws to the screen, we are just drawing to an internal frame buffer.

Then, once everything is drawn to the CRT filter, render that filter to the screen.

Draw our stuff into the CRT filter instead of on screen
self.crt_filter.use()
self.crt_filter.clear()
self.sprite_list.draw()

Next, switch back to the screen and dump the contents of the CRT filter
to it.
self.use()
self.clear()
self.crt_filter.draw()

238 Chapter 15. Shaders

Python Arcade Library, Release 3.0.0.dev26

15.2.1 Full Example Code

The example code just animates a Pac-Man image. You can toggle the CRT filter on or off by hitting the space bar.

Images to run this example can be found here: https://github.com/pythonarcade/arcade/tree/development/doc/tutorials/
crt_filter

import arcade
from arcade.experimental.crt_filter import CRTFilter
from pyglet.math import Vec2

Store our screen dimensions & title in a convenient place
SCREEN_WIDTH = 800
SCREEN_HEIGHT = 1100
SCREEN_TITLE = "ShaderToy Demo"

class MyGame(arcade.Window):

def __init__(self, width, height, title):
super().__init__(width, height, title, resizable=True)

Create the crt filter
self.crt_filter = CRTFilter(width, height,

resolution_down_scale=6.0,
hard_scan=-8.0,
hard_pix=-3.0,
display_warp=Vec2(1.0 / 32.0, 1.0 / 24.0),
mask_dark=0.5,
mask_light=1.5)

self.filter_on = True

Create some stuff to draw on the screen
self.sprite_list = arcade.SpriteList()

full = arcade.Sprite("Pac-man.png")
full.center_x = width / 2
full.center_y = height / 2
full.scale = width / full.width
self.sprite_list.append(full)

my_sprite = arcade.Sprite(
"pac_man_sprite_sheet.png",
scale=5, image_x=4, image_y=65, image_width=13, image_height=15)

my_sprite.change_x = 1
self.sprite_list.append(my_sprite)
my_sprite.center_x = 100
my_sprite.center_y = 300

my_sprite = arcade.Sprite(
"pac_man_sprite_sheet.png",
scale=5, image_x=4, image_y=81, image_width=13, image_height=15)

(continues on next page)

15.2. CRT Filter 239

https://github.com/pythonarcade/arcade/tree/development/doc/tutorials/crt_filter
https://github.com/pythonarcade/arcade/tree/development/doc/tutorials/crt_filter

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

my_sprite.change_x = -1
self.sprite_list.append(my_sprite)
my_sprite.center_x = 800
my_sprite.center_y = 200

my_sprite = arcade.AnimatedTimeBasedSprite()
texture = arcade.load_texture(

"pac_man_sprite_sheet.png", x=4, y=1, width=13, height=15)
frame = arcade.AnimationKeyframe(tile_id=0,

duration=150,
texture=texture)

my_sprite.frames.append(frame)
texture = arcade.load_texture(

"pac_man_sprite_sheet.png", x=20, y=1, width=13, height=15)
frame = arcade.AnimationKeyframe(tile_id=1,

duration=150,
texture=texture)

my_sprite.frames.append(frame)

my_sprite.change_x = 1
self.sprite_list.append(my_sprite)
my_sprite.center_x = 0
my_sprite.center_y = 300
my_sprite.texture = texture
my_sprite.scale = 5.0

def on_draw(self):
if self.filter_on:

Draw our stuff into the CRT filter instead of on screen
self.crt_filter.use()
self.crt_filter.clear()
self.sprite_list.draw()

Next, switch back to the screen and dump the contents of
the CRT filter to it.
self.use()
self.clear()
self.crt_filter.draw()

else:
Draw our stuff into the screen
self.use()
self.clear()
self.sprite_list.draw()

def on_update(self, dt):
Keep track of elapsed time
self.sprite_list.update()
self.sprite_list.update_animation(dt)
for sprite in self.sprite_list:

if sprite.left > self.width and sprite.change_x > 0:
sprite.right = 0

if sprite.right < 0 and sprite.change_x < 0:

(continues on next page)

240 Chapter 15. Shaders

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

sprite.left = self.width

def on_key_press(self, key, mod):
if key == arcade.key.SPACE:

self.filter_on = not self.filter_on

if __name__ == "__main__":
MyGame(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)
arcade.run()

15.3 Shader Toy - Glow

Fig. 3: cyber_fuji_2020

Graphics cards can run programs written in the C-like language OpenGL Shading Language, or GLSL for short. These
programs can be easily parallelized and run across the processors of the graphics card GPU.

Shaders take a bit of set-up to write. The ShaderToy website has standardized some of these and made it easier to
experiment with writing shaders. The website is at:

https://www.shadertoy.com/

Arcade includes additional code making it easier to run these ShaderToy shaders in an Arcade program. This tutorial
helps you get started.

15.3. Shader Toy - Glow 241

https://www.shadertoy.com/

Python Arcade Library, Release 3.0.0.dev26

15.3.1 PyCon 2022 Slides

This tutorial is scheduled to be presented at 2022 PyCon US. Here are the slides for that presentation:

15.3.2 Step 1: Open a window

This is simple program that just opens a basic Arcade window. We’ll add a shader in the next step.

Listing 25: Open a window

1 import arcade
2

3 # Derive an application window from Arcade's parent Window class
4 class MyGame(arcade.Window):
5

6 def __init__(self):
7 # Call the parent constructor
8 super().__init__(width=1920, height=1080)
9

10 def on_draw(self):
11 # Clear the screen
12 self.clear()
13

14 if __name__ == "__main__":
15 MyGame()
16 arcade.run()

15.3.3 Step 2: Load a shader

This program will load a GLSL program and display it. We’ll write our shader in the next step.

Listing 26: Run a shader

1 import arcade
2 from arcade.experimental import Shadertoy
3

4

5 # Derive an application window from Arcade's parent Window class
6 class MyGame(arcade.Window):
7

8 def __init__(self):
9 # Call the parent constructor

10 super().__init__(width=1920, height=1080)
11

12 # Load a file and create a shader from it
13 shader_file_path = "circle_1.glsl"
14 window_size = self.get_size()
15 self.shadertoy = Shadertoy.create_from_file(window_size, shader_file_path)

(continues on next page)

242 Chapter 15. Shaders

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

16

17 def on_draw(self):
18 # Run the GLSL code
19 self.shadertoy.render()
20

21 if __name__ == "__main__":
22 MyGame()
23 arcade.run()

Note: The proper way to read in a file to a string is using a with statement. For clarity/brevity our code isn’t doing
that in the presentation. Here’s the proper way to do it:

file_name = "circle_1.glsl"
with open(file_name) as file:

shader_source = file.read()
self.shadertoy = Shadertoy(size=self.get_size(),

main_source=shader_source)

15.3.4 Step 3: Write a shader

Next, let’s create a simple first GLSL program. Our program will:

• Normalize the coordinates. Instead of 0 to 1024, we’ll go 0.0 to 1.0. This is standard practice, and allows
us to work independently of resolution. Resolution is already stored for us in a standardized variable named
iResolution.

• Next, we’ll use a white color as default. Colors are four floating point RGBA values, ranging from 0.0 to 1.0. To
start with, we’ll set just RGB and use 1.0 for alpha.

• If we are greater that 0.2 for our coordinate (20% of screen size) we’ll use black instead.

• Set our output color, standardized with the variable name fracColor.

Listing 27: GLSL code for creating a shader.

1 void mainImage(out vec4 fragColor, in vec2 fragCoord) {
2

3 // Normalized pixel coordinates (from 0 to 1)
4 vec2 uv = fragCoord/iResolution.xy;
5

6 // How far is the current pixel from the origin (0, 0)
7 float distance = length(uv);
8

9 // Are we are 20% of the screen away from the origin?
10 if (distance > 0.2) {
11 // Black
12 fragColor = vec4(0.0, 0.0, 0.0, 1.0);
13 } else {
14 // White
15 fragColor = vec4(1.0, 1.0, 1.0, 1.0);

(continues on next page)

15.3. Shader Toy - Glow 243

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

16 }
17 }

The output of the program looks like this:

Other default variables you can use:

uniform vec3 iResolution;
uniform float iTime;
uniform float iTimeDelta;
uniform float iFrame;
uniform float iChannelTime[4];
uniform vec4 iMouse;
uniform vec4 iDate;
uniform float iSampleRate;
uniform vec3 iChannelResolution[4];
uniform samplerXX iChanneli;

“Uniform” means the data is the same for each pixel the GLSL program runs on.

15.3.5 Step 4: Move origin to center of screen, adjust for aspect

Next up, we’d like to center our circle, and adjust for the aspect ratio. This will give us a (0, 0) in the middle of the
screen and a perfect circle.

Listing 28: Center the origin

1 void mainImage(out vec4 fragColor, in vec2 fragCoord) {
2

3 // Normalized pixel coordinates (from 0 to 1)
4 vec2 uv = fragCoord/iResolution.xy;
5

6 // Position of fragment relative to center of screen
7 vec2 rpos = uv - 0.5;
8 // Adjust y by aspect ratio
9 rpos.y /= iResolution.x/iResolution.y;

10

11 // How far is the current pixel from the origin (0, 0)
(continues on next page)

244 Chapter 15. Shaders

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

12 float distance = length(rpos);
13

14 // Default our color to white
15 vec3 color = vec3(1.0, 1.0, 1.0);
16

17 // Are we are 20% of the screen away from the origin?
18 if (distance > 0.2) {
19 // Black
20 fragColor = vec4(0.0, 0.0, 0.0, 1.0);
21 } else {
22 // White
23 fragColor = vec4(1.0, 1.0, 1.0, 1.0);
24 }
25 }

15.3.6 Step 5: Add a fade effect

We can take colors, like our white (1.0, 1.0, 1.0) and adjust their intensity by multiplying them times a float. Multiplying
white times 0.5 will give us gray (0.5, 0.5, 0.5).

We can use this to create a fade effect around our circle. The inverse of the distance 1
𝑑 gives us a good curve. However

the numbers are too large to adjust our white color. We can solve this by scaling it down. Run this, and adjust the scale
value to see how it changes.

Listing 29: Add fade effect

1 void mainImage(out vec4 fragColor, in vec2 fragCoord) {
2

3 // Normalized pixel coordinates (from 0 to 1)
4 vec2 uv = fragCoord/iResolution.xy;
5

6 // Position of fragment relative to center of screen
7 vec2 rpos = uv - 0.5;
8 // Adjust y by aspect ratio
9 rpos.y /= iResolution.x/iResolution.y;

10

11 // How far is the current pixel from the origin (0, 0)
(continues on next page)

15.3. Shader Toy - Glow 245

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

12 float distance = length(rpos);
13 // Use an inverse 1/distance to set the fade
14 float scale = 0.02;
15 float strength = 1.0 / distance * scale;
16

17 // Fade our white color
18 vec3 color = strength * vec3(1.0, 1.0, 1.0);
19

20 // Output to the screen
21 fragColor = vec4(color, 1.0);
22 }

15.3.7 Step 6: Adjust how fast we fade

We can use an exponent to adjust how steep or shallow that curve is. If we use 1.0 it will be the same, 0.5 will cause it
to fade out slower, 1.5 will fade faster.

We can also change our color to orange.

Listing 30: Adjusts fade speed

1 void mainImage(out vec4 fragColor, in vec2 fragCoord) {
2

3 // Normalized pixel coordinates (from 0 to 1)
4 vec2 uv = fragCoord/iResolution.xy;
5

6 // Position of fragment relative to center of screen
7 vec2 rpos = uv - 0.5;
8 // Adjust y by aspect ratio
9 rpos.y /= iResolution.x/iResolution.y;

10

11 // How far is the current pixel from the origin (0, 0)
12 float distance = length(rpos);
13 // Use an inverse 1/distance to set the fade
14 float scale = 0.02;
15 float fade = 1.5;
16 float strength = pow(1.0 / distance * scale, fade);

(continues on next page)

246 Chapter 15. Shaders

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

17

18 // Fade our orange color
19 vec3 color = strength * vec3(1.0, 0.5, 0.0);
20

21 // Output to the screen
22 fragColor = vec4(color, 1.0);
23 }

15.3.8 Step 7: Tone mapping

Once we add color, the glow looks a bit off. We can do “tone mapping” with a bit of math if you like the look better.

Listing 31: Tone mapping

1 void mainImage(out vec4 fragColor, in vec2 fragCoord) {
2

3 // Normalized pixel coordinates (from 0 to 1)
4 vec2 uv = fragCoord/iResolution.xy;
5

6 // Position of fragment relative to center of screen
7 vec2 rpos = uv - 0.5;
8 // Adjust y by aspect ratio
9 rpos.y /= iResolution.x/iResolution.y;

10

11 // How far is the current pixel from the origin (0, 0)
12 float distance = length(rpos);
13 // Use an inverse 1/distance to set the fade
14 float scale = 0.02;
15 float fade = 1.1;
16 float strength = pow(1.0 / distance * scale, fade);
17

18 // Fade our orange color
19 vec3 color = strength * vec3(1.0, 0.5, 0);
20

21 // Tone mapping
22 color = 1.0 - exp(-color);
23

(continues on next page)

15.3. Shader Toy - Glow 247

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

24 // Output to the screen
25 fragColor = vec4(color, 1.0);
26 }

15.3.9 Step 8: Positioning the glow

What if we want to position the glow at a certain spot? Send an x, y to center on? What if we want to control the color
of the glow too?

We can send data to our shader using uniforms. The data we send will be the same (uniform) for each pixel rendered
by the shader. The uniforms can easily be set in our Python program:

Listing 32: Run a shader

1 import arcade
2 from arcade.experimental import Shadertoy
3

4

5 # Derive an application window from Arcade's parent Window class
6 class MyGame(arcade.Window):
7

8 def __init__(self, width=1920, height=1080, glow_color=arcade.color.LIGHT_BLUE):
9 # Call the parent constructor

10 super().__init__(width=width, height=height)
11

12 # Load a file and create a shader from it
13 shader_file_path = "circle_6.glsl"
14 window_size = self.get_size()
15 self.shadertoy = Shadertoy.create_from_file(window_size, shader_file_path)
16 # Set uniform light color data to send to the GLSL shader
17 # from the normalized RGB components of the color.
18 self.shadertoy.program['color'] = glow_color.normalized[:3]
19

20 def on_draw(self):
21 # Set uniform position data to send to the GLSL shader
22 self.shadertoy.program['pos'] = self.mouse["x"], self.mouse["y"]
23 # Run the GLSL code

(continues on next page)

248 Chapter 15. Shaders

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

24 self.shadertoy.render()
25

26 if __name__ == "__main__":
27 MyGame()
28 arcade.run()

Then we can use those uniforms in our shader:

Listing 33: Glow follows mouse, and color can be changed.

1 uniform vec2 pos;
2 uniform vec3 color;
3

4 void mainImage(out vec4 fragColor, in vec2 fragCoord) {
5

6 // Normalized pixel coordinates (from 0 to 1)
7 vec2 uv = fragCoord/iResolution.xy;
8 vec2 npos = pos/iResolution.xy;
9

10 // Position of fragment relative to specified position
11 vec2 rpos = npos - uv;
12 // Adjust y by aspect ratio
13 rpos.y /= iResolution.x/iResolution.y;
14

15 // How far is the current pixel from the origin (0, 0)
16 float distance = length(rpos);
17 // Use an inverse 1/distance to set the fade
18 float scale = 0.02;
19 float fade = 1.1;
20 float strength = pow(1.0 / distance * scale, fade);
21

22 // Fade our orange color
23 vec3 color = strength * color;
24

25 // Tone mapping
26 color = 1.0 - exp(-color);
27

28 // Output to the screen
29 fragColor = vec4(color, 1.0);
30 }

15.3. Shader Toy - Glow 249

Python Arcade Library, Release 3.0.0.dev26

Note: Built-in Uniforms

Shadertoy assumes some built-in values. These can be set during the Shadertoy.render() call. In this example I’m
not using those variables because I want to show how to send any value, not just built-in ones. The built-in values:

Python Variable GLSL Variable
time iTime
time_delta iTimeDelta
mouse_position iMouse
size This is set by Shadertoy.resize()
frame iFrame

An example of how they are set:

my_shader.render(time=self.time, mouse_position=mouse_position)

When resizing a window, make sure to always resize the shader as well.

15.3.10 Other examples

Here’s another Python program that loads a GLSL file and displays it:

Listing 34: Shader Toy Demo

1 import arcade
2 from arcade.experimental import Shadertoy
3

4

5 class MyGame(arcade.Window):
6

7 def __init__(self):
8 # Call the parent constructor
9 super().__init__(width=1920, height=1080, title="Shader Demo", resizable=True)

10

11 # Keep track of total run-time
12 self.time = 0.0

(continues on next page)

250 Chapter 15. Shaders

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

13

14 # File name of GLSL code
15 # file_name = "fractal_pyramid.glsl"
16 # file_name = "cyber_fuji_2020.glsl"
17 file_name = "earth_planet_sky.glsl"
18 # file_name = "flame.glsl"
19 # file_name = "star_nest.glsl"
20

21 # Create a shader from it
22 self.shadertoy = Shadertoy(size=self.get_size(),
23 main_source=open(file_name).read())
24

25 def on_draw(self):
26 self.clear()
27 mouse_pos = self.mouse["x"], self.mouse["y"]
28 self.shadertoy.render(time=self.time, mouse_position=mouse_pos)
29

30 def on_update(self, dt):
31 # Keep track of elapsed time
32 self.time += dt
33

34

35 if __name__ == "__main__":
36 MyGame()
37 arcade.run()

You can use this demo with any of the sample code below. Click on the caption below the example shaders here to see
the source code for the shader.

Some other sample shaders:

Fig. 4: star_nest

15.3. Shader Toy - Glow 251

Python Arcade Library, Release 3.0.0.dev26

Fig. 5: flame

Fig. 6: fractal_pyramid

252 Chapter 15. Shaders

Python Arcade Library, Release 3.0.0.dev26

15.3.11 Additional learning

On this site:

• Learn a method of creating particles in Shader Toy - Particles.

• Learn how to ray-cast shadows in the Ray-casting Shadows.

• Make your screen look like an 80s monitor in CRT Filter.

• Read more about using OpenGL in Arcade with OpenGL.

• Learn to do a compute shader in Compute Shader.

On other sites:

• Here is a decent learn-by-example tutorial for making shaders: https://www.shadertoy.com/view/Md23DV

• Here’s a video tutorial that steps through how to do an explosion: https://www.youtube.com/watch?v=
xDxAnguEOn8

15.4 Shader Toy - Particles

Contents

• Shader Toy - Particles

– Load the shader

– Initial shader with particles

– Add particle movement

– Fade-out

– Glowing Particles

– Twinkling Particles

This tutorial assumes you are already familiar with the material in Shader Toy - Glow. In this tutorial, we take a look
at adding animated particles. These particles can be used for an explosion effect.

The “trick” to this example, is the use of pseudo-random numbers to generate each particle’s angle and speed from the
initial explosion point. Why “pseudo-random”? This allows each processor on the GPU to independently calculate
each particle’s position at any point and time. We can then allow the GPU to calculate in parallel.

15.4.1 Load the shader

First, we need a program that will load a shader. This program is also keeping track of how much time has elapsed.
This is necessary for us to calculate how far along the animation sequence we are.

1 import arcade
2 from arcade.experimental import Shadertoy
3

4

5 # Derive an application window from Arcade's parent Window class
6 class MyGame(arcade.Window):

(continues on next page)

15.4. Shader Toy - Particles 253

https://www.shadertoy.com/view/Md23DV
https://www.youtube.com/watch?v=xDxAnguEOn8
https://www.youtube.com/watch?v=xDxAnguEOn8

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

7

8 def __init__(self):
9 # Call the parent constructor

10 super().__init__(width=1920, height=1080)
11

12 # Used to track run-time
13 self.time = 0.0
14

15 # Load a file and create a shader from it
16 file_name = "explosion.glsl"
17 self.shadertoy = Shadertoy(size=self.get_size(),
18 main_source=open(file_name).read())
19

20 def on_draw(self):
21 self.clear()
22 # Set uniform data to send to the GLSL shader
23 self.shadertoy.program['pos'] = self.mouse["x"], self.mouse["y"]
24

25 # Run the GLSL code
26 self.shadertoy.render(time=self.time)
27

28 def on_update(self, delta_time: float):
29 # Track run time
30 self.time += delta_time
31

32

33 if __name__ == "__main__":
34 window = MyGame()
35 window.center_window()
36 arcade.run()

15.4.2 Initial shader with particles

1 // Origin of the particles
2 uniform vec2 pos;
3

4 // Constants
5

(continues on next page)

254 Chapter 15. Shaders

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

6 // Number of particles
7 const float PARTICLE_COUNT = 100.0;
8 // Max distance the particle can be from the position.
9 // Normalized. (So, 0.3 is 30% of the screen.)

10 const float MAX_PARTICLE_DISTANCE = 0.3;
11 // Size of each particle. Normalized.
12 const float PARTICLE_SIZE = 0.004;
13 const float TWOPI = 6.2832;
14

15 // This function will return two pseudo-random numbers given an input seed.
16 // The result is in polar coordinates, to make the points random in a circle
17 // rather than a rectangle.
18 vec2 Hash12_Polar(float t) {
19 float angle = fract(sin(t * 674.3) * 453.2) * TWOPI;
20 float distance = fract(sin((t + angle) * 724.3) * 341.2);
21 return vec2(sin(angle), cos(angle)) * distance;
22 }
23

24 void mainImage(out vec4 fragColor, in vec2 fragCoord)
25 {
26 // Normalized pixel coordinates (from 0 to 1)
27 // Origin of the particles
28 vec2 npos = (pos - .5 * iResolution.xy) / iResolution.y;
29 // Position of current pixel we are drawing
30 vec2 uv = (fragCoord- .5 * iResolution.xy) / iResolution.y;
31

32 // Re-center based on input coordinates, rather than origin.
33 uv -= npos;
34

35 // Default alpha is transparent.
36 float alpha = 0.0;
37

38 // Loop for each particle
39 for (float i= 0.; i < PARTICLE_COUNT; i++) {
40 // Direction of particle + speed
41 float seed = i + 1.0;
42 vec2 dir = Hash12_Polar(seed);
43 // Get position based on direction, magnitude, and explosion size
44 vec2 particlePosition = dir * MAX_PARTICLE_DISTANCE;
45 // Distance of this pixel from that particle
46 float d = length(uv - particlePosition);
47 // If we are within the particle size, set alpha to 1.0
48 if (d < PARTICLE_SIZE)
49 alpha = 1.0;
50 }
51 // Output to screen
52 fragColor = vec4(1.0, 1.0, 1.0, alpha);
53 }

15.4. Shader Toy - Particles 255

Python Arcade Library, Release 3.0.0.dev26

15.4.3 Add particle movement

1 // Origin of the particles
2 uniform vec2 pos;
3

4 // Constants
5

6 // Number of particles
7 const float PARTICLE_COUNT = 100.0;
8 // Max distance the particle can be from the position.
9 // Normalized. (So, 0.3 is 30% of the screen.)

10 const float MAX_PARTICLE_DISTANCE = 0.3;
11 // Size of each particle. Normalized.
12 const float PARTICLE_SIZE = 0.004;
13 // Time for each burst cycle, in seconds.
14 const float BURST_TIME = 2.0;
15 const float TWOPI = 6.2832;
16

17 // This function will return two pseudo-random numbers given an input seed.
18 // The result is in polar coordinates, to make the points random in a circle
19 // rather than a rectangle.
20 vec2 Hash12_Polar(float t) {
21 float angle = fract(sin(t * 674.3) * 453.2) * TWOPI;
22 float distance = fract(sin((t + angle) * 724.3) * 341.2);
23 return vec2(sin(angle), cos(angle)) * distance;
24 }
25

26 void mainImage(out vec4 fragColor, in vec2 fragCoord)
27 {
28 // Normalized pixel coordinates (from 0 to 1)
29 // Origin of the particles
30 vec2 npos = (pos - .5 * iResolution.xy) / iResolution.y;
31 // Position of current pixel we are drawing
32 vec2 uv = (fragCoord- .5 * iResolution.xy) / iResolution.y;
33

34 // Re-center based on input coordinates, rather than origin.
35 uv -= npos;
36

37 // Default alpha is transparent.
38 float alpha = 0.0;
39

40 // 0.0 - 1.0 normalized fraction representing how far along in the explosion we are.
41 // Auto resets if time goes beyond burst time. This causes the explosion to cycle.
42 float timeFract = fract(iTime * 1 / BURST_TIME);
43

44 // Loop for each particle
45 for (float i= 0.; i < PARTICLE_COUNT; i++) {
46 // Direction of particle + speed
47 float seed = i + 1.0;
48 vec2 dir = Hash12_Polar(seed);
49 // Get position based on direction, magnitude, and explosion size
50 // Adjust based on time scale. (0.0-1.0)

(continues on next page)

256 Chapter 15. Shaders

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

51 vec2 particlePosition = dir * MAX_PARTICLE_DISTANCE * timeFract;
52 // Distance of this pixel from that particle
53 float d = length(uv - particlePosition);
54 // If we are within the particle size, set alpha to 1.0
55 if (d < PARTICLE_SIZE)
56 alpha = 1.0;
57 }
58 // Output to screen
59 fragColor = vec4(1.0, 1.0, 1.0, alpha);
60 }

15.4.4 Fade-out

1 // Origin of the particles
2 uniform vec2 pos;
3

4 // Constants
5

6 // Number of particles
7 const float PARTICLE_COUNT = 100.0;
8 // Max distance the particle can be from the position.
9 // Normalized. (So, 0.3 is 30% of the screen.)

10 const float MAX_PARTICLE_DISTANCE = 0.3;
11 // Size of each particle. Normalized.
12 const float PARTICLE_SIZE = 0.004;
13 // Time for each burst cycle, in seconds.
14 const float BURST_TIME = 2.0;
15 const float TWOPI = 6.2832;
16

17 // This function will return two pseudo-random numbers given an input seed.
18 // The result is in polar coordinates, to make the points random in a circle
19 // rather than a rectangle.
20 vec2 Hash12_Polar(float t) {
21 float angle = fract(sin(t * 674.3) * 453.2) * TWOPI;
22 float distance = fract(sin((t + angle) * 724.3) * 341.2);
23 return vec2(sin(angle), cos(angle)) * distance;
24 }
25

26 void mainImage(out vec4 fragColor, in vec2 fragCoord)
27 {
28 // Normalized pixel coordinates (from 0 to 1)
29 // Origin of the particles
30 vec2 npos = (pos - .5 * iResolution.xy) / iResolution.y;
31 // Position of current pixel we are drawing
32 vec2 uv = (fragCoord- .5 * iResolution.xy) / iResolution.y;
33

34 // Re-center based on input coordinates, rather than origin.
35 uv -= npos;
36

37 // Default alpha is transparent.
(continues on next page)

15.4. Shader Toy - Particles 257

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

38 float alpha = 0.0;
39

40 // 0.0 - 1.0 normalized fraction representing how far along in the explosion we are.
41 // Auto resets if time goes beyond burst time. This causes the explosion to cycle.
42 float timeFract = fract(iTime * 1 / BURST_TIME);
43

44 // Loop for each particle
45 for (float i= 0.; i < PARTICLE_COUNT; i++) {
46 // Direction of particle + speed
47 float seed = i + 1.0;
48 vec2 dir = Hash12_Polar(seed);
49 // Get position based on direction, magnitude, and explosion size
50 // Adjust based on time scale. (0.0-1.0)
51 vec2 particlePosition = dir * MAX_PARTICLE_DISTANCE * timeFract;
52 // Distance of this pixel from that particle
53 float d = length(uv - particlePosition);
54 // If we are within the particle size, set alpha to 1.0
55 if (d < PARTICLE_SIZE)
56 alpha = 1.0;
57 }
58 // Output to screen
59 fragColor = vec4(1.0, 1.0, 1.0, alpha * (1.0 - timeFract));
60 }

15.4.5 Glowing Particles

258 Chapter 15. Shaders

Python Arcade Library, Release 3.0.0.dev26

1 // Origin of the particles
2 uniform vec2 pos;
3

4 // Constants
5

6 // Number of particles
7 const float PARTICLE_COUNT = 100.0;
8 // Max distance the particle can be from the position.
9 // Normalized. (So, 0.3 is 30% of the screen.)

10 const float MAX_PARTICLE_DISTANCE = 0.3;
11 // Size of each particle. Normalized.
12 const float PARTICLE_SIZE = 0.004;
13 // Time for each burst cycle, in seconds.
14 const float BURST_TIME = 2.0;
15 // Particle brightness
16 const float DEFAULT_BRIGHTNESS = 0.0005;
17

18 const float TWOPI = 6.2832;
19

20 // This function will return two pseudo-random numbers given an input seed.
21 // The result is in polar coordinates, to make the points random in a circle
22 // rather than a rectangle.
23 vec2 Hash12_Polar(float t) {
24 float angle = fract(sin(t * 674.3) * 453.2) * TWOPI;
25 float distance = fract(sin((t + angle) * 724.3) * 341.2);
26 return vec2(sin(angle), cos(angle)) * distance;
27 }
28

29 void mainImage(out vec4 fragColor, in vec2 fragCoord)
30 {
31 // Normalized pixel coordinates (from 0 to 1)
32 // Origin of the particles
33 vec2 npos = (pos - .5 * iResolution.xy) / iResolution.y;
34 // Position of current pixel we are drawing
35 vec2 uv = (fragCoord- .5 * iResolution.xy) / iResolution.y;
36

37 // Re-center based on input coordinates, rather than origin.
38 uv -= npos;
39

40 // Default alpha is transparent.
41 float alpha = 0.0;
42

43 // 0.0 - 1.0 normalized fraction representing how far along in the explosion we are.
44 // Auto resets if time goes beyond burst time. This causes the explosion to cycle.
45 float timeFract = fract(iTime * 1 / BURST_TIME);
46

47 // Loop for each particle
48 for (float i= 0.; i < PARTICLE_COUNT; i++) {
49 // Direction of particle + speed
50 float seed = i + 1.0;
51 vec2 dir = Hash12_Polar(seed);
52 // Get position based on direction, magnitude, and explosion size
53 // Adjust based on time scale. (0.0-1.0)

(continues on next page)

15.4. Shader Toy - Particles 259

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

54 vec2 particlePosition = dir * MAX_PARTICLE_DISTANCE * timeFract;
55 // Distance of this pixel from that particle
56 float d = length(uv - particlePosition);
57 // Add glow based on distance
58 alpha += DEFAULT_BRIGHTNESS / d;
59 }
60 // Output to screen
61 fragColor = vec4(1.0, 1.0, 1.0, alpha * (1.0 - timeFract));
62 }

15.4.6 Twinkling Particles

1 // Origin of the particles
2 uniform vec2 pos;
3

4 // Constants
5

6 // Number of particles
7 const float PARTICLE_COUNT = 100.0;
8 // Max distance the particle can be from the position.
9 // Normalized. (So, 0.3 is 30% of the screen.)

10 const float MAX_PARTICLE_DISTANCE = 0.3;
11 // Size of each particle. Normalized.
12 const float PARTICLE_SIZE = 0.004;
13 // Time for each burst cycle, in seconds.
14 const float BURST_TIME = 2.0;
15 // Particle brightness
16 const float DEFAULT_BRIGHTNESS = 0.0005;
17 // How many times to the particles twinkle
18 const float TWINKLE_SPEED = 10.0;
19

20 const float TWOPI = 6.2832;
21

22 // This function will return two pseudo-random numbers given an input seed.
23 // The result is in polar coordinates, to make the points random in a circle
24 // rather than a rectangle.
25 vec2 Hash12_Polar(float t) {
26 float angle = fract(sin(t * 674.3) * 453.2) * TWOPI;
27 float distance = fract(sin((t + angle) * 724.3) * 341.2);
28 return vec2(sin(angle), cos(angle)) * distance;
29 }
30

31 void mainImage(out vec4 fragColor, in vec2 fragCoord)
32 {
33 // Normalized pixel coordinates (from 0 to 1)
34 // Origin of the particles
35 vec2 npos = (pos - .5 * iResolution.xy) / iResolution.y;
36 // Position of current pixel we are drawing
37 vec2 uv = (fragCoord- .5 * iResolution.xy) / iResolution.y;
38

(continues on next page)

260 Chapter 15. Shaders

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

39 // Re-center based on input coordinates, rather than origin.
40 uv -= npos;
41

42 // Default alpha is transparent.
43 float alpha = 0.0;
44

45 // 0.0 - 1.0 normalized fraction representing how far along in the explosion we are.
46 // Auto resets if time goes beyond burst time. This causes the explosion to cycle.
47 float timeFract = fract(iTime * 1 / BURST_TIME);
48

49 // Loop for each particle
50 for (float i= 0.; i < PARTICLE_COUNT; i++) {
51 // Direction of particle + speed
52 float seed = i + 1.0;
53 vec2 dir = Hash12_Polar(seed);
54 // Get position based on direction, magnitude, and explosion size
55 // Adjust based on time scale. (0.0-1.0)
56 vec2 particlePosition = dir * MAX_PARTICLE_DISTANCE * timeFract;
57 // Distance of this pixel from that particle
58 float d = length(uv - particlePosition);
59 // Add glow based on distance
60 float brightness = DEFAULT_BRIGHTNESS * (sin(timeFract * TWINKLE_SPEED + i) * .5␣

→˓+ .5);
61 alpha += brightness / d;
62 }
63 // Output to screen
64 fragColor = vec4(1.0, 1.0, 1.0, alpha * (1.0 - timeFract));
65 }

15.5 Compute Shader

For certain types of calculations, compute shaders on the GPU can be thousands of times faster than on the CPU alone.

In this tutorial, we will simulate a star field using an ‘N-Body simulation’. Each star is affected by the gravity of every
other star. For 1,000 stars, this means we have 1,000 x 1,000 = 1,000,000 million calculations to perform for each
frame. The video has 65,000 stars, requiring 4.2 billion gravity force calculations per frame. On high-end hardware it
can still run at 60 fps!

How does this work? There are three major parts to this program:

• The Python code, which allocates buffers & glues everything together

• The visualization shaders, which let us see the data in the buffers

• The compute shader, which moves everything

15.5. Compute Shader 261

Python Arcade Library, Release 3.0.0.dev26

15.5.1 Buffers

We need a place to store the data we’ll visualize. To do so, we’ll create two Shader Storage Buffer Objects (SSBOs)
of floating point numbers from within our Python code. One will hold the previous frame’s star positions, and the other
will be used to store calculate the next frame’s positions.

Each buffer must be able to store the following for each star:

1. The x, y, and radius of each star stored

2. The velocity of the star, which will be unused by the visualization

3. The floating point RGBA color of the star

Generating Aligned Data

To avoid issues with GPU memory alignment quirks, we’ll use the function below to generate well-aligned data ready
to load into the SSBO. The docstrings & comments explain why in greater detail:

Listing 35: Generating Well-Aligned Data to Load onto the GPU

def gen_initial_data(
screen_size: Tuple[int, int],
num_stars: int = NUM_STARS,
use_color: bool = False

) -> array:
"""
Generate an :py:class:`~array.array` of randomly positioned star data.

Some of this data is wasted as padding because:

1. GPUs expect SSBO data to be aligned to multiples of 4
2. GLSL's vec3 is actually a vec4 with compiler-side restrictions,
so we have to use 4-length vectors anyway.

:param screen_size: A (width, height) of the area to generate stars in
:param num_stars: How many stars to generate
:param use_color: Whether to generate white or randomized pastel stars
:return: an array of star position data
"""
width, height = screen_size
color_channel_min = 0.5 if use_color else 1.0

def _data_generator() -> Generator[float, None, None]:
"""Inner generator function used to illustrate memory layout"""

for i in range(num_stars):
Position/radius
yield random.randrange(0, width)
yield random.randrange(0, height)
yield 0.0 # z (padding, unused by shaders)
yield 6.0

Velocity (unused by visualization shaders)
yield 0.0

(continues on next page)

262 Chapter 15. Shaders

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

yield 0.0
yield 0.0 # vz (padding, unused by shaders)
yield 0.0 # vw (padding, unused by shaders)

Color
yield random.uniform(color_channel_min, 1.0) # r
yield random.uniform(color_channel_min, 1.0) # g
yield random.uniform(color_channel_min, 1.0) # b
yield 1.0 # a

Use the generator function to fill an array in RAM
return array('f', _data_generator())

Allocating the Buffers

Listing 36: Allocating the Buffers & Loading the Data onto the GPU

--- Create buffers

Create pairs of buffers for the compute & visualization shaders.
We will swap which buffer instance is the initial value and
which is used as the current value to write to.

ssbo = shader storage buffer object
initial_data = gen_initial_data(self.get_size(), use_color=USE_COLORED_STARS)
self.ssbo_previous = self.ctx.buffer(data=initial_data)
self.ssbo_current = self.ctx.buffer(data=initial_data)

vao = vertex array object
Format string describing how to interpret the SSBO buffer data.
4f = position and size -> x, y, z, radius
4x4 = Four floats used for calculating velocity. Not needed for visualization.
4f = color -> rgba
buffer_format = "4f 4x4 4f"

Attribute variable names for the vertex shader
attributes = ["in_vertex", "in_color"]

self.vao_previous = self.ctx.geometry(
[BufferDescription(self.ssbo_previous, buffer_format, attributes)],
mode=self.ctx.POINTS,

)
self.vao_current = self.ctx.geometry(

[BufferDescription(self.ssbo_current, buffer_format, attributes)],
mode=self.ctx.POINTS,

)

15.5. Compute Shader 263

Python Arcade Library, Release 3.0.0.dev26

15.5.2 Visualization Shaders

Now that we have the data, we need to be able to visualize it. We’ll do it by applying vertex, geometry, and fragment
shaders to convert the data in the SSBO into pixels. For each star’s 12 floats in the array, the following flow of data will
take place:

Vertex Shader

In this tutorial, the vertex shader will be run for each star’s 12 float long stretch of raw padded data in self.
ssbo_current. Each execution will output clean typed data to an instance of the geometry shader.

Data is read in as follows:

• The x, y, and radius of each star are accessed via in_vertex

• The floating point RGBA color of the star, via in_color

Listing 37: shaders/vertex_shader.glsl

1 #version 330
2

3 in vec4 in_vertex;
4 in vec4 in_color;
5

6 out vec2 vertex_pos;
7 out float vertex_radius;
8 out vec4 vertex_color;
9

10 void main()
11 {
12 vertex_pos = in_vertex.xy;
13 vertex_radius = in_vertex.w;
14 vertex_color = in_color;
15 }

The variables below are then passed as inputs to the geometry shader:

• vertex_pos

• vertex_radius

• vertex_color

Geometry Shader

The geometry shader converts a single point into a quad, in this case a square, which the GPU can render. It does this
by emitting four points centered on the input point.

Listing 38: shaders/geometry_shader.glsl

1 #version 330
2

3 layout (points) in;
4 layout (triangle_strip, max_vertices = 4) out;
5

(continues on next page)

264 Chapter 15. Shaders

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

6 // Use arcade's global projection UBO
7 uniform Projection {
8 uniform mat4 matrix;
9 } proj;

10

11

12 // The outputs from the vertex shader are used as inputs
13 in vec2 vertex_pos[];
14 in float vertex_radius[];
15 in vec4 vertex_color[];
16

17 // These are used with EmitVertex to generate four points of
18 // a quad centered around vertex_pos[0].
19 out vec2 g_uv;
20 out vec3 g_color;
21

22 void main() {
23 vec2 center = vertex_pos[0];
24 vec2 hsize = vec2(vertex_radius[0]);
25

26 g_color = vertex_color[0].rgb;
27

28 gl_Position = proj.matrix * vec4(vec2(-hsize.x, hsize.y) + center, 0.0, 1.0);
29 g_uv = vec2(0, 1);
30 EmitVertex();
31

32 gl_Position = proj.matrix * vec4(vec2(-hsize.x, -hsize.y) + center, 0.0, 1.0);
33 g_uv = vec2(0, 0);
34 EmitVertex();
35

36 gl_Position = proj.matrix * vec4(vec2(hsize.x, hsize.y) + center, 0.0, 1.0);
37 g_uv = vec2(1, 1);
38 EmitVertex();
39

40 gl_Position = proj.matrix * vec4(vec2(hsize.x, -hsize.y) + center, 0.0, 1.0);
41 g_uv = vec2(1, 0);
42 EmitVertex();
43

44 // End geometry emmission
45 EndPrimitive();
46 }

15.5. Compute Shader 265

Python Arcade Library, Release 3.0.0.dev26

Fragment Shader

A fragment shader runs for each pixel in a quad. It converts a UV coordinate within the quad to a float RGBA value.
In this tutorial’s case, the shader produces the soft glowing circle on the surface of each star’s quad.

Listing 39: shaders/fragment_shader.glsl

1 #version 330
2

3 in vec2 g_uv;
4 in vec3 g_color;
5

6 out vec4 out_color;
7

8 void main()
9 {

10 float l = length(vec2(0.5, 0.5) - g_uv.xy);
11 if (l > 0.5)
12 {
13 discard;
14 }
15 float alpha;
16 if (l == 0.0)
17 alpha = 1.0;
18 else
19 alpha = min(1.0, .60-l * 2);
20

21 vec3 c = g_color.rgb;
22 // c.xy += v_uv.xy * 0.05;
23 // c.xy += v_pos.xy * 0.75;
24 out_color = vec4(c, alpha);
25 }

15.5.3 Compute Shader

Now that we have a way to display data, we should update it.

We created pairs of buffers earlier. We will use one SSBO as an input buffer holding the previous frame’s data, and
another as our output buffer to write results to.

We then swap our buffers each frame after drawing, using the output as the input of the next frame, and repeat the
process until the program stops running.

Listing 40: shaders/compute_shader.glsl

1 #version 430
2

3 // Set up our compute groups.
4 // The COMPUTE_SIZE_X and COMPUTE_SIZE_Y values will be replaced
5 // by the Python code with actual values. This does not happen
6 // automatically, and must be called manually.
7 layout(local_size_x=COMPUTE_SIZE_X, local_size_y=COMPUTE_SIZE_Y) in;
8

9 // Input uniforms would go here if you need them.
(continues on next page)

266 Chapter 15. Shaders

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

10 // The examples below match the ones commented out in main.py
11 //uniform vec2 screen_size;
12 //uniform float frame_time;
13

14 // Structure of the star data
15 struct Star
16 {
17 vec4 pos;
18 vec4 vel;
19 vec4 color;
20 };
21

22 // Input buffer
23 layout(std430, binding=0) buffer stars_in
24 {
25 Star stars[];
26 } In;
27

28 // Output buffer
29 layout(std430, binding=1) buffer stars_out
30 {
31 Star stars[];
32 } Out;
33

34 void main()
35 {
36 int curStarIndex = int(gl_GlobalInvocationID);
37

38 Star in_star = In.stars[curStarIndex];
39

40 vec4 p = in_star.pos.xyzw;
41 vec4 v = in_star.vel.xyzw;
42

43 // Move the star according to the current force
44 p.xy += v.xy;
45

46 // Calculate the new force based on all the other bodies
47 for (int i=0; i < In.stars.length(); i++) {
48 // If enabled, this will keep the star from calculating gravity on itself
49 // However, it does slow down the calcluations do do this check.
50 // if (i == x)
51 // continue;
52

53 // Calculate distance squared
54 float dist = distance(In.stars[i].pos.xyzw.xy, p.xy);
55 float distanceSquared = dist * dist;
56

57 // If distance is too small, extremely high forces can result and
58 // fling the star into escape velocity and forever off the screen.
59 // Using a reasonable minimum distance to prevents this.
60 float minDistance = 0.02;
61 float gravityStrength = 0.3;

(continues on next page)

15.5. Compute Shader 267

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

62 float simulationSpeed = 0.002;
63 float force = min(minDistance, gravityStrength / distanceSquared) * -

→˓simulationSpeed;
64

65 vec2 diff = p.xy - In.stars[i].pos.xyzw.xy;
66 // We should normalize this I think, but it doesn't work.
67 // diff = normalize(diff);
68 vec2 delta_v = diff * force;
69 v.xy += delta_v;
70 }
71

72

73 Star out_star;
74 out_star.pos.xyzw = p.xyzw;
75 out_star.vel.xyzw = v.xyzw;
76

77 vec4 c = in_star.color.xyzw;
78 out_star.color.xyzw = c.xyzw;
79

80 Out.stars[curStarIndex] = out_star;
81 }

15.5.4 The Finished Python Program

The code includes thorough docstrings and annotations explaining how it works.

Listing 41: main.py

1 """
2 N-Body Gravity with Compute Shaders & Buffers
3 """
4 import random
5 from array import array
6 from pathlib import Path
7 from typing import Generator, Tuple
8

9 import arcade
10 from arcade.gl import BufferDescription
11

12 # Window dimensions in pixels
13 WINDOW_WIDTH = 800
14 WINDOW_HEIGHT = 600
15

16 # Size of performance graphs in pixels
17 GRAPH_WIDTH = 200
18 GRAPH_HEIGHT = 120
19 GRAPH_MARGIN = 5
20

21 NUM_STARS: int = 4000
22 USE_COLORED_STARS: bool = True
23

(continues on next page)

268 Chapter 15. Shaders

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

24

25 def gen_initial_data(
26 screen_size: Tuple[int, int],
27 num_stars: int = NUM_STARS,
28 use_color: bool = False
29) -> array:
30 """
31 Generate an :py:class:`~array.array` of randomly positioned star data.
32

33 Some of this data is wasted as padding because:
34

35 1. GPUs expect SSBO data to be aligned to multiples of 4
36 2. GLSL's vec3 is actually a vec4 with compiler-side restrictions,
37 so we have to use 4-length vectors anyway.
38

39 :param screen_size: A (width, height) of the area to generate stars in
40 :param num_stars: How many stars to generate
41 :param use_color: Whether to generate white or randomized pastel stars
42 :return: an array of star position data
43 """
44 width, height = screen_size
45 color_channel_min = 0.5 if use_color else 1.0
46

47 def _data_generator() -> Generator[float, None, None]:
48 """Inner generator function used to illustrate memory layout"""
49

50 for i in range(num_stars):
51 # Position/radius
52 yield random.randrange(0, width)
53 yield random.randrange(0, height)
54 yield 0.0 # z (padding, unused by shaders)
55 yield 6.0
56

57 # Velocity (unused by visualization shaders)
58 yield 0.0
59 yield 0.0
60 yield 0.0 # vz (padding, unused by shaders)
61 yield 0.0 # vw (padding, unused by shaders)
62

63 # Color
64 yield random.uniform(color_channel_min, 1.0) # r
65 yield random.uniform(color_channel_min, 1.0) # g
66 yield random.uniform(color_channel_min, 1.0) # b
67 yield 1.0 # a
68

69 # Use the generator function to fill an array in RAM
70 return array('f', _data_generator())
71

72

73 class NBodyGravityWindow(arcade.Window):
74

75 def __init__(self):

(continues on next page)

15.5. Compute Shader 269

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

76 # Ask for OpenGL context supporting version 4.3 or greater when
77 # calling the parent initializer to make sure we have compute shader
78 # support.
79 super().__init__(
80 WINDOW_WIDTH, WINDOW_HEIGHT,
81 "N-Body Gravity with Compute Shaders & Buffers",
82 gl_version=(4, 3),
83 resizable=False
84)
85 # Attempt to put the window in the center of the screen.
86 self.center_window()
87

88 # --- Create buffers
89

90 # Create pairs of buffers for the compute & visualization shaders.
91 # We will swap which buffer instance is the initial value and
92 # which is used as the current value to write to.
93

94 # ssbo = shader storage buffer object
95 initial_data = gen_initial_data(self.get_size(), use_color=USE_COLORED_STARS)
96 self.ssbo_previous = self.ctx.buffer(data=initial_data)
97 self.ssbo_current = self.ctx.buffer(data=initial_data)
98

99 # vao = vertex array object
100 # Format string describing how to interpret the SSBO buffer data.
101 # 4f = position and size -> x, y, z, radius
102 # 4x4 = Four floats used for calculating velocity. Not needed for visualization.
103 # 4f = color -> rgba
104 buffer_format = "4f 4x4 4f"
105

106 # Attribute variable names for the vertex shader
107 attributes = ["in_vertex", "in_color"]
108

109 self.vao_previous = self.ctx.geometry(
110 [BufferDescription(self.ssbo_previous, buffer_format, attributes)],
111 mode=self.ctx.POINTS,
112)
113 self.vao_current = self.ctx.geometry(
114 [BufferDescription(self.ssbo_current, buffer_format, attributes)],
115 mode=self.ctx.POINTS,
116)
117

118 # --- Create the visualization shaders
119

120 vertex_shader_source = Path("shaders/vertex_shader.glsl").read_text()
121 fragment_shader_source = Path("shaders/fragment_shader.glsl").read_text()
122 geometry_shader_source = Path("shaders/geometry_shader.glsl").read_text()
123

124 # Create the complete shader program which will draw the stars
125 self.program = self.ctx.program(
126 vertex_shader=vertex_shader_source,
127 geometry_shader=geometry_shader_source,

(continues on next page)

270 Chapter 15. Shaders

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

128 fragment_shader=fragment_shader_source,
129)
130

131 # --- Create our compute shader
132

133 # Load in the raw source code safely & auto-close the file
134 compute_shader_source = Path("shaders/compute_shader.glsl").read_text()
135

136 # Compute shaders use groups to parallelize execution.
137 # You don't need to understand how this works yet, but the
138 # values below should serve as reasonable defaults. Later, we'll
139 # preprocess the shader source by replacing the templating token
140 # with its corresponding value.
141 self.group_x = 256
142 self.group_y = 1
143

144 self.compute_shader_defines = {
145 "COMPUTE_SIZE_X": self.group_x,
146 "COMPUTE_SIZE_Y": self.group_y
147 }
148

149 # Preprocess the source by replacing each define with its value as a string
150 for templating_token, value in self.compute_shader_defines.items():
151 compute_shader_source = compute_shader_source.replace(templating_token,␣

→˓str(value))
152

153 self.compute_shader = self.ctx.compute_shader(source=compute_shader_source)
154

155 # --- Create the FPS graph
156

157 # Enable timings for the performance graph
158 arcade.enable_timings()
159

160 # Create a sprite list to put the performance graph into
161 self.perf_graph_list = arcade.SpriteList()
162

163 # Create the FPS performance graph
164 graph = arcade.PerfGraph(GRAPH_WIDTH, GRAPH_HEIGHT, graph_data="FPS")
165 graph.position = GRAPH_WIDTH / 2, self.height - GRAPH_HEIGHT / 2
166 self.perf_graph_list.append(graph)
167

168 def on_draw(self):
169 # Clear the screen
170 self.clear()
171 # Enable blending so our alpha channel works
172 self.ctx.enable(self.ctx.BLEND)
173

174 # Bind buffers
175 self.ssbo_previous.bind_to_storage_buffer(binding=0)
176 self.ssbo_current.bind_to_storage_buffer(binding=1)
177

178 # If you wanted, you could set input variables for compute shader

(continues on next page)

15.5. Compute Shader 271

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

179 # as in the lines commented out below. You would have to add or
180 # uncomment corresponding lines in compute_shader.glsl
181 # self.compute_shader["screen_size"] = self.get_size()
182 # self.compute_shader["frame_time"] = self.frame_time
183

184 # Run compute shader to calculate new positions for this frame
185 self.compute_shader.run(group_x=self.group_x, group_y=self.group_y)
186

187 # Draw the current star positions
188 self.vao_current.render(self.program)
189

190 # Swap the buffer pairs.
191 # The buffers for the current state become the initial state,
192 # and the data of this frame's initial state will be overwritten.
193 self.ssbo_previous, self.ssbo_current = self.ssbo_current, self.ssbo_previous
194 self.vao_previous, self.vao_current = self.vao_current, self.vao_previous
195

196 # Draw the graphs
197 self.perf_graph_list.draw()
198

199

200

201 if __name__ == "__main__":
202 app = NBodyGravityWindow()
203 arcade.run()

An expanded version of this tutorial whith support for 3D is available at: https://github.com/pvcraven/n-body

15.6 GPU Particle Burst

In this example, we show how to create explosions using particles. The particles are tracked by the GPU, significantly
improving the performance.

15.6.1 Step 1: Open a Blank Window

First, let’s start with a blank window.

Listing 42: gpu_particle_burst_01.py

1 """
2 Example showing how to create particle explosions via the GPU.
3 """
4 import arcade
5

6 SCREEN_WIDTH = 1024
7 SCREEN_HEIGHT = 768
8 SCREEN_TITLE = "GPU Particle Explosion"
9

10

(continues on next page)

272 Chapter 15. Shaders

https://github.com/pvcraven/n-body

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

11 class MyWindow(arcade.Window):
12 """ Main window"""
13 def __init__(self):
14 super().__init__(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)
15

16 def on_draw(self):
17 """ Draw everything """
18 self.clear()
19

20 def on_update(self, dt):
21 """ Update everything """
22 pass
23

24 def on_mouse_press(self, x: float, y: float, button: int, modifiers: int):
25 """ User clicks mouse """
26 pass
27

28

29 if __name__ == "__main__":
30 window = MyWindow()
31 window.center_window()
32 arcade.run()

15.6.2 Step 2: Create One Particle For Each Click

For this next section, we are going to draw a dot each time the user clicks their mouse on the screen.

For each click, we are going to create an instance of a Burst class that will eventually be turned into a full explosion.
Each burst instance will be added to a list.

15.6. GPU Particle Burst 273

Python Arcade Library, Release 3.0.0.dev26

Imports

First, we’ll import some more items for our program:

from array import array
from dataclasses import dataclass

import arcade
import arcade.gl

Burst Dataclass

Next, we’ll create a dataclass to track our data for each burst. For each burst we need to track a Vertex Array Object
(VAO) which stores information about our burst. Inside of that, we’ll have a Vertex Buffer Object (VBO) which will
be a high-speed memory buffer where we’ll store locations, colors, velocity, etc.

@dataclass
class Burst:

""" Track for each burst. """
buffer: arcade.gl.Buffer
vao: arcade.gl.Geometry

Init method

Next, we’ll create an empty list attribute called burst_list. We’ll also create our OpenGL shader program. The
program will be a collection of two shader programs. These will be stored in separate files, saved in the same directory.

Note: In addition to loading the program via the load_program() method of ArcadeContext shown, it is also possible
to keep the GLSL programs in triple- quoted string by using program() of Context.

274 Chapter 15. Shaders

Python Arcade Library, Release 3.0.0.dev26

Listing 43: MyWindow.__init__

def __init__(self):
super().__init__(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)
self.burst_list = []

Program to visualize the points
self.program = self.ctx.load_program(

vertex_shader="vertex_shader_v1.glsl",
fragment_shader="fragment_shader.glsl",

)

self.ctx.enable_only()

OpenGL Shaders

The OpenGL Shading Language (GLSL) is C-style language that runs on your graphics card (GPU) rather than your
CPU. Unfortunately a full explanation of the language is beyond the scope of this tutorial. I hope, however, the tutorial
can get you started understanding how it works.

We’ll have two shaders. A vertex shader, and a fragment shader. A vertex shader runs for each vertex point of the
geometry we are rendering, and a fragment shader runs for each pixel. For example, vertex shader might run four times
for each point on a rectangle, and the fragment shader would run for each pixel on the screen.

The vertex shader takes in the position of our vertex. We’ll set in_pos in our Python program, and pass that data to
this shader.

The vertex shader outputs the color of our vertex. Colors are in Red-Green-Blue-Alpha (RGBA) format, with floating-
point numbers ranging from 0 to 1. In our program below case, we set the color to (1, 1, 1) which is white, and the
fourth 1 for completely opaque.

Listing 44: vertex_shader_v1.glsl

1 #version 330
2

3 // (x, y) position passed in
4 in vec2 in_pos;
5

6 // Output the color to the fragment shader
7 out vec4 color;
8

9 void main() {
10

11 // Set the RGBA color
12 color = vec4(1, 1, 1, 1);
13

14 // Set the position. (x, y, z, w)
15 gl_Position = vec4(in_pos, 0.0, 1);
16 }

There’s not much to the fragment shader, it just takes in color from the vertex shader and passes it back out as the
pixel color. We’ll use the same fragment shader for every version in this tutorial.

15.6. GPU Particle Burst 275

Python Arcade Library, Release 3.0.0.dev26

Listing 45: fragment_shader.glsl

1 #version 330
2

3 // Color passed in from the vertex shader
4 in vec4 color;
5

6 // The pixel we are writing to in the framebuffer
7 out vec4 fragColor;
8

9 void main() {
10

11 // Fill the point
12 fragColor = vec4(color);
13 }

Mouse Pressed

Each time we press the mouse button, we are going to create a burst at that location.

The data for that burst will be stored in an instance of the Burst class.

The Burst class needs our data buffer. The data buffer contains information about each particle. In this case, we just
have one particle and only need to store the x, y of that particle in the buffer. However, eventually we’ll have hundreds
of particles, each with a position, velocity, color, and fade rate. To accommodate creating that data, we have made a
generator function _gen_initial_data. It is totally overkill at this point, but we’ll add on to it in this tutorial.

The buffer_description says that each vertex has two floating data points (2f) and those data points will come into
the shader with the reference name in_pos which we defined above in our OpenGL Shaders

Listing 46: MyWindow.on_mouse_press

def on_mouse_press(self, x: float, y: float, button: int, modifiers: int):
""" User clicks mouse """

def _gen_initial_data(initial_x, initial_y):
""" Generate data for each particle """
yield initial_x
yield initial_y

Recalculate the coordinates from pixels to the OpenGL system with
0, 0 at the center.
x2 = x / self.width * 2. - 1.
y2 = y / self.height * 2. - 1.

Get initial particle data
initial_data = _gen_initial_data(x2, y2)

Create a buffer with that data
buffer = self.ctx.buffer(data=array('f', initial_data))

Create a buffer description specifying the buffer's data format
buffer_description = arcade.gl.BufferDescription(

(continues on next page)

276 Chapter 15. Shaders

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

buffer,
'2f',
['in_pos'])

Create our Vertex Attribute Object
vao = self.ctx.geometry([buffer_description])

Create the Burst object and add it to the list of bursts
burst = Burst(buffer=buffer, vao=vao)
self.burst_list.append(burst)

Drawing

Finally, draw it.

Listing 47: MyWindow.on_draw

def on_draw(self):
""" Draw everything """
self.clear()

Set the particle size
self.ctx.point_size = 2 * self.get_pixel_ratio()

Loop through each burst
for burst in self.burst_list:

Render the burst
burst.vao.render(self.program, mode=self.ctx.POINTS)

Program Listings

• fragment_shader ← Where we are right now

• vertex_shader_v1 ← Where we are right now

• gpu_particle_burst_02 ← Where we are right now

• gpu_particle_burst_02_diff ← What we changed to get here

15.6. GPU Particle Burst 277

Python Arcade Library, Release 3.0.0.dev26

15.6.3 Step 3: Multiple Moving Particles

Next step is to have more than one particle, and to have the particles move. We’ll do this by creating the particles, and
calculating where they should be based on the time since creation. This is a bit different than the way we move sprites,
as they are manually repositioned bit-by-bit during each update call.

Imports

First, we’ll add imports for both the random and time libraries:

import random
import time

Constants

Then we need to create a constant that contains the number of particles to create:

PARTICLE_COUNT = 300

Burst Dataclass

We’ll need to add a time to our burst data. This will be a floating point number that represents the start-time of when
the burst was created.

@dataclass
class Burst:

""" Track for each burst. """
buffer: arcade.gl.Buffer
vao: arcade.gl.Geometry
start_time: float

278 Chapter 15. Shaders

Python Arcade Library, Release 3.0.0.dev26

Update Burst Creation

Now when we create a burst, we need multiple particles, and each particle also needs a velocity. In
_gen_initial_data we add a loop for each particle, and also output a delta x and y.

Note: Because of how we set delta x and delta y, the particles will expand into a rectangle rather than a circle. We’ll
fix that on a later step.

Because we added a velocity, our buffer now needs two pairs of floats 2f 2f named in_pos and in_vel. We’ll update
our shader in a bit to work with the new values.

Finally, our burst object needs to track the time we created the burst.

1 def on_mouse_press(self, x: float, y: float, button: int, modifiers: int):
2 """ User clicks mouse """
3

4 def _gen_initial_data(initial_x, initial_y):
5 """ Generate data for each particle """
6 for i in range(PARTICLE_COUNT):
7 dx = random.uniform(-.2, .2)
8 dy = random.uniform(-.2, .2)
9 yield initial_x

10 yield initial_y
11 yield dx
12 yield dy
13

14 # Recalculate the coordinates from pixels to the OpenGL system with
15 # 0, 0 at the center.
16 x2 = x / self.width * 2. - 1.
17 y2 = y / self.height * 2. - 1.
18

19 # Get initial particle data
20 initial_data = _gen_initial_data(x2, y2)
21

22 # Create a buffer with that data
23 buffer = self.ctx.buffer(data=array('f', initial_data))
24

25 # Create a buffer description specifying the buffer's data format
26 buffer_description = arcade.gl.BufferDescription(
27 buffer,
28 '2f 2f',
29 ['in_pos', 'in_vel'])
30

31 # Create our Vertex Attribute Object
32 vao = self.ctx.geometry([buffer_description])
33

34 # Create the Burst object and add it to the list of bursts
35 burst = Burst(buffer=buffer, vao=vao, start_time=time.time())
36 self.burst_list.append(burst)

15.6. GPU Particle Burst 279

Python Arcade Library, Release 3.0.0.dev26

Set Time in on_draw

When we draw, we need to set “uniform data” (data that is the same for all points) that says how many seconds it has
been since the burst started. The shader will use this to calculate particle position.

def on_draw(self):
""" Draw everything """
self.clear()

Set the particle size
self.ctx.point_size = 2 * self.get_pixel_ratio()

Loop through each burst
for burst in self.burst_list:

Set the uniform data
self.program['time'] = time.time() - burst.start_time

Render the burst
burst.vao.render(self.program, mode=self.ctx.POINTS)

Update Vertex Shader

Our vertex shader needs to be updated. We now take in a uniform float called time. Uniform data is set once, and
each vertex in the program can use it. In our case, we don’t need a separate copy of the burst’s start time for each
particle in the burst, therefore it is uniform data.

We also need to add another vector of two floats that will take in our velocity. We set in_vel in Update Burst Creation.

Then finally we calculate a new position based on the time and our particle’s velocity. We use that new position when
setting gl_Position.

Listing 48: vertex_shader_v2.glsl

1 #version 330
2

3 // Time since burst start
4 uniform float time;
5

6 // (x, y) position passed in
7 in vec2 in_pos;
8

9 // Velocity of particle
10 in vec2 in_vel;
11

12 // Output the color to the fragment shader
13 out vec4 color;
14

15 void main() {
16

17 // Set the RGBA color
18 color = vec4(1, 1, 1, 1);
19

20 // Calculate a new position
(continues on next page)

280 Chapter 15. Shaders

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

21 vec2 new_pos = in_pos + (time * in_vel);
22

23 // Set the position. (x, y, z, w)
24 gl_Position = vec4(new_pos, 0.0, 1);
25 }

Program Listings

• vertex_shader_v2 ← Where we are right now

• vertex_shader_v2_diff ← What we changed to get here

• gpu_particle_burst_03 ← Where we are right now

• gpu_particle_burst_03_diff ← What we changed to get here

15.6.4 Step 4: Random Angle and Speed

Step 3 didn’t do a good job of picking a velocity, as our particles expanded into a rectangle rather than a circle. Rather
than just pick a random delta x and y, we need to pick a random direction and speed. Then calculate delta x and y from
that.

Update Imports

Import the math library so we can do some trig:

import math

15.6. GPU Particle Burst 281

Python Arcade Library, Release 3.0.0.dev26

Update Burst Creation

Now, pick a random direction from zero to 2 pi radians. Also, pick a random speed. Then use sine and cosine to
calculate the delta x and y.

1 def on_mouse_press(self, x: float, y: float, button: int, modifiers: int):
2 """ User clicks mouse """
3

4 def _gen_initial_data(initial_x, initial_y):
5 """ Generate data for each particle """
6 for i in range(PARTICLE_COUNT):
7 angle = random.uniform(0, 2 * math.pi)
8 speed = random.uniform(0.0, 0.3)
9 dx = math.sin(angle) * speed

10 dy = math.cos(angle) * speed
11 yield initial_x
12 yield initial_y
13 yield dx
14 yield dy
15

Program Listings

• gpu_particle_burst_04 ← Where we are right now

• gpu_particle_burst_04_diff ← What we changed to get here

15.6.5 Step 5: Gaussian Distribution

Setting speed to a random amount makes for an expanding circle. Another option is to use a gaussian function to
produce more of a ‘splat’ look:

speed = abs(random.gauss(0, 1)) * .5

282 Chapter 15. Shaders

Python Arcade Library, Release 3.0.0.dev26

Program Listings

• gpu_particle_burst_05 ← Where we are right now

• gpu_particle_burst_05_diff ← What we changed to get here

15.6.6 Step 6: Add Color

So far our particles have all been white. How do we add in color? We’ll need to generate it for each particle. Shaders
take colors in the form of RGB floats, so we’ll generate a random number for red, and add in some green to get our
yellows. Don’t add more green than red, or else you get a green tint.

Finally, make sure to update the shader buffer description (VBO) to accept the three color channel floats (3f) under the
name in_color.

1 def on_mouse_press(self, x: float, y: float, button: int, modifiers: int):
2 """ User clicks mouse """
3

4 def _gen_initial_data(initial_x, initial_y):
5 """ Generate data for each particle """
6 for i in range(PARTICLE_COUNT):
7 angle = random.uniform(0, 2 * math.pi)
8 speed = abs(random.gauss(0, 1)) * .5
9 dx = math.sin(angle) * speed

10 dy = math.cos(angle) * speed
11 red = random.uniform(0.5, 1.0)
12 green = random.uniform(0, red)
13 blue = 0
14 yield initial_x
15 yield initial_y
16 yield dx
17 yield dy
18 yield red
19 yield green
20 yield blue
21

22 # Recalculate the coordinates from pixels to the OpenGL system with
23 # 0, 0 at the center.

(continues on next page)

15.6. GPU Particle Burst 283

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

24 x2 = x / self.width * 2. - 1.
25 y2 = y / self.height * 2. - 1.
26

27 # Get initial particle data
28 initial_data = _gen_initial_data(x2, y2)
29

30 # Create a buffer with that data
31 buffer = self.ctx.buffer(data=array('f', initial_data))
32

33 # Create a buffer description specifying the buffer's data format
34 buffer_description = arcade.gl.BufferDescription(
35 buffer,
36 '2f 2f 3f',
37 ['in_pos', 'in_vel', 'in_color'])
38

39 # Create our Vertex Attribute Object
40 vao = self.ctx.geometry([buffer_description])
41

42 # Create the Burst object and add it to the list of bursts
43 burst = Burst(buffer=buffer, vao=vao, start_time=time.time())
44 self.burst_list.append(burst)

Then, update the shader to use the color instead of always using white:

Listing 49: vertex_shader_v3.glsl

1 #version 330
2

3 // Time since burst start
4 uniform float time;
5

6 // (x, y) position passed in
7 in vec2 in_pos;
8

9 // Velocity of particle
10 in vec2 in_vel;
11

12 // Color of particle
13 in vec3 in_color;
14

15 // Output the color to the fragment shader
16 out vec4 color;
17

18 void main() {
19

20 // Set the RGBA color
21 color = vec4(in_color[0], in_color[1], in_color[2], 1);
22

23 // Calculate a new position
24 vec2 new_pos = in_pos + (time * in_vel);
25

26 // Set the position. (x, y, z, w)
(continues on next page)

284 Chapter 15. Shaders

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

27 gl_Position = vec4(new_pos, 0.0, 1);
28 }

Program Listings

• vertex_shader_v3 ← Where we are right now

• vertex_shader_v3_diff ← What we changed to get here

• gpu_particle_burst_06 ← Where we are right now

• gpu_particle_burst_06_diff ← What we changed to get here

15.6.7 Step 7: Fade Out

Right now the explosion particles last forever. Let’s get them to fade out. Once a burst has faded out, let’s remove it
from burst_list.

Constants

First, let’s add a couple constants to control the minimum and maximum times to fade a particle:

MIN_FADE_TIME = 0.25
MAX_FADE_TIME = 1.5

15.6. GPU Particle Burst 285

Python Arcade Library, Release 3.0.0.dev26

Update Init

Next, we need to update our OpenGL context to support alpha blending. Go back to the __init__ method and update
the enable_only call to:

self.ctx.enable_only(self.ctx.BLEND)

Add Fade Rate to Buffer

Next, add the fade rate float to the VBO:

1 def on_mouse_press(self, x: float, y: float, button: int, modifiers: int):
2 """ User clicks mouse """
3

4 def _gen_initial_data(initial_x, initial_y):
5 """ Generate data for each particle """
6 for i in range(PARTICLE_COUNT):
7 angle = random.uniform(0, 2 * math.pi)
8 speed = abs(random.gauss(0, 1)) * .5
9 dx = math.sin(angle) * speed

10 dy = math.cos(angle) * speed
11 red = random.uniform(0.5, 1.0)
12 green = random.uniform(0, red)
13 blue = 0
14 fade_rate = random.uniform(
15 1 / MAX_FADE_TIME, 1 / MIN_FADE_TIME)
16

17 yield initial_x
18 yield initial_y
19 yield dx
20 yield dy
21 yield red
22 yield green
23 yield blue
24 yield fade_rate
25

26 # Recalculate the coordinates from pixels to the OpenGL system with
27 # 0, 0 at the center.
28 x2 = x / self.width * 2. - 1.
29 y2 = y / self.height * 2. - 1.
30

31 # Get initial particle data
32 initial_data = _gen_initial_data(x2, y2)
33

34 # Create a buffer with that data
35 buffer = self.ctx.buffer(data=array('f', initial_data))
36

37 # Create a buffer description specifying the buffer's data format
38 buffer_description = arcade.gl.BufferDescription(
39 buffer,
40 '2f 2f 3f f',
41 ['in_pos', 'in_vel', 'in_color', 'in_fade_rate'])

(continues on next page)

286 Chapter 15. Shaders

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

42

43 # Create our Vertex Attribute Object
44 vao = self.ctx.geometry([buffer_description])
45

46 # Create the Burst object and add it to the list of bursts
47 burst = Burst(buffer=buffer, vao=vao, start_time=time.time())
48 self.burst_list.append(burst)

Update Shader

Update the shader. Calculate the alpha. If it is less that 0, just use 0.

Listing 50: vertex_shader_v4.glsl

1 #version 330
2

3 // Time since burst start
4 uniform float time;
5

6 // (x, y) position passed in
7 in vec2 in_pos;
8

9 // Velocity of particle
10 in vec2 in_vel;
11

12 // Color of particle
13 in vec3 in_color;
14

15 // Fade rate
16 in float in_fade_rate;
17

18 // Output the color to the fragment shader
19 out vec4 color;
20

21 void main() {
22

23 // Calculate alpha based on time and fade rate
24 float alpha = 1.0 - (in_fade_rate * time);
25 if(alpha < 0.0) alpha = 0;
26

27 // Set the RGBA color
28 color = vec4(in_color[0], in_color[1], in_color[2], alpha);
29

30 // Calculate a new position
31 vec2 new_pos = in_pos + (time * in_vel);
32

33 // Set the position. (x, y, z, w)
34 gl_Position = vec4(new_pos, 0.0, 1);
35 }

15.6. GPU Particle Burst 287

Python Arcade Library, Release 3.0.0.dev26

Remove Faded Bursts

Once our burst has completely faded, no need to keep it around. So in our on_update remove the burst from the
burst_list after it has been faded.

1 def on_update(self, dt):
2 """ Update game """
3

4 # Create a copy of our list, as we can't modify a list while iterating
5 # it. Then see if any of the items have completely faded out and need
6 # to be removed.
7 temp_list = self.burst_list.copy()
8 for burst in temp_list:
9 if time.time() - burst.start_time > MAX_FADE_TIME:

10 self.burst_list.remove(burst)

Program Listings

• vertex_shader_v4 ← Where we are right now

• vertex_shader_v4_diff ← What we changed to get here

• gpu_particle_burst_07 ← Where we are right now

• gpu_particle_burst_07_diff ← What we changed to get here

15.6.8 Step 8: Add Gravity

You could also add come gravity to the particles by adjusting the velocity based on a gravity constant. (In this case,
1.1.)

// Adjust velocity based on gravity
vec2 new_vel = in_vel;
new_vel[1] -= time * 1.1;

// Calculate a new position
vec2 new_pos = in_pos + (time * new_vel);

Program Listings

• vertex_shader_v5 ← Where we are right now

• vertex_shader_v5_diff ← What we changed to get here

288 Chapter 15. Shaders

Python Arcade Library, Release 3.0.0.dev26

15.7 Working With Shaders

Shaders are graphics programs that run on GPU and can be used for many varied purposes.

Here we look at some very simple shader programs and learn how to pass data to and from shaders

15.7.1 Basic Arcade Program

Listing 51: Starting template

1 import arcade
2

3 SCREEN_WIDTH = 800
4 SCREEN_HEIGHT = 600
5 SCREEN_TITLE = "Basic Arcade Template"
6

7

8 class MyWindow(arcade.Window):
9 def __init__(self):

10 super().__init__(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)
11 self.center_window()
12 self.background_color = arcade.color.ALMOND
13

14 def on_draw(self):
15 # Draw a simple circle to the screen
16 self.clear()
17 arcade.draw_circle_filled(
18 SCREEN_WIDTH / 2,
19 SCREEN_HEIGHT / 2,
20 100,
21 arcade.color.AFRICAN_VIOLET
22)
23

24

25 app = MyWindow()
26 arcade.run()

15.7.2 Basic Shader Program

From here we add a very basic shader and draw it to the screen. This shader simply sets color and alpha based on the
horizontal coordinate of the pixel.

We have to define vertex shader and fragment shader programs.

• Vertex shaders run on each passed coorninate and can modify it. Here we use it only to pass on the coordinate
on to the fragment shader

• Fragment shaders set color for each passed pixel. Here we set a fixed color for every pixel and vary alpha based
on horizontal position

We need to pass the shader the pixel coordinates so create an object quad_fs to facilitate it.

15.7. Working With Shaders 289

Python Arcade Library, Release 3.0.0.dev26

Listing 52: Simple shader

1 import arcade
2

3 SCREEN_WIDTH = 800
4 SCREEN_HEIGHT = 600
5 SCREEN_TITLE = "Basic Vertex and Fragment Shader"
6

7

8 class MyWindow(arcade.Window):
9 def __init__(self):

10 super().__init__(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)
11 self.center_window()
12 self.background_color = arcade.color.ALMOND
13

14 # GL geometry that will be used to pass pixel coordinates to the shader
15 # It has the same dimensions as the screen
16 self.quad_fs = arcade.gl.geometry.quad_2d_fs()
17

18 # Create a simple shader program
19 self.prog = self.ctx.program(
20 vertex_shader="""
21 #version 330
22 in vec2 in_vert;
23 void main()
24 {
25 gl_Position = vec4(in_vert, 0., 1.);
26 }
27 """,
28 fragment_shader="""
29 #version 330
30 out vec4 fragColor;
31 void main()
32 {
33 // Set the pixel colour and alpha based on x position
34 fragColor = vec4(0.9, 0.5, 0.5, sin(gl_FragCoord.x / 50));
35 }
36 """
37)
38

39 def on_draw(self):
40 # Draw a simple circle
41 self.clear()
42 arcade.draw_circle_filled(
43 SCREEN_WIDTH / 2,
44 SCREEN_HEIGHT / 2,
45 100,
46 arcade.color.AFRICAN_VIOLET
47)
48

49 # Run the shader and render to screen
50 # The shader code is run once for each pixel coordinate in quad_fs
51 # and the fragColor output added to the screen

(continues on next page)

290 Chapter 15. Shaders

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

52 self.quad_fs.render(self.prog)
53

54

55 app = MyWindow()
56 arcade.run()

15.7.3 Passing Data To The Shader

To pass data to the shader program we can define uniforms. Uniforms are global shader variables that act as parameters
passed from outside the shader program.

We have to define uniform within the shader and then register the python variable with the shader program before
rendering.

It is important to make sure that the uniform type is appropriate for the data being passed.

Listing 53: Uniforms

1 import arcade
2

3 SCREEN_WIDTH = 800
4 SCREEN_HEIGHT = 600
5 SCREEN_TITLE = "Shader With Uniform"
6

7

8 class MyWindow(arcade.Window):
9 def __init__(self):

10 super().__init__(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)
11 self.center_window()
12 self.background_color = arcade.color.ALMOND
13

14 # GL geometry that will be used to pass pixel coordinates to the shader
15 # It has the same dimensions as the screen
16 self.quad_fs = arcade.gl.geometry.quad_2d_fs()
17

18 # Create a simple shader program
19 self.prog = self.ctx.program(
20 vertex_shader="""
21 #version 330
22 in vec2 in_vert;
23 void main()
24 {
25 gl_Position = vec4(in_vert, 0., 1.);
26 }
27 """,
28 fragment_shader="""
29 #version 330
30 // Define an input to receive total_time from python
31 uniform float time;
32 out vec4 fragColor;
33 void main()
34 {

(continues on next page)

15.7. Working With Shaders 291

https://www.khronos.org/opengl/wiki/Uniform_(GLSL)

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

35 // Set the pixel colour and alpha based on x position and time
36 fragColor = vec4(0.9, 0.5, 0.5, sin(gl_FragCoord.x / 50 + time));
37 }
38 """
39)
40

41 # Create a variable to track program run time
42 self.total_time = 0
43

44 def on_update(self, delta_time):
45 # Keep tract o total time
46 self.total_time += delta_time
47

48 def on_draw(self):
49 # Draw a simple circle
50 self.clear()
51 arcade.draw_circle_filled(
52 SCREEN_WIDTH / 2,
53 SCREEN_HEIGHT / 2,
54 100,
55 arcade.color.AFRICAN_VIOLET
56)
57

58 # Register the uniform in the shader program
59 self.prog['time'] = self.total_time
60

61 # Run the shader and render to screen
62 # The shader code is run once for each pixel coordinate in quad_fs
63 # and the fragColor output added to the screen
64 self.quad_fs.render(self.prog)
65

66

67 app = MyWindow()
68 arcade.run()

15.7.4 Accessing Textures From The Shader

To make the shader more useful we may wish to pass textures to it.

Here we create to textures (and associated framebuffers) and pass them to the shader as uniform sampler objects. Unlike
other uniforms we need to assign a reference to an integer texture channel (rather than directly to the python object)
and .use() the texture to bind it to that channel.

Listing 54: Textures

1 import arcade
2

3 SCREEN_WIDTH = 800
4 SCREEN_HEIGHT = 600
5 SCREEN_TITLE = "Shader with Textures"
6

(continues on next page)

292 Chapter 15. Shaders

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

7

8 class MyWindow(arcade.Window):
9 def __init__(self):

10 super().__init__(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)
11 self.center_window()
12 self.background_color = arcade.color.ALMOND
13

14 # GL geometry that will be used to pass pixel coordinates to the shader
15 # It has the same dimensions as the screen
16 self.quad_fs = arcade.gl.geometry.quad_2d_fs()
17

18 # Create textures and FBOs
19 self.tex_0 = self.ctx.texture((self.width, self.height))
20 self.fbo_0 = self.ctx.framebuffer(color_attachments=[self.tex_0])
21

22 self.tex_1 = self.ctx.texture((self.width, self.height))
23 self.fbo_1 = self.ctx.framebuffer(color_attachments=[self.tex_1])
24

25 # Fill the textures with solid colours
26 self.fbo_0.clear(color=(0.0, 0.0, 1.0, 1.0), normalized=True)
27 self.fbo_1.clear(color=(1.0, 0.0, 0.0, 1.0), normalized=True)
28

29 # Create a simple shader program
30 self.prog = self.ctx.program(
31 vertex_shader="""
32 #version 330
33 in vec2 in_vert;
34 // Get normalized coordinates
35 in vec2 in_uv;
36 out vec2 uv;
37 void main()
38 {
39 gl_Position = vec4(in_vert, 0., 1.);
40 uv = in_uv;
41 }
42 """,
43 fragment_shader="""
44 #version 330
45 // Define an input to receive total_time from python
46 uniform float time;
47 // Define inputs to access textures
48 uniform sampler2D t0;
49 uniform sampler2D t1;
50 in vec2 uv;
51 out vec4 fragColor;
52 void main()
53 {
54 // Set pixel color as a combination of the two textures
55 fragColor = mix(
56 texture(t0, uv),
57 texture(t1, uv),
58 smoothstep(0.0, 1.0, uv.x));

(continues on next page)

15.7. Working With Shaders 293

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

59 // Set the alpha based on time
60 fragColor.w = sin(time);
61 }
62 """
63)
64

65 # Register the texture uniforms in the shader program
66 self.prog['t0'] = 0
67 self.prog['t1'] = 1
68

69 # Create a variable to track program run time
70 self.total_time = 0
71

72 def on_update(self, delta_time):
73 # Keep tract o total time
74 self.total_time += delta_time
75

76 def on_draw(self):
77 # Draw a simple circle
78 self.clear()
79 arcade.draw_circle_filled(
80 SCREEN_WIDTH / 2,
81 SCREEN_HEIGHT / 2,
82 100,
83 arcade.color.AFRICAN_VIOLET
84)
85

86 # Register the uniform in the shader program
87 self.prog['time'] = self.total_time
88

89 # Bind our textures to channels
90 self.tex_0.use(0)
91 self.tex_1.use(1)
92

93 # Run the shader and render to screen
94 # The shader code is run once for each pixel coordinate in quad_fs
95 # and the fragColor output added to the screen
96 self.quad_fs.render(self.prog)
97

98

99 app = MyWindow()
100 arcade.run()

294 Chapter 15. Shaders

Python Arcade Library, Release 3.0.0.dev26

15.7.5 Drawing To Texture From The Shader

Finally we have an example of reading from and writing to the same texture with a shader.

We use the with fbo: syntax to tell arcade that we wish to render to the new frambuffer rather than default one.

Once the shader has updated the framebuffer we need to copy its contents to the screen to be displayed.

Listing 55: Textures

1 import arcade
2

3 SCREEN_WIDTH = 800
4 SCREEN_HEIGHT = 600
5 SCREEN_TITLE = "An Empty Program"
6

7

8 class MyWindow(arcade.Window):
9 def __init__(self):

10 super().__init__(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)
11 self.center_window()
12 self.background_color = arcade.color.ALMOND
13

14 # GL geometry that will be used to pass pixel coordinates to the shader
15 # It has the same dimensions as the screen
16 self.quad_fs = arcade.gl.geometry.quad_2d_fs()
17

18 # Create texture and FBO
19 self.tex = self.ctx.texture((self.width, self.height))
20 self.fbo = self.ctx.framebuffer(color_attachments=[self.tex])
21

22 # Put something in the framebuffer to start
23 self.fbo.clear(arcade.color.ALMOND)
24 with self.fbo:
25 arcade.draw_circle_filled(
26 SCREEN_WIDTH / 2,
27 SCREEN_HEIGHT / 2,
28 100,
29 arcade.color.AFRICAN_VIOLET
30)
31

32 # Create a simple shader program
33 self.prog = self.ctx.program(
34 vertex_shader="""
35 #version 330
36 in vec2 in_vert;
37 void main()
38 {
39 gl_Position = vec4(in_vert, 0., 1.);
40 }
41 """,
42 fragment_shader="""
43 #version 330
44 // Define input to access texture

(continues on next page)

15.7. Working With Shaders 295

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

45 uniform sampler2D t0;
46 out vec4 fragColor;
47 void main()
48 {
49 // Overwrite this pixel with the colour from its neighbour
50 ivec2 pos = ivec2(gl_FragCoord.xy) + ivec2(-1, -1);
51 fragColor = texelFetch(t0, pos, 0);
52 }
53 """
54)
55

56 # Register the texture uniform in the shader program
57 self.prog['t0'] = 0
58

59 def on_draw(self):
60 # Activate our new framebuffer to render to
61 with self.fbo:
62 # Bind our texture to the first channel
63 self.tex.use(0)
64

65 # Run the shader and render to the framebuffer
66 self.quad_fs.render(self.prog)
67

68 # Copy the framebuffer to the screen to display
69 self.ctx.copy_framebuffer(self.fbo, self.ctx.screen)
70

71

72 app = MyWindow()
73 arcade.run()

296 Chapter 15. Shaders

CHAPTER

SIXTEEN

MAKING A MENU WITH ARCADE’S GUI

This tutorial shows how to use most of arcade’s gui’s widgets.

16.1 Step 1: Open a Window

First, let’s start a blank window with a view.

Listing 1: Opening a Window

1 """
2 Menu.
3

4 Shows the usage of almost every gui widget, switching views and making a modal.
5 """
6 import arcade
7

8 # Screen title and size
9 SCREEN_WIDTH = 800

10 SCREEN_HEIGHT = 600
11 SCREEN_TITLE = "Making a Menu"
12

13

14 class MainView(arcade.View):
(continues on next page)

297

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

15 """ Main application class."""
16

17 def __init__(self):
18 super().__init__()
19

20 def on_show_view(self):
21 """ This is run once when we switch to this view """
22 arcade.set_background_color(arcade.color.DARK_BLUE_GRAY)
23

24 def on_draw(self):
25 """ Render the screen. """
26 # Clear the screen
27 self.clear()
28

29

30 def main():
31 window = arcade.Window(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE, resizable=True)
32 main_view = MainView()
33 window.show_view(main_view)
34 arcade.run()
35

36

37 if __name__ == "__main__":
38 main()

16.2 Step 2: Switching to Menu View

For this section we will switch the current view of the window to the menu view.

298 Chapter 16. Making a Menu with Arcade’s GUI

Python Arcade Library, Release 3.0.0.dev26

16.2.1 Imports

First we will import the arcade gui:

Listing 2: Importing arcade.gui

Shows the usage of almost every gui widget, switching views and making a modal.
"""

16.2.2 Modify the MainView

We are going to add a button to change the view. For drawing a button we would need a UIManager.

Listing 3: Intialising the Manager

"""This is the class where your normal game would go."""

def __init__(self):
super().__init__()

After initialising the manager we need to enable it when the view is shown and disable it when the view is hiddien.

Listing 4: Enabling the Manager

def on_show_view(self):
""" This is run once when we switch to this view """
arcade.set_background_color(arcade.color.DARK_BLUE_GRAY)

Enable the UIManager when the view is showm.
self.manager.enable()

Listing 5: Disabling the Manager

def on_hide_view(self):
Disable the UIManager when the view is hidden.
self.manager.disable()

We also need to draw the childrens of the menu in on_draw.

Listing 6: Drawing Children’s of the Manager

def on_draw(self):
""" Render the screen. """
Clear the screen
self.clear()

Draw the manager.
self.manager.draw()

Now we have successfully setup the manager, only thing left it to add the button. We are using UIAnchorLayout to
position the button. We also setup a function which is called when the button is clicked.

16.2. Step 2: Switching to Menu View 299

Python Arcade Library, Release 3.0.0.dev26

Listing 7: Initialising the Button

self.manager = arcade.gui.UIManager()

switch_menu_button = arcade.gui.UIFlatButton(text="Pause", width=250)

Initialise the button with an on_click event.
@switch_menu_button.event("on_click")
def on_click_switch_button(event):

Passing the main view into menu view as an argument.
menu_view = MenuView(self)
self.window.show_view(menu_view)

Use the anchor to position the button on the screen.
self.anchor = self.manager.add(arcade.gui.UIAnchorLayout())

self.anchor.add(
anchor_x="center_x",
anchor_y="center_y",

16.2.3 Initialise the Menu View

We make a boiler plate view just like we did in Step-1 for switiching the view when the pause button is clicked.

Listing 8: Initialise the Menu View

class MenuView(arcade.View):
"""Main menu view class."""

def __init__(self, main_view):
super().__init__()

self.manager = arcade.gui.UIManager()

self.main_view = main_view

def on_hide_view(self):
Disable the UIManager when the view is hidden.
self.manager.disable()

def on_show_view(self):
""" This is run once when we switch to this view """

Makes the background darker
arcade.set_background_color([rgb - 50 for rgb in arcade.color.DARK_BLUE_GRAY])

self.manager.enable()

def on_draw(self):
""" Render the screen. """

Clear the screen
(continues on next page)

300 Chapter 16. Making a Menu with Arcade’s GUI

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

self.clear()
self.manager.draw()

16.2.4 Program Listings

• menu_02 ← Where we are right now

• menu_02_diff ← What we changed to get here

16.3 Step 3: Setting Up the Menu View

In this step we will setup the display buttons of the actual menu. The code written in this section is written for MenuView

16.3.1 Initialising the Buttons

First we setup buttons for resume, starting a new game, volume, options and exit.

16.3. Step 3: Setting Up the Menu View 301

Python Arcade Library, Release 3.0.0.dev26

Listing 9: Initialising the Buttons

self.manager = arcade.gui.UIManager()

resume = arcade.gui.UIFlatButton(text="Resume", width=150)
start_new_game = arcade.gui.UIFlatButton(text="Start New Game", width=150)
volume = arcade.gui.UIFlatButton(text="Volume", width=150)
options = arcade.gui.UIFlatButton(text="Options", width=150)

16.3.2 Displaying the Buttons in a Grid

After setting up the buttons we add them to UIGridLayout, so that they can displayed in a grid like manner.

Listing 10: Setting up the Grid

exit = arcade.gui.UIFlatButton(text="Exit", width=320)

Initialise a grid in which widgets can be arranged.
self.grid = arcade.gui.UIGridLayout(column_count=2, row_count=3, horizontal_

→˓spacing=20, vertical_spacing=20)

Adding the buttons to the layout.
self.grid.add(resume, col_num=0, row_num=0)
self.grid.add(start_new_game, col_num=1, row_num=0)
self.grid.add(volume, col_num=0, row_num=1)
self.grid.add(options, col_num=1, row_num=1)
self.grid.add(exit, col_num=0, row_num=2, col_span=2)

self.anchor = self.manager.add(arcade.gui.UIAnchorLayout())

self.anchor.add(
anchor_x="center_x",
anchor_y="center_y",

Final code for the __init__ method after these.

Listing 11: __init__

def __init__(self, main_view):
super().__init__()

self.manager = arcade.gui.UIManager()

resume = arcade.gui.UIFlatButton(text="Resume", width=150)
start_new_game = arcade.gui.UIFlatButton(text="Start New Game", width=150)
volume = arcade.gui.UIFlatButton(text="Volume", width=150)
options = arcade.gui.UIFlatButton(text="Options", width=150)

exit = arcade.gui.UIFlatButton(text="Exit", width=320)

Initialise a grid in which widgets can be arranged.
self.grid = arcade.gui.UIGridLayout(column_count=2, row_count=3, horizontal_

(continues on next page)

302 Chapter 16. Making a Menu with Arcade’s GUI

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

→˓spacing=20, vertical_spacing=20)

Adding the buttons to the layout.
self.grid.add(resume, col_num=0, row_num=0)
self.grid.add(start_new_game, col_num=1, row_num=0)
self.grid.add(volume, col_num=0, row_num=1)
self.grid.add(options, col_num=1, row_num=1)
self.grid.add(exit, col_num=0, row_num=2, col_span=2)

self.anchor = self.manager.add(arcade.gui.UIAnchorLayout())

self.anchor.add(
anchor_x="center_x",
anchor_y="center_y",
child=self.grid,

)

self.main_view = main_view

16.3.3 Program Listings

• menu_03 ← Where we are right now

• menu_03_diff ← What we changed to get here

16.4 Step 4: Configuring the Menu Buttons

We basically add event listener for on_click for buttons.

16.4. Step 4: Configuring the Menu Buttons 303

Python Arcade Library, Release 3.0.0.dev26

16.4.1 Adding on_click Callback for Resume, Start New Game and Exit

First we will add the event listener to resume, start_new_game and exit button as they don’t have much to explain.

Listing 12: Adding callback for button events 1

self.main_view = main_view

@resume_button.event("on_click")
def on_click_resume_button(event):

Pass already created view because we are resuming.
self.window.show_view(self.main_view)

@start_new_game_button.event("on_click")
def on_click_start_new_game_button(event):

Create a new view because we are starting a new game.
main_view = MainView()
self.window.show_view(main_view)

@exit_button.event("on_click")

16.4.2 Adding on_click Callback for Volume and Options

Now we need to implement an actual menu for volume and options, for that we have to make a class that acts like a
window. Using UIMouseFilterMixin we catch all the events happening for the parent and respond nothing to them.
Thus making it act like a window/view.

Listing 13: Making a Fake Window.

class SubMenu(arcade.gui.UIMouseFilterMixin, arcade.gui.UIAnchorLayout):
"""Acts like a fake view/window."""

def __init__(self,):
super().__init__(size_hint=(1, 1))

Setup frame which will act like the window.
frame = self.add(arcade.gui.UIAnchorLayout(width=300, height=400, size_

→˓hint=None))
frame.with_padding(all=20)

Add a background to the window.
frame.with_background(texture=arcade.gui.NinePatchTexture(

left=7,
right=7,
bottom=7,
top=7,
texture=arcade.load_texture(

":resources:gui_basic_assets/window/dark_blue_gray_panel.png"
)

))

back_button = arcade.gui.UIFlatButton(text="Back", width=250)
The type of event listener we used earlier for the button will not work here.

(continues on next page)

304 Chapter 16. Making a Menu with Arcade’s GUI

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

back_button.on_click = self.on_click_back_button

Internal widget layout to handle widgets in this class.
widget_layout = arcade.gui.UIBoxLayout(align="left", space_between=10)

widget_layout.add(back_button)

frame.add(child=widget_layout, anchor_x="center_x", anchor_y="top")

def on_click_back_button(self, event):
Removes the widget from the manager.
After this the manager will respond to its events like it previously did.
self.parent.remove(self)

We have got ourselves a fake window currently. We now, pair it up with the volume and options button to trigger it
when they are clicked.

Listing 14: Adding callback for button events 2

arcade.exit()

@volume_button.event("on_click")
def on_click_volume_button(event):

volume_menu = SubMenu()
self.manager.add(

volume_menu,
layer=1

)

@options_button.event("on_click")
def on_click_options_button(event):

options_menu = SubMenu()
self.manager.add(

options_menu,

16.4.3 Program Listings

• menu_04 ← Where we are right now

• menu_04_diff ← What we changed to get here

16.4. Step 4: Configuring the Menu Buttons 305

Python Arcade Library, Release 3.0.0.dev26

16.5 Step 5: Finalising the Fake Window aka the Sub Menu

We finalise the menu or you can call it the last step!

16.5.1 Editing the Parameters for the Sub Menu

We will edit the parameters for the sub menu to suit our needs. Will explain later why are those parameters needed.

Listing 15: Editing parameters

self.clear()
self.manager.draw()

We also need to change accordingly the places where we have used this class i.e options and volume on_click event
listener. The layer parameter being set 1, means that this layer is always drawn on top i.e its the first layer.

Listing 16: Editing arguments

@exit_button.event("on_click")
def on_click_exit_button(event):

arcade.exit()

@volume_button.event("on_click")
(continues on next page)

306 Chapter 16. Making a Menu with Arcade’s GUI

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

def on_click_volume_button(event):
volume_menu = SubMenu(

"Volume Menu", "How do you like your volume?", "Enable Sound",
["Play: Rock", "Play: Punk", "Play: Pop"],
"Adjust Volume",

)
self.manager.add(

volume_menu,
layer=1

)

@options_button.event("on_click")
def on_click_options_button(event):

options_menu = SubMenu(
"Funny Menu", "Too much fun here", "Fun?",
["Make Fun", "Enjoy Fun", "Like Fun"],
"Adjust Fun",

)

Now you might be getting a little idea why we have edited the parameters but
follow on to actually know the reason.

16.6 Adding a Title label

We will be adding a UILabel that explains the menu. UISpace is a widget that can be used to add space around some
widget, you can set its color to the background color so it appears invisible.

Listing 17: Adding title label

back_button = arcade.gui.UIFlatButton(text="Back", width=250)
The type of event listener we used earlier for the button will not work here.
back_button.on_click = self.on_click_back_button

Adding it to the widget layout.

16.6. Adding a Title label 307

Python Arcade Library, Release 3.0.0.dev26

Listing 18: Adding title label to the layout

style_dict = {"press": pressed_style, "normal": default_style, "hover": default_
→˓style, "disabled": default_style}

Configuring the styles is optional.
slider = arcade.gui.UISlider(value=50, width=250, style=style_dict)

16.6.1 Adding a Input Field

We will use UIInputText to add an input field. The with_border() function creates a border around the widget
with color(default argument is black) black and thickness(default argument is 2px) 2px. Add this just below the title
label.

Listing 19: Adding input field

title_label = arcade.gui.UILabel(text=title, align="center", font_size=20,␣
→˓multiline=False)

Adding it to the widget layout.

Listing 20: Adding input field to the layout

style_dict = {"press": pressed_style, "normal": default_style, "hover": default_
→˓style, "disabled": default_style}

Configuring the styles is optional.
slider = arcade.gui.UISlider(value=50, width=250, style=style_dict)

If you paid attention when we defined the input_text variable we passed the text parameter with our
input_text_default argument. We basically added those parameters in our sub menu so that it can be used by
both volume and options button, with texts respecting their names. We will repeat this again in the last also for those
of you who are skipping through this section :P.

16.6.2 Adding a Toggle Button

Don’t go on the section title much, in arcade the UITextureToggle is not really a button it switches between two
textures when clicked. Yes, it functions like a button but by “is not really a button” we meant that it doesn’t inherits the
button class. We also pair it up horizontally with the toggle label.

Listing 21: Adding toggle button

Load the on-off textures.
on_texture = arcade.load_texture(":resources:gui_basic_assets/toggle/circle_

→˓switch_on.png")
off_texture = arcade.load_texture(":resources:gui_basic_assets/toggle/circle_

→˓switch_off.png")

Create the on-off toggle and a label
toggle_label = arcade.gui.UILabel(text=toggle_label)
toggle = arcade.gui.UITextureToggle(

on_texture=on_texture,
off_texture=off_texture,

(continues on next page)

308 Chapter 16. Making a Menu with Arcade’s GUI

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

width=20,
height=20

)

Adding it to the widget layout. Add this line after you have added the input field.

Listing 22: Adding toggle button to the layout

widget_layout = arcade.gui.UIBoxLayout(align="left", space_between=10)

16.6.3 Adding a Dropdown

We add a dropdown by using UIDropdown.

Listing 23: Adding dropdown

toggle_group = arcade.gui.UIBoxLayout(vertical=False, space_between=5)
toggle_group.add(toggle)

Adding it to the widget layout.

Listing 24: Adding dropdown to the layout

widget_layout.add(title_label)

16.6.4 Adding a Slider

The final widget. In arcade you can use UISlider to implement a slider. Theres a functionality to style the slider, this
is also present for UIFlatButton and UITextureButton.

Listing 25: Adding slider

Create dropdown with a specified default.

Adding it to the widget layout.

16.6. Adding a Title label 309

Python Arcade Library, Release 3.0.0.dev26

Listing 26: Adding slider to the layout

widget_layout.add(title_label_space)
widget_layout.add(input_text_widget)

16.6.5 Finishing touches

As we mentioned earlier, to explain the use of those parameters to the class. We basically used them so it can be used
by both options and volume as we wanted to have different text for both. For those who have read the full tutorial
line-by-line; ‘They will never know’. :D. We also recommend to see the full code for this section.

16.6.6 Program Listings

• menu_05 ← Where we are right now

• menu_05_diff ← What we changed to get here

310 Chapter 16. Making a Menu with Arcade’s GUI

CHAPTER

SEVENTEEN

WORKING WITH FRAMEBUFFER OBJECTS

Start with a simple window:

Listing 1: Starting template

1 import arcade
2

3 SCREEN_WIDTH = 800
4 SCREEN_HEIGHT = 600
5 SCREEN_TITLE = "Frame Buffer Object Demo"
6

7

8 class MyGame(arcade.Window):
9

10 def __init__(self, width, height, title):
11 super().__init__(width, height, title)
12

13 self.background_color = arcade.color.ALMOND
14

15 def setup(self):
16 pass
17

18 def on_draw(self):
19 self.clear()
20

21

22 def main():
23 """ Main function """
24 window = MyGame(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)
25 window.setup()
26 arcade.run()
27

28

29 if __name__ == "__main__":
30 main()

Then create a simple program with a frame buffer:

Listing 2: Pass-through frame buffer

1 import arcade
2 from arcade.experimental.texture_render_target import RenderTargetTexture

(continues on next page)

311

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

3

4 SCREEN_WIDTH = 800
5 SCREEN_HEIGHT = 600
6 SCREEN_TITLE = "Starting Template Simple"
7

8

9 class RandomFilter(RenderTargetTexture):
10 def __init__(self, width, height):
11 super().__init__(width, height)
12 self.program = self.ctx.program(
13 vertex_shader="""
14 #version 330
15

16 in vec2 in_vert;
17 in vec2 in_uv;
18 out vec2 uv;
19

20 void main() {
21 gl_Position = vec4(in_vert, 0.0, 1.0);
22 uv = in_uv;
23 }
24 """,
25 fragment_shader="""
26 #version 330
27

28 uniform sampler2D texture0;
29

30 in vec2 uv;
31 out vec4 fragColor;
32

33 void main() {
34 vec4 color = texture(texture0, uv);
35 fragColor = color;
36 }
37 """,
38)
39

40 def use(self):
41 self._fbo.use()
42

43 def draw(self):
44 self.texture.use(0)
45 self._quad_fs.render(self.program)
46

47

48 class MyGame(arcade.Window):
49

50 def __init__(self, width, height, title):
51 super().__init__(width, height, title)
52 self.filter = RandomFilter(width, height)
53

54 def on_draw(self):

(continues on next page)

312 Chapter 17. Working With FrameBuffer Objects

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

55 self.clear()
56 self.filter.clear()
57 self.filter.use()
58 arcade.draw_circle_filled(self.width / 2, self.height / 2, 100, arcade.color.RED)
59 arcade.draw_circle_filled(400, 300, 100, arcade.color.GREEN)
60

61 self.use()
62 self.filter.draw()
63

64

65 def main():
66 """ Main function """
67 MyGame(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)
68 arcade.run()
69

70

71 if __name__ == "__main__":
72 main()
73

Now, color everything that doesn’t have an alpha of zero as green:

Listing 3: Pass-through frame buffer

1 import arcade
2 from arcade.experimental.texture_render_target import RenderTargetTexture
3

4 SCREEN_WIDTH = 800
5 SCREEN_HEIGHT = 600
6 SCREEN_TITLE = "Starting Template Simple"
7

8

9 class RandomFilter(RenderTargetTexture):
10 def __init__(self, width, height):
11 super().__init__(width, height)
12 self.program = self.ctx.program(
13 vertex_shader="""
14 #version 330
15

16 in vec2 in_vert;
17 in vec2 in_uv;
18 out vec2 uv;
19

20 void main() {
21 gl_Position = vec4(in_vert, 0.0, 1.0);
22 uv = in_uv;
23 }
24 """,
25 fragment_shader="""
26 #version 330
27

28 uniform sampler2D texture0;
(continues on next page)

313

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

29

30 in vec2 uv;
31 out vec4 fragColor;
32

33 void main() {
34 vec4 color = texture(texture0, uv);
35

36 if (color.a > 0)
37 fragColor = vec4(0, 1, 0, 1.0);
38 else
39 fragColor = vec4(0, 0, 0, 0);
40 }
41 """,
42)
43

44 def use(self):
45 self._fbo.use()
46

47 def draw(self):
48 self.texture.use(0)
49 self._quad_fs.render(self.program)
50

51

52 class MyGame(arcade.Window):
53

54 def __init__(self, width, height, title):
55 super().__init__(width, height, title)
56 self.filter = RandomFilter(width, height)
57

58 def on_draw(self):
59 self.clear()
60 self.filter.clear()
61 self.filter.use()
62 arcade.draw_circle_filled(self.width / 2, self.height / 2, 100, arcade.color.RED)
63

64 self.use()
65 self.filter.draw()
66

67

68 def main():
69 """ Main function """
70 MyGame(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)
71 arcade.run()
72

73

74 if __name__ == "__main__":
75 main()

Something about passing uniform data to the shader:

314 Chapter 17. Working With FrameBuffer Objects

Python Arcade Library, Release 3.0.0.dev26

Listing 4: Pass-through frame buffer

1 import arcade
2 from arcade.experimental.texture_render_target import RenderTargetTexture
3

4 SCREEN_WIDTH = 800
5 SCREEN_HEIGHT = 600
6 SCREEN_TITLE = "Starting Template Simple"
7

8

9 class RandomFilter(RenderTargetTexture):
10 def __init__(self, width, height):
11 super().__init__(width, height)
12 self.program = self.ctx.program(
13 vertex_shader="""
14 #version 330
15

16 in vec2 in_vert;
17 in vec2 in_uv;
18 out vec2 uv;
19

20 void main() {
21 gl_Position = vec4(in_vert, 0.0, 1.0);
22 uv = in_uv;
23 }
24 """,
25 fragment_shader="""
26 #version 330
27

28 uniform sampler2D texture0;
29

30 in vec2 uv;
31 uniform vec4 my_color;
32 out vec4 fragColor;
33

34 void main() {
35 vec4 color = texture(texture0, uv);
36

37 if (color.a > 0)
38 fragColor = my_color;
39 else
40 fragColor = vec4(0, 0, 0, 0);
41 }
42 """,
43)
44 self.program["my_color"] = 1, 0, 1, 1
45

46 def use(self):
47 self._fbo.use()
48

49 def draw(self):
50 self.texture.use(0)
51 self._quad_fs.render(self.program)

(continues on next page)

315

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

52

53

54 class MyGame(arcade.Window):
55

56 def __init__(self, width, height, title):
57 super().__init__(width, height, title)
58 self.filter = RandomFilter(width, height)
59

60 def on_draw(self):
61 self.clear()
62 self.filter.clear()
63 self.filter.use()
64 arcade.draw_circle_filled(self.width / 2, self.height / 2, 100, arcade.color.RED)
65

66 self.use()
67 self.filter.draw()
68

69

70 def main():
71 """ Main function """
72 MyGame(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)
73 arcade.run()
74

75

76 if __name__ == "__main__":
77 main()

316 Chapter 17. Working With FrameBuffer Objects

CHAPTER

EIGHTEEN

DRAWING & USING SPRITES

Most games built with Arcade will use sprites and sprite lists to draw image data. This section of the programming
guide will help you achieve that by covering:

• What sprites & sprite lists are

• The essentials of how to use them

• How to get started with images

• Non-drawing features such as collisions

• Overviews of various advanced techniques

Beginners should start by reading & following What’s a Sprite? page (~10 minute read). If you get stuck, see How to
Get Help.

18.1 Contents

18.1.1 What’s a Sprite?

Each sprite describes where a game object is & how to draw it. This includes:

• Where it is in the world

• Where to find the image data

• How big the image should be

The rest of this page will explain using the SpriteList class to draw sprites to the screen.

18.1.2 Why SpriteLists?

They’re How Hardware Works

Graphics hardware is designed to draw groups of objects at the same time. These groups are called batches.
Each SpriteList automatically translates every Sprite in it into an optimized batch. It doesn’t matter if a batch has
one or hundreds of sprites: it still takes the same amount of time to draw!

This means that using fewer batches helps your game run faster, and that you should avoid trying to draw sprites one at
a time.

317

Python Arcade Library, Release 3.0.0.dev26

They Help Develop Games Faster

Sprite lists do more than just draw. They also have built-in features which save you time & effort, including:

• Automatically skipping off-screen sprites

• Collision detection

• Debug drawing for hit boxes

18.1.3 Drawing with Sprites and SpriteLists

Let’s get to the example code.

There are 3 steps to drawing sprites with a sprite list:

1. Create a SpriteList

2. Create & append your Sprite instance(s) to the list

3. Call draw() on your SpriteList inside an on_draw() method

Here’s a minimal example:

Listing 1: sprite_minimal.py

1 """
2 Minimal Sprite Example
3

4 Draws a single sprite in the middle screen.
5

6 If Python and Arcade are installed, this example can be run from the command line with:
7 python -m arcade.examples.sprite_minimal
8 """
9 import arcade

10

11

12 class WhiteSpriteCircleExample(arcade.Window):
13

14 def __init__(self):
15 super().__init__(800, 600, "White SpriteCircle Example")
16 self.sprites = None
17 self.setup()
18

19 def setup(self):
20 # 1. Create the SpriteList
21 self.sprites = arcade.SpriteList()
22

23 # 2. Create & append your Sprite instance to the SpriteList
24 self.circle = arcade.SpriteCircle(30, arcade.color.WHITE) # 30 pixel radius␣

→˓circle
25 self.circle.position = self.width // 2, self.height // 2 # Put it in the middle
26 self.sprites.append(self.circle) # Append the instance to the SpriteList
27

28 def on_draw(self):
29 # 3. Call draw() on the SpriteList inside an on_draw() method
30 self.sprites.draw()

(continues on next page)

318 Chapter 18. Drawing & Using Sprites

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

31

32

33 if __name__ == "__main__":
34 game = WhiteSpriteCircleExample()
35 game.run()

Using Images with Sprites

Beginners should see the following to learn more, such as how to load images into sprites:

• Arcade’s Sprite examples

• Arcade’s Simple Platformer Tutorial

• The Sprite API documentation

Viewports, Cameras, and Screens

Intermediate users can move past the limitations of arcade.Window with the following classes:

• arcade.Camera (examples) to control which part of game space is drawn

• arcade.View (examples) for start, end, and menu screens

18.1.4 Advanced SpriteList Techniques

This page provides overviews of advanced techniques. Runnable examples are not guaranteed, as the reader is expected
to be able to put the work into implementing them.

Beginners should be careful of the following sections. Some of these techniques can slow down or crash your game if
misused.

Draw Order & Sorting

In some cases, you can combine two features of SpriteList:

• By default, SpriteLists draw starting from their lowest index.

• SpriteList has a sort() method nearly identical to list.sort().

First, Consider Alternatives

Sorting in Python is a slow, CPU-bound function. Consider the following techniques to eliminate or minimize this cost:

• Use multiple sprite lists or arcade.Scene to achieve layering

• Chunk your game world into smaller regions with sprite lists for each, and only sort when something inside
moves or changes

• Use the Sprite.depth attribute with shaders to sort on the GPU

For a conceptual overview of chunks as used in a commercial 2D game, please see the following:

• Chunks in Factorio

18.1. Contents 319

https://docs.python.org/3/library/stdtypes.html#list.sort
https://wiki.factorio.com/Map_structure#Chunk

Python Arcade Library, Release 3.0.0.dev26

Sorting SpriteLists

Although the alternative listed above are often better, sorting sprite lists to control draw order can still be useful.

Like Python’s built-in list.sort(), you can pass a callable object via the key argument to specify how to sort, along
with an optional reverse keyword to reverse the direction of sorting.

Here’s an example of how you could use sorting to quickly create an inefficient prototype:

import random
import arcade

Warning: the bottom property is extra slow compared to other attributes!
def bottom_edge_as_sort_key(sprite):

return sprite.bottom

class InefficientTopDownGame(arcade.Window):
"""
Uses sorting to allow the player to move in front of & behind shrubs

For non-prototyping purposes, other approaches will be better.
"""

def __init__(self, num_shrubs=50):
super().__init__(800, 600, "Inefficient Top-Down Game")

self.background_color = arcade.color.SAND
self.shrubs = arcade.SpriteList()
self.drawable = arcade.SpriteList()

Randomly place pale green shrubs around the screen
for i in range(num_shrubs):

shrub = arcade.SpriteSolidColor(20, 40, color=arcade.color.BUD_GREEN)
shrub.position = random.randrange(self.width), random.randrange(self.height)
self.shrubs.append(shrub)
self.drawable.append(shrub)

self.player = arcade.SpriteSolidColor(16, 30, color=arcade.color.RED)
self.drawable.append(self.player)

def on_mouse_motion(self, x, y, dx, dy):
Update the player position
self.player.position = x, y
Sort the sprites so the highest on the screen draw first
self.drawable.sort(key=bottom_edge_as_sort_key, reverse=True)

def on_draw(self):
self.clear()
self.drawable.draw()

game = InefficientTopDownGame()
(continues on next page)

320 Chapter 18. Drawing & Using Sprites

https://docs.python.org/3/library/stdtypes.html#list.sort
https://docs.python.org/3/library/functions.html#callable

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

game.run()

Custom Texture Atlases

A TextureAtlas represents Texture data packed side-by-side in video memory. As textures are added, the atlas
grows to fit them all into the same portion of your GPU’s memory.

By default, each SpriteList uses the same default atlas. Use the atlas keyword argument to specify a custom atlas
for an instance.

This is especially useful to prevent problems when using large or oddly shaped textures.

Please see the following for more information:

• Custom Atlas

• The TextureAtlas API documentation

Lazy SpriteLists

You can delay creating the OpenGL resources for a SpriteList by passing lazy=True on creation:

sprite_list = SpriteList(lazy=True)

The SpriteList won’t create the OpenGL resources until forced to by one of the following:

1. The first SpriteList.draw() call on it

2. SpriteList.initialize()

3. GPU-backed collisions, if enabled

This behavior is most useful in the following cases:

Case Primary Purpose
Creating SpriteLists before a Win-
dow

CPU-only unit tests which never draw

Parallelized SpriteList creation Faster loading & world generation via threading or subprocess &
pickle

Parallelized Loading

To increase loading speed & reduce stutters during gameplay, you can run pre-gameplay tasks in parallel, such as
pre-generating maps or pre-loading assets from disk into RAM.

Warning: Only the main thread is allowed to access OpenGL!

Attempting to access OpenGL from non-main threads will raise an OpenGL Error!

To safely implement parallel loading, you will want to use the following general approach before allowing gameplay to
begin:

1. Pass lazy=True when creating SpriteList instances in your loading code as described above

18.1. Contents 321

https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/threading.html#module-threading
https://docs.python.org/3/library/subprocess.html#module-subprocess
https://docs.python.org/3/library/pickle.html#module-pickle

Python Arcade Library, Release 3.0.0.dev26

2. Sync the SpriteList data back to the main thread or process once loading is finished

3. Inside the main thread, call Spritelist.initialize() on each sprite list once it’s ready to allocate GPU
resources

Very advanced users can use subprocess to create SpriteLists inside another process and the pickle module to help
pass data back to the main process.

Please see the following for additional information:

• Arcade’s OpenGL notes for arcade-specific threading considerations

• Python’s threading documentation

• Python’s subprocess and pickle documentation

18.2 I’m Impatient!

Beginners should at least skim What’s a Sprite? (~10 minute read), but you can skip to the tutorials and full example
code if you’d like:

• Drawing with Sprites and SpriteLists

• Arcade’s Sprite Examples

• Arcade’s Simple Platformer Tutorial

322 Chapter 18. Drawing & Using Sprites

https://docs.python.org/3/library/subprocess.html#module-subprocess
https://docs.python.org/3/library/pickle.html#module-pickle
https://docs.python.org/3/library/threading.html#module-threading
https://docs.python.org/3/library/subprocess.html#module-subprocess
https://docs.python.org/3/library/pickle.html#module-pickle

CHAPTER

NINETEEN

KEYBOARD

19.1 Events

19.1.1 What is a keyboard event?

Keyboard events are arcade’s representation of physical keyboard interactions.

For example, if your keyboard is working correctly and you type the letter A into the window of a running arcade game,
it will see two separate events:

1. a key press event with the key code for A

2. a key release event with the key code for A

19.1.2 How do I handle keyboard events?

You must implement key event handlers. These functions are called whenever a key event is detected:

• arcade.Window.on_key_press()

• arcade.Window.on_key_release()

You need to implement your own versions of the above methods on your subclass of arcade.Window. The arcade.key
module contains constants for specific keys.

For runnable examples, see the following:

• sprite_move_keyboard

• sprite_move_keyboard_better

• sprite_move_keyboard_accel

Note: If you are using Views, you can also implement key event handler methods on them.

323

Python Arcade Library, Release 3.0.0.dev26

19.2 Modifiers

19.2.1 What is a modifier?

Modifiers are keys that modify the behavior of keyboard input. Examples include keys such as shift, control, and
command. Lock keys such as capslock are also modifiers.

19.2.2 What does active mean?

Modifiers can be active in two ways:

1. A modifier key is currently held down by the user (example: shift)

2. A lock modifier is currently turned on (example: capslock)

This is important because lock modifiers can be active without their corresponding key held down. Instead, they are
switched on and off by pressing their keys.

19.2.3 How do I use modifiers?

As long as you don’t need to distinguish between the left and right versions of modifiers keys, you can rely on the
modifiers argument of key event handlers.

For every key event, the current state of all modifiers is passed to the handler method through the modifiers argument
as a single integer. For each active modifier during an event, a corresponding bit is set to 1.

Constants for each of these bits are defined in arcade.key:

MOD_SHIFT
MOD_CTRL
MOD_ALT Not available on Mac OS X
MOD_WINDOWS Available on Windows only
MOD_COMMAND Available on Mac OS X only
MOD_OPTION Available on Mac OS X only
MOD_CAPSLOCK
MOD_NUMLOCK
MOD_SCROLLLOCK
MOD_ACCEL Equivalent to MOD_CTRL, or MOD_COMMAND on Mac OS X.

You can use these constants with bitwise operations to check if a specific modifier is active during a keyboard event:

this should be implemented on a subclass of Window or View
def on_key_press(self, symbol, modifiers):

if modifiers & arcade.key.MOD_SHIFT:
print("The shift key is held down")

if modifiers & arcade.key.MOD_CAPSLOCK:
print("Capslock is on")

324 Chapter 19. Keyboard

Python Arcade Library, Release 3.0.0.dev26

19.2.4 How do I tell left & right modifers apart?

Many keyboards have both left and right versions of modifiers such as shift and control. However, the modifiers
argument to key handlers does not tell you which specific modifier keys are currently pressed!

Instead, you have to use specific key codes for left and right versions from arcade.key to track press and release events.

19.2. Modifiers 325

Python Arcade Library, Release 3.0.0.dev26

326 Chapter 19. Keyboard

CHAPTER

TWENTY

SOUND

This page will help you get started by covering the essentials of sound.

In addition each section’s concepts, there may also be links to example code and documentation.

1. Why Is Sound Important?

2. Sound Basics

• Loading Sounds

• Playing Sounds

• Stopping Sounds

3. Streaming or Static Loading?

4. Advanced Playback Control

5. Cross-Platform Compatibility

6. Other Sound Libraries (for advanced users)

I’m Impatient!

Users who want to skip to example code should consult the following:

1. sound_demo

2. sound_speed_demo

3. music_control_demo

4. Platformer Tutorial - Step 9 - Adding Sound

20.1 Why Is Sound Important?

Sound helps players make sense of what they see.

For example, have you ever run into one of these common problems?

• Danger you never knew was there

• A character whose reaction seemed unexpected or out of place

• Items or abilities which appeared similar, but were very different

• An unclear warning or confirmation dialog

327

Python Arcade Library, Release 3.0.0.dev26

How much progress did it cost you? A few minutes? The whole playthrough? More importantly, how did you feel?
You probably didn’t want to keep playing.

You can use sound to prevent moments like these. In each example above, the right audio can provide the information
players need for the game to feel fair.

20.2 Sound Basics

20.2.1 Loading Sounds

Before you can play a sound, you need to load its data into memory.

Arcade provides two ways to do this. Both accept the same arguments and return an arcade.Sound instance.

The easiest way is to use arcade.load_sound():

import arcade

You can pass strings containing a built-in resource handle,
hurt_sound = arcade.load_sound(":resources:sounds/hurt1.wav")
a pathlib.Path,
pathlib_sound = arcade.load_sound(Path("imaginary\\windows\\path\\file.wav"))
or an ordinary string describing a path.
string_path_sound = arcade.load_sound("imaginary/mac/style/path.wav")

If you prefer a more object-oriented style, you can create Sound instances directly:

from arcade import Sound # You can also use arcade.Sound directly

Although Sound accepts the same arguments as load_sound,
only the built-in resource handle is shown here.
hurt_sound = Sound(":resources:sounds/hurt1.wav")

See the following to learn more:

1. Built-In Resources

2. pathlib

3. Streaming or Static Loading?

20.2.2 Playing Sounds

There are two easy ways to play a Sound object.

One is to call Sound.play directly:

self.hurt_player = hurt_sound.play()

The other is to pass a Sound instance as the first argument of arcade.play_sound():

Important: this *must* be a Sound instance, not a path or string!
self.hurt_player = arcade.play_sound(hurt_sound)

Both return a pyglet.media.player.Player. You should store it somewhere if you want to be able to stop or alter
a specific playback of a Sound’s data.

328 Chapter 20. Sound

https://docs.python.org/3/library/pathlib.html#module-pathlib
https://pyglet.readthedocs.io/en/latest/modules/media.html#pyglet.media.player.Player

Python Arcade Library, Release 3.0.0.dev26

arcade.Sound vs pyglet’s Player

This is a very important distinction:

• An arcade.Sound is a source of audio data in memory

• Starting a playback of audio data returns a new pyglet Player which controls that specific playback

Imagine you have two non-player characters (NPCs) in a game which both play the same selection of Sound data. Since
they are separate characters in the world, their playbacks of the data must be independent. To do this, each NPC will
keep the pyglet Player returned when they start playing a sound.

For example, an NPC may get close enough to the user’s character to talk, attack, or perform some other action which
requires playing a different sound. You would handle this as follows:

1. Use the approaching NPC’s pyglet Player to stop its current playback

2. If the NPC starts playing a different sound, store the returned pyglet Player

This is especially important when a dangerous NPC or other hazard can be invisible. Making invisible hazards play
sounds is one of the easiest and most popular ways of making their gameplay feel balanced, fair, and fun.

See the following to learn more:

1. Why Is Sound Important?

2. sound_demo

20.2.3 Stopping Sounds

Arcade’s helper functions are the easiest way to stop playback. To use them:

1. Do one of the following:

• Pass the stored pyglet Player to arcade.stop_sound():

arcade.stop_sound(self.current_playback)

• Pass the stored pyglet Player to the sound’s stop() method:

self.hurt_sound.stop(self.current_playback)

2. Clear any references to the player to allow its memory to be freed:

For each object, Python tracks how many other objects use it. If
nothing else uses an object, it will be marked as garbage which
Python can delete automatically to free memory.
self.current_playback = None

See the following to learn more:

• The Most Reliable Formats & Features

• Advanced Playback Control

20.2. Sound Basics 329

https://pyglet.readthedocs.io/en/latest/modules/media.html#pyglet.media.player.Player
https://pyglet.readthedocs.io/en/latest/modules/media.html#pyglet.media.player.Player
https://pyglet.readthedocs.io/en/latest/modules/media.html#pyglet.media.player.Player
https://pyglet.readthedocs.io/en/latest/modules/media.html#pyglet.media.player.Player
https://pyglet.readthedocs.io/en/latest/modules/media.html#pyglet.media.player.Player
https://pyglet.readthedocs.io/en/latest/modules/media.html#pyglet.media.player.Player

Python Arcade Library, Release 3.0.0.dev26

20.3 Streaming or Static Loading?

Streaming Best1 Format Decompressed Best Uses
False (Default) .wav Whole file 2+ overlapping playbacks, short, repeated, unpredictable
True .mp3 Predicted data 1 copy & file at a time, long, uninterrupted

By default, arcade decompresses the entirety of each sound into memory.

This is the best option for most game sound effects. It’s called “static”2 audio because the data never changes.

The alternative is streaming. Enable it by passing True through the streaming keyword argument when you load a
sound:

Both loading approaches accept the streaming keyword.
classical_music_track = arcade.load_sound(":resources:music/1918.mp3", streaming=True)
funky_music_track = arcade.Sound(":resources:music/funkyrobot.mp3", streaming=True)

For an interactive example, see the music_control_demo.

The following subheadings will explain each option in detail.

20.3.1 Static Sounds are for Speed

Static sounds can help your game run smoothly by preloading data before gameplay.

This is because disk access is one of the slowest things a computer can do. Waiting for sounds to load during gameplay
can make the your game run slowly or stutter. The best way to prevent this is to load your sound data ahead of time.
Popular approaches for this include:

• Loading screens

• Small inter-level “rooms”

• Multi-threading (best used by experienced programmers)

Unless music is a central part of your gameplay, you should avoid storing fully decompressed albums of music in RAM.
Each decompressed minute of CD quality audio uses slightly over 10 MB of RAM. This adds up quickly, and can slow
down or freeze a computer if it fills RAM completely.

For music and long background audio, you should should strongly consider streaming from compressed files instead.

When to Use Static Sounds

If an audio file meets one or more of the following conditions, you may want to load it as static audio:

• You need to start playback quickly in response to gameplay.

• Two or more “copies” of the sound can be playing at the same time.

• You will unpredictably skip to different times in the file.

• You will unpredictably restart playback.

• You need to automatically loop playback.

• The file is a short clip.
1 See The Most Reliable Formats & Features to learn more.
2 See the pyglet.media.StaticSource class used by arcade.

330 Chapter 20. Sound

https://docs.python.org/3/glossary.html#term-argument
https://pyglet.readthedocs.io/en/latest/modules/media.html#pyglet.media.StaticSource

Python Arcade Library, Release 3.0.0.dev26

20.3.2 Streaming Saves Memory

Streaming audio from files is very similar to streaming video online.

Both save memory by keeping only part of a file into memory at any given time. Even on the slowest recent hardware,
this usually works if:

• You only stream one media source at a time.

• You don’t need to synchronize it closely with anything else.

When to Stream

The best way to use streaming is to only use it when you need it.

Advanced users may be able to handle streaming multiple tracks at a time. However, issues with synchronization &
interruptions will grow with the quantity and quality of the audio tracks involved.

If you’re unsure, avoid streaming unless you can say yes to all of the following:

1. The Sound will have at most one playback at a time.

2. The file is long enough to make it worth it.

3. Seeking (skipping to different parts) will be infrequent.

• Ideally, you will never seek or restart playback suddenly.

• If you do seek, the jumps will ideally be close enough to land in the same or next chunk.

See the following to learn more:

• Change Ongoing Playbacks via Player Objects

• The pyglet.media.StreamingSource class used to implement streaming

Streaming Can Cause Freezes

Failing to meet the requirements above can cause buffering issues.

Good compression on files can help, but it can’t fully overcome it. Each skip outside the currently loaded data requires
reading and decompressing a replacement.

In the worst-case scenario, frequent skipping will mean constantly buffering instead of playing. Although video stream-
ing sites can downgrade quality, your game will be at risk of stuttering or freezing.

The best way to handle this is to only use streaming when necessary.

20.4 Advanced Playback Control

Arcade’s functions for Stopping Sounds are convenience wrappers around the passed pyglet Player.

You can alter a playback of Sound data with more precision by:

• Using the properties and methods of its Player any time before playback has finished

• Passing keyword arguments with the same (or similar) names as the Player’s properties when playing the sound.

20.4. Advanced Playback Control 331

https://pyglet.readthedocs.io/en/latest/modules/media.html#pyglet.media.StreamingSource
https://pyglet.readthedocs.io/en/latest/modules/media.html#pyglet.media.player.Player
https://pyglet.readthedocs.io/en/latest/modules/media.html#pyglet.media.player.Player

Python Arcade Library, Release 3.0.0.dev26

20.4.1 Stopping via the Player Object

The simplest form of advanced control is pausing and resuming playback.

Pausing

There is no stop method. Instead, call the Player.pause() method:

Assume this is inside an Enemy class subclassing arcade.Sprite
self.current_player.pause()

Stopping Permanently

After you’ve paused a player, you can stop playback permanently:

1. Call the player’s delete() method:

Permanently deletes the operating system half of this playback.
self.current_player.delete()

This specific playback is now permanently over, but you can start new ones.

2. Make sure all references to the player are replaced with None:

Python will delete the pyglet Player once there are 0 references to it
self.current_player = None

For a more in-depth explanation of references and auto-deletion, skim the start of Python’s page on garbage collection.
Reading the Abstract section of this page should be enough to get started.

20.4.2 Changing Aspects of Playback

There are more ways to alter playback than stopping. Some are more qualitative. Many of them can be applied to both
new and ongoing sound data playbacks, but in different ways.

Change Ongoing Playbacks via Player Objects

Player.pause() is one of many method and property members which change aspects of an ongoing playback. It’s
impossible to cover them all here, especially given the complexity of positional audio.

Instead, the table below summarizes a few of the most useful members in the context of arcade. Superscripts link
info about potential issues, such as name differences between properties and equivalent keyword arguments to arcade
functions.

332 Chapter 20. Sound

https://pyglet.readthedocs.io/en/latest/modules/media.html#pyglet.media.player.Player.pause
https://pyglet.readthedocs.io/en/latest/modules/media.html#pyglet.media.player.Player.delete
https://devguide.python.org/internals/garbage-collector/
https://pyglet.readthedocs.io/en/latest/modules/media.html#pyglet.media.player.Player.pause

Python Arcade Library, Release 3.0.0.dev26

Player Member Type Default Purpose
pause() method N/A Pause playback resumably.
play() method N/A Resume paused playback.
seek() method N/A

Warning:
Us-
ing
this
op-
tion
with
stream-
ing
can
cause
freezes!

Skip to the passed float
timestamp measured as
seconds from the audio’s
start.

volume float property 1.0 The scaling factor to apply
to the original audio’s vol-
ume. Must be between 0.
0 (silent) and 1.0 (full vol-
ume).

loop3 bool property False Whether to restart play-
back automatically after
finishing.4

pitch5 float property 1.0 How fast to play the sound
data; also affects pitch.

Configure New Playbacks via Keyword Arguments

Arcade’s helper functions for playing sound also accept keyword arguments for configuring playback. As mentioned
above, the names of these keywords are similar or identical to those of properties on Player. See the following to learn
more:

• arcade.play_sound()

• Sound.play()

• sound_speed_demo
3 arcade.play_sound() uses looping instead. See:

• Configure New Playbacks via Keyword Arguments

• The related GitHub issue.

4 Looping is unavailable when streaming=True; see pyglet’s guide to controlling playback.
5 Arcade’s equivalent keyword for Playing Sounds is speed

20.4. Advanced Playback Control 333

https://pyglet.readthedocs.io/en/latest/modules/media.html#pyglet.media.player.Player
https://pyglet.readthedocs.io/en/latest/modules/media.html#pyglet.media.player.Player.pause
https://pyglet.readthedocs.io/en/latest/modules/media.html#pyglet.media.player.Player.play
https://pyglet.readthedocs.io/en/latest/modules/media.html#pyglet.media.player.Player.seek
https://docs.python.org/3/library/functions.html#float
https://pyglet.readthedocs.io/en/latest/modules/media.html#pyglet.media.player.Player.volume
https://docs.python.org/3/library/functions.html#float
https://pyglet.readthedocs.io/en/latest/modules/media.html#pyglet.media.player.Player.loop
https://docs.python.org/3/library/functions.html#bool
https://pyglet.readthedocs.io/en/latest/modules/media.html#pyglet.media.player.Player.pitch
https://docs.python.org/3/library/functions.html#float
https://pyglet.readthedocs.io/en/latest/modules/media.html#pyglet.media.player.Player
https://github.com/pythonarcade/arcade/issues/1915
https://pyglet.readthedocs.io/en/latest/programming_guide/media.html#controlling-playback

Python Arcade Library, Release 3.0.0.dev26

20.5 Cross-Platform Compatibility

The sections below cover the easiest approach to compatibility.

You can try other options if you need to. Be aware that doing so requires grappling with the many factors affecting
audio compatibility:

1. The formats which can be loaded

2. The features supported by playback

3. The hardware, software, and settings limitations on the first two

4. The interactions of project requirements with all of the above

20.5.1 The Most Reliable Formats & Features

For most users, the best approach to formats is:

• Use 16-bit PCM Wave (.wav) files for sound effects

• Use MP3 files for long background audio like music

As long as a user has working audio hardware and drivers, the following basic features should work:

1. Loading Sounds sound effects from Wave files

2. Playing Sounds and Stopping Sounds

3. Adjusting playback volume and speed of playback

Advanced functionality or subsets of it may not, especially positional audio. To learn more, see the rest of this page
and pyglet’s guide to supported media types.

Why 16-bit PCM Wave for Effects?

Storing sound effects as 16-bit PCM .wav ensures all users can load them:

1. pyglet has built-in in support for this format

2. Some platforms can only play 16-bit audio

The files must also be mono rather than stereo if you want to use positional audio.

Accepting these limitations is usually worth the compatibility benefits, especially as a beginner.

Why MP3 For Music and Ambiance?

1. Nearly every system which can run arcade has a supported MP3 decoder.

2. MP3 files are much smaller than Wave equivalents per minute of audio, which has multiple benefits.

See the following to learn more:

• Loading In-Depth

• Pyglet’s Supported Media Types

334 Chapter 20. Sound

https://pyglet.readthedocs.io/en/latest/programming_guide/media.html#supported-media-types
https://pyglet.readthedocs.io/en/latest/programming_guide/media.html#supported-media-types

Python Arcade Library, Release 3.0.0.dev26

Converting Audio Formats

Don’t worry if you have a great sound in a different format.

There are multiple free, reliable, open-source tools you can use to convert existing audio. Two of the most famous are
summarized below.

Name & Link for Tool Difficulty Summary
Audacity Beginner6 A free GUI application for editing sound
FFmpeg’s command line tool Advanced Powerful media conversion tool included with the library

Most versions of these tools should handle the following common tasks:

• Converting audio files from one encoding format to another

• Converting from stereo to mono for use with positional audio.

To integrate FFmpeg with Arcade as a decoder, you must use FFmpeg version 4.X, 5.X, or 6.X. See Loading In-Depth
to learn more.

20.5.2 Loading In-Depth

There are 3 ways arcade can read audio data through pyglet:

1. The built-in pyglet .wav loading features

2. Platform-specific components or nearly-universal libraries

3. Supported cross-platform media libraries, such as PyOgg or FFmpeg

To load through FFmpeg, you must install FFmpeg 4.X, 5.X, or 6.X. This is a requirement imposed by pyglet. See
pyglet’s notes on installing FFmpeg to learn more.

Everyday Usage

In practice, Wave is universally supported and MP3 nearly so.7

Limiting yourself to these formats is usually worth the increased compatibility doing so provides. Benefits include:

1. Smaller download & install sizes due to having fewer dependencies

2. Avoiding binary dependency issues common with PyInstaller and Nuitka

3. Faster install and loading, especially when using MP3s on slow drives

These benefits become even more important during game jams.
6 Linux users may need to install the LAME MP3 encoder separately to export MP3 files.
7 The only time MP3 will be absent is on unusual Linux configurations. See pyglet’s guide to supported media types to learn more.

20.5. Cross-Platform Compatibility 335

https://www.audacityteam.org/
https://ffmpeg.org/
https://ffmpeg.org/
https://pyglet.readthedocs.io/en/latest/programming_guide/media.html#ffmpeg-installation
https://manual.audacityteam.org/man/faq_installing_the_lame_mp3_encoder.html
https://pyglet.readthedocs.io/en/latest/programming_guide/media.html#supported-media-types

Python Arcade Library, Release 3.0.0.dev26

20.5.3 Backends Determine Playback Features

As with formats, you can maximize compatibility by only using the lowest common denominators among features. The
most restrictive backends are:

• Mac’s only backend, an OpenAL version limited to 16-bit audio

• PulseAudio on Linux, which has multiple limitations:

– It lacks support for positional audio

– It can crash under certain circumstances when other backends will not:

∗ Pausing / resuming in debuggers

∗ Rarely and unpredictably when multiple sounds are playing

On Linux, the best way to deal with the PulseAudio bug is to install OpenAL. It will often already be installed as a
dependency of other packages.

Other differences between backends are less drastic. Usually, they will be things like the specific positional features
supported and the maximum number of simultaneous sounds.

See the following to learn more:

• Pyglet’s Audio Backends

• Other Sound Libraries

20.5.4 Choosing the Audio Backend

By default, arcade will try pyglet audio back-ends in the following order until it finds one which loads:

1. "openal"

2. "xaudio2"

3. "directsound"

4. "pulse"

5. "silent"

You can override through the ARCADE_SOUND_BACKENDS environment variable. The following rules apply to its value:

1. It must be a comma-separated string

2. Each name must be an audio back-ends supported by pyglet

3. Spaces do not matter and will be ignored

For example, you could need to test OpenAL on a specific system. This example first tries OpenAL, then gives up
instead using fallbacks.

ARCADE_SOUND_BACKENDS="openal,silent" python mygame.py

Please see the following to learn more:

• pyglet’s audio driver documentation

• Working with Environment Variables in Python

336 Chapter 20. Sound

https://pyglet.readthedocs.io/en/latest/programming_guide/media.html#the-bug
https://pyglet.readthedocs.io/en/latest/programming_guide/media.html#openal
https://pyglet.readthedocs.io/en/latest/programming_guide/media.html#choosing-the-audio-driver
https://www.twilio.com/blog/environment-variables-python
https://pyglet.readthedocs.io/en/latest/programming_guide/media.html#choosing-the-audio-driver
https://www.twilio.com/blog/environment-variables-python

Python Arcade Library, Release 3.0.0.dev26

20.6 Other Sound Libraries

Advanced users may have reasons to use other libraries to handle sound.

20.6.1 Using Pyglet

The most obvious external library for audio handling is pyglet:

• It’s guaranteed to work wherever arcade’s sound support does.

• It offers far better control over media than arcade

• You may have already used parts of it directly for Advanced Playback Control

Note that arcade.Sound’s source attribute holds a pyglet.media.Source. This means you can start off by cleanly
using arcade’s resource and sound loading with pyglet features as needed.

Notes on Positional Audio

Positional audio is a set of features which automatically adjust sound volumes across the channels for physical speakers
based on in-game distances.

Although pyglet exposes its support for this through its Player, arcade does not currently offer integrations. You will
have to do the setup work yourself.

If you already have some experience with Python, the following sequence of links should serve as a primer for trying
positional audio:

1. Why 16-bit PCM Wave for Effects?

2. Backends Determine Playback Features

3. The following sections of pyglet’s media guide:

1. Controlling playback

2. Positional audio

4. pyglet.media.player.Player’s full documentation

20.6.2 External Libraries

Some users have reported success with using PyGame CE or SDL2 to handle sound. Both these and other libraries
may work for you as well. You will need to experiment since this isn’t officially supported.

20.6. Other Sound Libraries 337

https://pyglet.readthedocs.io/en/latest/modules/media.html#pyglet.media.Source
https://pyglet.readthedocs.io/en/latest/modules/media.html#pyglet.media.player.Player
https://pyglet.readthedocs.io/en/latest/programming_guide/media.html#controlling-playback
https://pyglet.readthedocs.io/en/latest/programming_guide/media.html#positional-audio
https://pyglet.readthedocs.io/en/latest/modules/media.html#pyglet.media.player.Player
https://pyga.me/
https://www.libsdl.org/

Python Arcade Library, Release 3.0.0.dev26

338 Chapter 20. Sound

CHAPTER

TWENTYONE

TEXTURES

21.1 Introduction

The arcade.Texture type is how arcade normally interacts with images either loaded from disk or created manually.
This is basically a wrapper for PIL/Pillow images including detection for hit box data using pymunk depending on the
selected hit box algorithm. These texture objects are in other words responsible to provide raw RGBA pixel data to
OpenGL and hit box geometry to the sprite engine.

There is another texture type in Arcade in the lower level OpenGL API: arcade.gl.Texture. This represents an
actual OpenGL texture and should only be used when dealing with the low level rendering API arcade.gl.

Textures can be created/loaded before or after the window is created because they don’t interact with OpenGL directly.

21.2 Texture Uniqueness

When a texture is created a name is required. This should be a unique string. If two more more textures have the same
name we will run into trouble. When loading textures the absolute path to the file is used as part of the name including
vertical/horizontal/diagonal, size and other parameter for a truly unique name.

When loading texture through arcade the name of the texture will be the absolute path to the image and various param-
eters such as size, flipping, xy position etc.

Also remember that the texture class do hit box detection with pymunk by looking at the raw pixel data. This means
for example a texture with different flipping will be loaded multiple times (or fetched from cache) because we rely in
the transformed pixel data to get the hit box.

21.3 Texture Cache

Arcade is caching texture instances based on the name attribute to significantly speed up loading times.

The texture will only be loaded during the first sprite creation
tex_name = "path/to/sprite.png"
sprite_1 = arcade.Sprite(tex_name)
sprite_2 = arcade.Sprite(tex_name)
sprite_3 = arcade.Sprite(tex_name)
Will be loaded and cached because we need fresh pixel data for hit box detection
sprite_4 = arcade.Sprite(tex_name, flipped_vertically=True)
Fetched from cache
sprite_5 = arcade.Sprite(tex_name, flipped_vertically=True)

339

Python Arcade Library, Release 3.0.0.dev26

The above also applies when using arcade.load_texture() or other texture loading functions.

Arcade’s texture cache can be cleared using arcade.cleanup_texture_cache().

21.4 Custom Textures

We can manually create textures by creating PIL/Pillow images. How this is done is entirely up to you. Using the
drawing functionality of Pillow or simply providing raw pixel data from another library/source into a Pillow image. A
random example is getting raw pixel data from matplotlib.

Create a image from raw pixel data from some source
image = PIL.Image.frombuffer(raw_data)

NOTE: Also make sure you use a sane hit_box_algorithm
texture = arcade.Texture("unique_name", image, hit_box_algorithm=...)

Again, how you create the image is up to you. There are many possibilities with Pillow.

340 Chapter 21. Textures

CHAPTER

TWENTYTWO

SECTIONS

In a simple game, the whole viewport is used to display the game “map”. In more advanced games it’s fairly normal to
have this viewport divided into different “sections” with different usages. Areas where different information is displayed
and processed. For example you can have a menu at the top, some info panel at the right and the game main “screen”
(the “map”) covering the rest of the viewport.

To achieve this separation of game logic you have Sections. A Section is a way to divide a View space into smaller
parts, each one will then receive events redirected depending on configuration and the space of the view occupied.
Sections can isolate code that otherwise goes packed together in a View . This way the code remains exactly where it
belongs and not mixed together with code from other parts of the program.

By configuring a Section you can capture some events or for example only capture certain keys from keyboard events.
Also you can configure which events are propagated to other underlying sections or even to the view itself.

Sections can also be “modal” meaning that they will capture all the events first but draw last and also will prevent other
views from receiving the on_update event.

Also note that if you don’t use sections in your code, nothing changes. Even the SectionManager is not created if you
don’t add sections.

Key features of Sections:
• Divide the screen into logical components (Sections).

• Event dispatching: a Section will capture mouse events based on the space occupied from the view. Also
keyboard events will be captured based on configuration.

• Prevent dispatching: a Section can be configured to prevent dispatching events captured or let events flow to
other sections underneath.

• Event capturing order: based on a Section insertion order you can configure the order in which sections will
capture events.

• Draw order: you can configure the order in which sections are drawn (sections can overlap!).

• Section “enable” property to show or hide sections. You can toogle that.

• Modal Sections: sections that draw last but capture all events and also stop other sections from updating.

• Automated camera swich: Sections will try to activate and deactivate cameras when changing between sections.

Important: You don’t need to cover 100% of the View with sections. Sections can work with the View as well.
Also, Sections can overlap.

341

Python Arcade Library, Release 3.0.0.dev26

22.1 A simple example

A small program without the use of sections needs to perform some checks inside a on_mouse_release event to know
what to do depending on the mouse position.

For example maybe if the mouse is on top of the map you want to do something, but if the mouse is somewhere else
you may need to do other things.

This is what this somehow looks without sections:

class MyView(arcade.View):
...

def on_mouse_release(x: int, y: int, *args, **kwargs):
if x > 700:

click in the side
do_some_logic_when_side_clicking()

else:
click on the game map
do_something_in_the_game_map()

This code can and often become long and with a lot of checks to know what to do.

By using Sections, you can improve this code and automate this cimple checks.

This is what looks like using Sections:

class Map(arcade.Section):

...

def on_mouse_release(x: int, y: int, *args, **kwargs):
clicks on the map are handled here
pass

class Side(arcade.Section):

...

def on_mouse_release(x: int, y: int, *args, **kwargs):
clicks on the side of the screen are handled here
pass

class MyView(arcade.View):

def __init__(self, *args, **kwargs):
self.map_section = Map(0, 0, 700, self.window.height)
self.side_section = SideSpace(700, 0, 100, self.window.height)

self.add_section(self.map_section)
self.add_section(self.side_section)

...

342 Chapter 22. Sections

Python Arcade Library, Release 3.0.0.dev26

22.2 How to work with Sections

To work with sections you first need to have a View. Sections depend on Views and are handled by a special
SectionManager inside the View. Don’t worry, 99% of the time you won’t need to interact with the SectionManager.

To create a Section start by inheriting from arcade.Section.

Based on the Section configuration your section will start receiving events from the View SectionManager. A
Section has all the events a View has like on_draw, on_update, on_mouse_press, etc.

On instantiation define the positional arguments (left, bottom, width, height) of the section. These are very important
properties of a Section: as they define the event capture rectangular area.

Properties of a Section:

position: (left, bottom, width, height):
This are mandatory arguments that you need to provide when instantiating a Section. This is very important as
this rectangular positioning will determine the event capture space for mouse related events. This also will help
you determine inside a class the space that is holding for example when you want to draw something or calculate
coordinates.

name:
A Section can optionally get a name so it will be easier to debug and indetify what Section is doing what. When
logging for example is very nice to log the Section name at the beginnig so you have a reference from where
the log was generated.

accept_keyboard_keys:
This allows to tell if a Section can receive keyboard events (accept_keyboard_keys=False) or to tell which
keyboard keys are captured in this Section (accept_keyboard_keys={arade.key.UP, arcade.key.DOWN})

accept_mouse_events:
This allows to tell if a Section can receive mouse events or which mouse events are accepted. For example:
accept_mouse_events={‘on_mouse_move’} means only mouse move events will be captured.

prevent_dispatch:
This tells a Section if it should prevent the dispatching of certain events to other sections down
event capture stream. By default a Section will prevent dispatching all handled events. By passing
prevent_dispatch={'on_mouse_press'} all events will propagate down the event capture stream except
the on_mouse_press event. Note that passing prevent_dispatch=None (the default) is the same as passing
prevent_dispatch={True} which means “prevent all events” from dispatching to other sections. You can
also set prevent_dispatch={False} to dispatch all events to other sections.

prevent_dispatch_view:
This allows to tell a Section if events (and what events) should not be dispatched to the underlying View.
This is handy if you want to do some action in the View code whether or not the event was handled by an-
other Section. By default a Section will prevent dispatching all handled events to the View. Note that passing
prevent_dispatch=None (the default) is the same as passing prevent_dispatch={True}which means “pre-
vent all events” from dispatching to the view. You can also set prevent_dispatch={False} to dispatch all
events to other sections. Also note that in order for the view to receive any event, ALL the sections need to
allow the dispatch of that particular event. If at least one section prevents it, the event will not be delivered
to the view.

local_mouse_coordinates:
If True the section mouse events will receive x, y coordinates section related to the section dimensions and
position (not related to the screen). Note that although this seems very usefull, section local coordinates
doesn’t work with arcade collision methods. You can use Section ``get_xy_screen_relative`` to transform
local mouse coordinates to screen coordinates that work with arcade collision methods

22.2. How to work with Sections 343

Python Arcade Library, Release 3.0.0.dev26

enabled:
By default all sections are enabled. This allows to tell if this particuar Section should be enabled or not. If
a Section is not enabled, it will not capture any event, draw, update, etc. It will be as it didn’t exist. You can
enable and disable sections at any time allowing some cool efects. Nota that setting this property will trigger the
section on_show_section or on_hide_section events.

modal:
This tells the SectionManager that this Section is modal. This means that the Section will capture all events
first and not deliver any events to the underlying sections or view. Also, It will draw last (on top of other on_draw
calls). When enabled a modal Section will prevent all other sections from receive on_update events.

draw_order:
This allows to define the draw order this Section will have. The lower the number the earlier this section will
get draw. This is handy when you have overlaping sections and you want some Section to be drawn ontop of
another. By default sections will be draw in the order they are added (except modal sections which no matter
what will be drawn last). Note that this can be different from the event capture order or the on_update order
which is defined by the insertion order in the SectionManager.

Other handy Section properties:

• block_updates: if True this section will not have the on_update method called.

• camera: this is meant to hold a arcade.Camera but it is None by default. The SectionManager will trigger the
use of the camera when is needed automatically.

Handy Section: methods:

• overlaps_with: this will tell if another Section overlaps with this one.

• mouse_is_on_top: this will tell if given a x, y coodinate, the mouse is on top of the section.

• get_xy_screen_relative: get screen x, y coordinates from x, y section coordinates.

• get_xy_section_relative: get section x, y coordinates from x, y screen coordinates.

22.3 Sections configuration and logic with an example

Imagine a game where you have this basic components:

• A 800x600 screen viewport

• A game map

• A menu bar at the top of the screen

• A side right panel with data from the game

• Popup messages (dialogs)

With this configuration you can divide this logic into sections with a some configuration.

Lets look what this configuration may look:

import arcade

class Map(arcade.Section):
#... define all the section logic

(continues on next page)

344 Chapter 22. Sections

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

class Menu(arcade.Section):
#... define all the section logic

class Panel(arcade.Section):
#... define all the section logic

class PopUp(arcade.Section):
def __init__(message, *args, **kwargs):

super().__init(*args, **kwargs)
self.message = message

define draw logic, etc...

class MyView(arcade.View):

def __init__(self, *args, **kwargs):
self.map = Map(left=0, bottom=0, width=600, height=550,

name='Map', draw_order=2)
self.menu = Menu(left=0, bottom=550, width=800, height=50,

name='Menu', accept_keyboard_keys=False,
accept_mouse_events={'on_mouse_press'})

self.panel = Panel(left=600, bottom=0, width=200, height=550,
name='Panel', accept_keyboard_keys=False,
accept_mouse_events=False)

popup_left = (self.view.window.width // 2) - 200
popup_bottom = (self.view.window.height // 2) - 100
popup_width = 400
popup_height = 200
self.popup = PopUp(message='', popup_left, popup_bottom, popup_width,

popup_height, enabled=False, modal=True)

self.add_section(self.map)
self.add_section(self.menu)
self.add_section(self.panel)
self.add_section(self.popup)

def close():
self.popup.message = 'Are you sure you want to close the view?'
self.popup.enabled = True

Lets go step by step. First we configure a Map section that will hold the map. This Section will start at left, bottom =
0,0 and will not occupy the whole screen. Mouse events that occur outside of this coordinates will not be handled by
the Map event handlers. So Map will only need to take care of what happens inside the map.

Second we configure a Menu section that will hold some buttons. This menu takes the top space of the screen that the
Map has left. The Map + the Menu will occupy 100% of the height of the screen. The menu section is configured to
not receive any keyboard events and to only receive on_mouse_press events, ignoring all other type of mouse events.

Third, the Panel also doesn’t receive keyboard events. So the Map is the only handling keyboard events at the moment.
Also no mouse events are allowed in the panel. This panel is just to show data.

22.3. Sections configuration and logic with an example 345

Python Arcade Library, Release 3.0.0.dev26

For the last part notice that we define a section that it will be disabled at first and that is modal. This section will render
something with a message. The section is used when the close method of the view is called. Because PopUp is a modal
section, when enabled it’s rendered on top of everything. Also, all other section stoped updating and all events are
captured by the modal section. So in brief we are “stopping” the world outside the popup section.

22.4 Section Unique Events

There a few unique events that belong to sections and are somehow special in the way they are triggered:

• on_mouse_enter and on_mouse_leave:
These events are triggered on two ocasions: when the mouse enters/leaves the view and when the
SectionManager detects by mouse motion (or dragging) that the mouse has enter / leaved the section
dimensions.

• on_show_section and on_hide_section:
There events are triggered only when the section is enabled and under certain circumstances that must be
known:

– When the section is added or removed from the SectionManager and the View is currently being
shown

– When the section is enabled or disabled

– When Window calls on_show_view or on_hide_view

22.5 The Section Manager

Behind the scenes, when sections are added to the View the SectionManager is what will handle all events instead of
the View itself.

You can access the SectionManager by accessing the View.section_manager. Note that if you don’t use Sections,
the section manager inside the View will not be used nor created.

Usually you won’t need to work with the SectionManager, but there are some cases where you will need to work with
it.

You add sections usually with View.add_section but the same method exists on the SectionManager. Also you
have a remove_section and a clear_sections method.

You can enable or disable the SectionManager to completely enable or disable all sections at once.

There are some other functionality exposed from the SectionManager like get_section_by_name that can also be
useful. Check the api to know about those.

Also there are three attributes that can be configured in the SectionManager that are useful and important sometimes.

By default, on_draw, on_update and on_resize are events that will always be triggered in the View before any
section has triggered them. This is the default but you can configure this with the following attributes:

• view_draw_first

• view_update_first

• view_resize_first

Both three work the same way:

• True (default) to trigger that event in the View before the sections.

• False so it’s triggered in the View after sections corresponding methods.

346 Chapter 22. Sections

Python Arcade Library, Release 3.0.0.dev26

• None to not trigger that event in the View at all.

22.5. The Section Manager 347

Python Arcade Library, Release 3.0.0.dev26

348 Chapter 22. Sections

CHAPTER

TWENTYTHREE

GUI

Fig. 1: gui_flat_button

Arcade’s GUI module provides you classes to interact with the user using buttons, labels and much more.

Using those classes is way easier if the general concepts are known. It is recommended to read through them.

23.1 GUI Concepts

GUI elements are represented as instances of UIWidget. The GUI is structured like a tree; every widget can have other
widgets as children.

The root of the tree is the UIManager. The UIManager connects the user interactions with the GUI. Read more about
User-interface events.

Classes of arcade’s GUI code are prefixed with UI- to make them easy to identify and search for in autocompletion.

23.1.1 UIWidget

The UIWidget class is the core of arcade’s GUI system. Widgets specify the behavior and graphical representation of
any UI element, such as buttons or labels.

A UIWidget has following properties.

rect
A tuple with four slots. The first two are x and y coordinates (bottom left of the widget), and the last two are
width and height.

children
Child widgets rendered within this widget. A UIWidget will not move or resize its children; use a UILayout
instead.

349

../../example_code/how_to_examples/gui_flat_button.html

Python Arcade Library, Release 3.0.0.dev26

Fig. 2: gui_widgets

350 Chapter 23. GUI

../../example_code/how_to_examples/gui_widgets.html

Python Arcade Library, Release 3.0.0.dev26

Fig. 3: gui_ok_messagebox

23.1. GUI Concepts 351

../../example_code/how_to_examples/gui_ok_messagebox.html

Python Arcade Library, Release 3.0.0.dev26

Fig. 4: gui_scrollable_text

352 Chapter 23. GUI

../../example_code/how_to_examples/gui_scrollable_text.html

Python Arcade Library, Release 3.0.0.dev26

size_hint
A tuple of two normalized floats (0.0-1.0) describing the portion of the parent’s width and height this widget
prefers to occupy.

Examples:

Prefer to take up all space within the parent
widget.size_hint = (1.0, 1.0)

Prefer to take up the full width & half the height of the parent
widget.size_hint = (1.0, 0.5)
Prefer using 1/10th of the available width & height
widget.size_hint = (0.1, 0.1)

size_hint_min
A tuple of two integers defining the minimum width and height of the widget. Attempting to set a smaller width
or height on the widget will fail by defaulting to the minimum values specified here.

size_hint_max
A tuple of two integers defining the maximum width and height of the widget. Attempting to set a larger width
or height greater will fail by defaulting to the to the maximum values specified here.

Warning: Size hints do nothing on their own!

They are hints to UILayout instances, which may choose to use or ignore them.

Rendering

do_render() is called recursively if rendering was requested via trigger_render(). In case widgets have to request
their parents to render, use arcade.gui.UIWidget.trigger_full_render().

The widget has to draw itself and child widgets within do_render(). Due to the deferred functionality render does
not have to check any dirty variables, as long as state changes use the trigger_full_render() method.

For widgets, that might have transparent areas, they have to request a full rendering.

Warning: Enforced rendering of the whole GUI might be very expensive!

23.1.2 UILayout

UILayout are widgets, which reserve the option to move or resize children. They might respect special properties of
a widget like size_hint, size_hint_min, or size_hint_max.

The arcade.gui.UILayout only resizes a child’s dimension (x or y axis) if size_hint provides a value for the axis,
which is not None for the dimension.

23.1. GUI Concepts 353

Python Arcade Library, Release 3.0.0.dev26

Algorithm

arcade.gui.UIManager triggers the layout and render process right before the actual frame draw. This opens the
possibility to adjust to multiple changes only once.

Example: Executed steps within UIBoxLayout:

1. do_layout()

1. Collect current size, size_hint, size_hint_min of children

2. Calculate the new position and sizes

3. Set position and size of children

2. Recursively call do_layout on child layouts (last step in do_layout())

UIManager UILayout children

do_layout()
>

place children
use size, size_hint, ...
<

set size and pos
>

LOOP sub layouts

do_layout()
>

<

UIManager UILayout children

354 Chapter 23. GUI

Python Arcade Library, Release 3.0.0.dev26

Size hint support

size_hint size_hint_min size_hint_max
UIAnchorLayout X X X
UIBoxLayout X X X
UIGridLayout X X X
UIManager X X

23.1.3 UIMixin

Mixin classes are a base class which can be used to apply some specific behaviour. Currently the available Mixins are
still under heavy development.

23.1.4 Constructs

Constructs are predefined structures of widgets and layouts like a message box or (not yet available) file dialogues.

23.1.5 Available Elements

Buttons

As with most widgets, buttons take x, y, width, and height parameters for their sizing. Buttons specifically have two
more parameters - text and multiline.

All button types support styling. And they are text widgets, which means you can use the _label attribute to get the
label component of the button.

Flat button

Name: FlatButton

A flat button for simple interactions (hover, press, release, click). This button is created with a simple rectangle. Flat
buttons can quickly create a nice-looking button. However, depending on your use case, you may want to use a texture
button to further customize your look and feel.

Styling options are shown in the table below.

23.1. GUI Concepts 355

Python Arcade Library, Release 3.0.0.dev26

Name Description
font_sizeFont size for the button text. Defaults to 12.
font_nameFont name or family for the button text. If a tuple is supplied then arcade will attempt to load all of the

fonts, prioritizing the first one. Defaults to ("calibri", "arial").
font_colorFont color for the button text (foreground). Defaults to white for normal, hover, and disabled states. Defaults

to black for pressed state.
bg Background color of the button. This modifies the color of the rectangle within the button and not the border.

Instead of making each of these different colors for each of your buttons, set these towards a common color
theme. Defaults to gray for hover and disabled states. Otherwise it is white.

border Border color. It is common to only modify this in a focus or hover state. Defaults to white or turquoise for
hover.

border_widthWidth of the border/outline of the button. It is common to make this thicker on a hover or focus state,
however an overly thick border will result in your GUI looking old or low-quality. Defaults to 2.

Image/texture button

Name: UITextureButton

An image button. Textures are supplied from arcade.load_texture() for simple interactions (hover, press, release,
click). A texture lets you further customize the look of the widget better than styling.

A texture button a few more arguments than a flat button. texture, texture_hovered, and texture_pressed will
change the texture displayed on the button respectively. scale will change the scaling or size of the button - it’s similar
to the sprite scale.

Hint: This widget does have width and height parameters, but they only stretch the texture instead of resizing it
with keeping the borders. This feature is currently in-progress.

Texture buttons have fewer styling options when they have a texture compared to flat buttons.

Name Description
font_sizeFont size for the button text. Defaults to 12.
font_nameFont name or family for the button text. If a tuple is supplied then arcade will attempt to load all of the

fonts, prioritizing the first one. Defaults to ("calibri", "arial").
font_colorFont color for the button text (foreground). Defaults to white for normal, hover, and disabled states.

Defaults to black for pressed state.
border_widthWidth of the border/outline of the button. It is common to make this thicker on a hover or focus state,

however an overly thick border will result in your GUI looking old or low-quality. Defaults to 2.

Text widgets

All text widgets take x and y positioning parameters. They also accept text and multiline options.

356 Chapter 23. GUI

Python Arcade Library, Release 3.0.0.dev26

Label

Name: UILabel

A label is used to display text as instruction for the user. Multiline text is supported, and what would have been its style
options were moved into the parameters.

This widget has no style options whatsoever, and they have been moved into the parameters. bold and italic will set
the text to bold or italic. align specifies the justification of the text. Additionally it takes font_name, font_size,
and text_color options.

Using the label property accesses the internal Text class.

Hint: A text attribute can modify the displayed text. Beware-calling this again and again will give a lot of lag. Use
begin_update() and py:meth:~arcade.Text.end_update to speed things up.

Text input field

Name: UIInputText

A text field allows a user to input a basic string. It uses pyglet’s IncrementalTextLayout and its Caret. These are
stored in layout and caret properties.

This widget takes width and height properties and uses a rectangle to display a background behind the layout.

A text input field allows the user to move a caret around text to modify it, as well as selecting parts of text to replace or
delete it. Motion symbols for a text field are listed in pyglet.window.key module.

Text area

Name: UITextArea

A text area is a scrollable text widget. A user can scroll the mouse to view a rendered text document. This does not
support editing text. Think of it as a scrollable label instead of a text field.

width and height allocate a size for the text area. If text does not fit within these dimensions then only part of it
will be displayed. Scrolling the mouse will display other sections of the text incrementally. Other parameters include
multiline and scroll_speed. See view_y on scroll speed.

Use layout and doc to get the pyglet layout and document for the text area, respectively.

23.1.6 User-interface events

Arcade’s GUI events are fully typed dataclasses, which provide information about an event affecting the UI.

All pyglet window events are converted by the UIManager into UIEvents and passed via dispatch_event() to the
on_event() callbacks.

Widget-specific events (such as UIOnClickEvent are dispatched via on_event and are then dispatched as specific
event types (like on_click).

A full list of event attributes is shown below.

23.1. GUI Concepts 357

https://pyglet.readthedocs.io/en/latest/modules/text/layout.html#pyglet.text.layout.IncrementalTextLayout
https://pyglet.readthedocs.io/en/latest/modules/text/caret.html#pyglet.text.caret.Caret
https://pyglet.readthedocs.io/en/latest/modules/window_key.html#module-pyglet.window.key
https://pyglet.readthedocs.io/en/latest/modules/text/layout.html#pyglet.text.layout.ScrollableTextLayout.view_y
https://pyglet.readthedocs.io/en/latest/modules/event.html#pyglet.event.EventDispatcher.dispatch_event

Python Arcade Library, Release 3.0.0.dev26

Event Attributes
UIEvent None
UIMouseEvent x, y
UIMouseMovementEvent dx, dy
UIMousePressEvent dx, dy, button, modifiers
UIMouseDragEvent dx, dy
UIMouseScrollEvent scroll_x, scroll_y
UIKeyEvent symbol, modifiers
UIKeyReleaseEvent None
UITextEvent text
UITextMotionEvent motion
UITextMotionSelectEvent selection
UIOnClickEvent None
UIOnUpdateEvent dt
UIOnChangeEvent old_value, new_value
UIOnActionEvent action

• arcade.gui.UIEvent. Base class for all events.

• arcade.gui.UIMouseEvent. Base class for mouse-related events.
– arcade.gui.UIMouseMovementEvent. Mouse motion. This event has an additional pos property

that returns a tuple of the x and y coordinates.

– UIMousePressEvent. Mouse button pressed.

– UIMouseDragEvent. Mouse pressed and moved (drag).

– UIMouseReleaseEvent. Mouse button release.

– UIMouseScrollEvent. Mouse scroll.

• UITextEvent. Text input from user. This is only used for text fields and is the text as a string that was inputed.

• UITextMotionEvent. Text motion events. This includes moving the text around with the caret. Examples
include using the arrow keys, backspace, delete, or any of the home/end and PgUp/PgDn keys. Holding Control
with an arrow key shifts the caret by a entire word or paragraph. Moving the caret via the mouse does not trigger
this event.

• UITextMotionSelectEvent. Text motion events for selection. Holding down the Shift key and pressing
arrow keys (Control optional) will select character(s). Additionally, using a Control-A keyboard combination
will select all text. Selecting text via the mouse does not trigger this event.

• UIOnUpdateEvent. This is a callback to the arcade on_update method.

Widget-specific events

Widget events are only dispatched as a pyglet event on a widget itself and are not passed through the widget tree.

• UIOnClickEvent. Click event of UIInteractiveWidget class. This is triggered on widget press.

• UIOnChangeEvent. A value of a UIWidget has changed.

• UIOnActionEvent. An action results from interaction with the UIWidget (mostly used in constructs)

358 Chapter 23. GUI

Python Arcade Library, Release 3.0.0.dev26

23.1.7 Different event systems

Arcade’s GUI uses different event systems, dependent on the required flow. A game developer should mostly interact
with user-interface events, which are dispatched from specific UIWidget`s like an ``on_click` of a button.

In rare cases a developer might implement some widgets themselves or want to modify the existing GUI behavior. In
those cases a developer might register own pyglet event types on widgets or overwrite the on_event method. In that
case, refer to existing widgets as an example.

Pyglet window events

Pyglet window events are received by UIManager.

You can dispatch them via:

UIWidget.dispatch_event("on_event", UIEvent(...))

Window events are wrapped into subclasses of UIEvent.

Pyglet event dispatcher - UIWidget

Widgets implement pyglet’s EventDispatcher and register an on_event event type.

on_event() contains specific event handling and should not be overwritten without deeper understanding of the con-
sequences.

To add custom event handling, use the decorator syntax to add another listener:

@UIWidget.event("on_event")

User-interface events

User-interface events are typed representations of events that are passed within the GUI. Widgets might define and
dispatch their own subclasses of these events.

Property

Property is an pure-Python implementation of Kivy Properties. They are used to detect attribute changes of widgets
and trigger rendering. They should only be used in arcade internal code.

23.2 GUI Style

With arcade 3.0 a whole new styling mechanism for GUI widgets was introduced. The new styling allows more type
safe and clear styling while staying flexible.

Following widgets support styling:

• UITextureButton

• UIFlatButton

• UISlider

For an advanced description about the style system read the ‘Advanced’ section.

23.2. GUI Style 359

https://pyglet.readthedocs.io/en/latest/modules/event.html#pyglet.event.EventDispatcher

Python Arcade Library, Release 3.0.0.dev26

23.2.1 Basic Usage

This section covers how to use the existing stylable widgets.

In the following examples we will use the UIFlatButton as the stylable widget, you can do the same with
any stylable widget listed above.

Quickstart

The following example shows how to adjust the style.

create an own style
new_style = {

provide a style for each widget state
"normal": UIFlatButton.UIStyle(), # use default values for `normal` state
"hover": UIFlatButton.UIStyle(

font_color=arcade.color.BLACK,
bg=arcade.color.WHITE,

),
"press": UIFlatButton.UIStyle(

font_color=arcade.color.BLACK,
bg=arcade.color.WHITE,
border=arcade.color.WHITE,

),
"disabled": UIFlatButton.UIStyle(

bg=arcade.color.GRAY,
)

}

UIFlatButton(style=new_style)

Default style

Stylable widgets have a property which holds the default style for the type of widget. For the UIFlatButton this is
UIFlatButton.DEFAULT_STYLE.

This default style will be used if no other style is provided within the constructor. The default style looks like this:

class UIFlatButton(UIInteractiveWidget, UIStyledWidget, UITextWidget):

DEFAULT_STYLE = {
"normal": UIStyle(),
"hover": UIStyle(

font_size=12,
font_name=("calibri", "arial"),
font_color=arcade.color.WHITE,
bg=(21, 19, 21, 255),
border=(77, 81, 87, 255),
border_width=2,

),
"press": UIStyle(

font_size=12,
font_name=("calibri", "arial"),

(continues on next page)

360 Chapter 23. GUI

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

font_color=arcade.color.BLACK,
bg=arcade.color.WHITE,
border=arcade.color.WHITE,
border_width=2,

),
"disabled": UIStyle(

font_size=12,
font_name=("calibri", "arial"),
font_color=arcade.color.WHITE,
bg=arcade.color.GRAY,
border=None,
border_width=2,

)
}

Style attributes

A UIStyle is a typed description of available style options. For the UIFlatButton the supported attributes are:

Name Type Default value Description
font_size int 12 Size of the text on the button
font_name FontNameOrNames (“calibri”, “arial”) Font of the text
font_color RGBA255 arcade.color.WHITE Color of text
bg RGBA255 (21, 19, 21, 255) Background color
border Optional None Border color
border_width int 0 Border width

The style attribute is a dictionary, which maps a state like ‘normal, ‘hover’ etc. to an instance of UIFlatButton.UIStyle.

Wellknown states

Name Description
normal The default state of a widget.
hover Mouse hovered over an interactive widget.
press Mouse is pressed while hovering over the widget.
disabled The widget is disabled.

23.2.2 Advanced

This section describes the styling system itself, and how it can be used to create own stylable widgets or extend existing
ones.

Stylable widgets inherit from UIStyledWidget, which provides two basic features:

1. owns a style property, which provides a mapping between a widgets state and style to be applied

2. provides an abstractmethod which have to provide a state (which is a simple string)

Tha basic idea:

23.2. GUI Style 361

Python Arcade Library, Release 3.0.0.dev26

• a stylable widget has a state (e.g. ‘normal’, ‘hover’, ‘press’, or ‘disabled’)

• the state is used to define, which style will be applied

Your own stylable widget

class MyColorBox(UIStyledWidget, UIInteractiveWidget, UIWidget):
"""
A colored box, which changes on mouse interaction
"""

create the style class, which will be used to define style for any widget state
@dataclass
class UIStyle(UIStyleBase):

color: RGBA255 = arcade.color.GREEN

DEFAULT_STYLE = {
"normal": UIStyle(),
"hover": UIStyle(color=arcade.color.YELLOW),
"press": UIStyle(color=arcade.color.RED),
"disabled": UIStyle(color=arcade.color.GRAY)

}

def get_current_state(self) -> str:
"""Returns the current state of the widget i.e disabled, press, hover or normal."

→˓""
if self.disabled:

return "disabled"
elif self.pressed:

return "press"
elif self.hovered:

return "hover"
else:

return "normal"

def do_render(self, surface: Surface):
self.prepare_render(surface)

get current style
style: MyColorBox.UIStyle = self.get_current_style()

Get color from current style, it is a good habit to be
bullet proven for missing values in case a dict is provided instead of a␣

→˓UIStyle
color = style.get("color", MyColorBox.UIStyle.bg)

render
if color: # support for not setting a color at all

surface.clear(bg_color)

362 Chapter 23. GUI

Python Arcade Library, Release 3.0.0.dev26

23.3 Troubleshooting & Hints

23.3.1 UILabel does not show the text after it was updated

Currently the size of UILabel is not updated after modifying the text. Due to the missing information, if the size
was set by the user before, this behaviour is intended for now. To adjust the size to fit the text you can use UILabel.
fit_content().

In the future this might be fixed.

23.3. Troubleshooting & Hints 363

Python Arcade Library, Release 3.0.0.dev26

364 Chapter 23. GUI

CHAPTER

TWENTYFOUR

TEXTURE ATLAS

24.1 Introduction

arcade.TextureAtlas is where your textures eventually end up when they are used in a sprite. This is where the
image data is moved to graphics memory (OpenGL) and is one of the reasons we can batch draw hundreds of thousands
of sprites extremely fast.

A texture atlas is basically a large texture containing multiple textures and we keep track of where these textures are
located. Arcade’s texture atlas reside in graphics memory and is dynamic meaning textures can be added and removed
on the fly.

Arcade’s texture atlas also automatically resizes when needed all the way up to the maximum texture size your hardware
supports. This requires a complete rebuild of the atlas, something we do on the gpu itself to minimize the impact of
this operations. For average hardware it’s something you won’t notice runtime.

It’s also important to note that texture atlases can only be created after the window has been created. Textures and
sprites can be created before the window because they don’t interact with OpenGL directly. This part is usually the
most time consuming while atlases are very fast to create and build.

24.2 Size Restriction

Currently we use a very simple row based allocation algorithm to make room for new textures over time. This means
that very tall textures can end up taking a lot of vertical space.

The maximum size of the atlas is usually 16384 x 16384 if we are targeting average hardware.

24.3 Resize

Atlases will resize automatically when full. It will also try to pack the textures better by sorting them by their height.

365

Python Arcade Library, Release 3.0.0.dev26

24.4 Default Texture Atlas

Most users will not be aware that arcade is using a texture atlas under the hood. More advanced users can take advantage
of these if they run into limitations.

Arcade has a global default texture atlas stored in window.ctx.default_atlas. This is an instance of arcade.
ArcadeContext where the low level rendering API is accessed (OpenGL).

24.5 Custom Atlas

Instead of relying on the global texture atlas we can also create our own. Sprite lists take an atlas argument for
supplying your own texture atlas instance. This atlas can also be shared between several sprite lists if needed.

Create an empty 256 x 256 texture atlas
my_atlas = TextureAtlas((256, 256))
spritelist = SpriteList(atlas=my_atlas)

When new textures are detected (sprite is added to list) the texture is added to the atlas.

We can also pre-add textures into an atlas before the game starts to avoid potential minor stalls. This is usually not a
problem, but when adding a large amount of them it can be noticeable.

List of arcade.Texture instances
list_of_textures = ...

Create an atlas with a reasonable size for a list of textures
atlas = TextureAtlas.create_from_texture_sequence(list_of_textures)

Create an atlas with a specific size and initial textures
atlas = TextureAtlas((256, 256), textures=list_of_textures)

We can also pre-add textures at any time using:
(can also be done with the default texture atlas)
atlas.add(texture)

24.6 Border

Atlases has a border property that is 1 by default. This is important to avoid “texture bleeding” between borders of
the textures in the atlas. This is a very common issues in games using the gpu based graphics and is even a problem
with using NEAREST interpolation when sprites are rotating.

Keep the default value of this property unless you know exactly what you are doing.

366 Chapter 24. Texture Atlas

Python Arcade Library, Release 3.0.0.dev26

24.7 Updating Texture

In some instances it can be useful to update a texture. We would normally do this by modifying the Pillow texture in
the arcade.Texture instance. However, this doesn’t update the texture in the atlas itself. We can manually update it:

Change the internal image in a texture
texture.image # <- Modify or crate a new image with the same size

Write the new image data to the atlas
atlas.update_texture_image(texture)

This updates the already allocated region and the image needs to be exactly the same size. This should be used sparingly
or at least not a per frame operation. If can be fast as a per-frame operation, but you’ll need to profile that. Animated
sprites are much better option, but of course requires pre-determined texture frames.

24.8 Removing Texture

If you have stale textures they can be removed from the atlas using:

atlas.remove(texture)

This will make the region free for new textures the next time the atlas rebuilds. You can also call arcade.
TextureAtlas.rebuild() directly if you are removing a large quantity of textures, but generally it’s enough to
let this happen automatically when needed.

24.9 Rendering Into Atlas

A much faster way to update a texture in the atlas is rendering directly into it. This can for example be used to make a
minimap for your game or in any case you need the sprite texture to be really dynamic (not decided by pre-made texture
frames). It can be used in many creative ways.

--- Initialization ---
Create an empty texture so we can allocate some space in the atlas
texture = arcade.Texture.create_empty("render_area_1", size=(256, 256))

Assign the texture to a sprite
sprite = arcade.Sprite(center_x=200, center_y=300, texture=texture)

Create the spritelist and add the sprite
spritelist = arcade.SpriteList()
Adding the sprite will also add the texture to the atlas
spritelist.append(sprite)

-- Rendering ---
Let's render something into our texture directly.
All operations will only affect the allocated portion of the atlas for texture.
We are given a framebuffer instance representing this area
with spritelist.atlas.render_into(texture) as framebuffer:

Clear the allocated region in the atlas (if you need it)
framebuffer.clear()

(continues on next page)

24.7. Updating Texture 367

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

From here on we can draw using any arcade draw functionality
arcade.draw_rectangle_filled(128, 128, 160, 160, arcade.color.WHITE, rotation)

Draw the spritelist and see your animating sprite texture
spritelist.draw()

Doing the rendering part above every frame (and incrementing rotation by delta time) will give you a sprite with a
rotating rectangle a a texture. Again, you can draw anything into this texture area. Spritelists, shapes and whatnot.

We can also specify what should be projected into this texture area in the atlas. By default the projection will be (0,
width, 0, height), but this is not always what you want (were width and height are the region/texture size)

Assuming your window is 800 x 600 we could draw the entire game into this atlas region
projection = 0, 800, 0, 600
with spritelist.atlas.render_into(texture, projection=projection) as framebuffer:

framebuffer.clear()
Draw your game here

Draw sprite with a texture containing your entire game here

Scrolling can also be applied to projection just like cameras.

Scroll projection (or even zoom)
projection = 0 + scroll_x, 800 + scroll_x, 0 + scroll_y, 600 + scroll_y

Rendering into an atlas is superior (at least 100 times faster) to updating texture data using Pillow, but that doesn’t mean
it’s free. We can possibly get away with 50-100 of these per frame, but this is something you will have to profile.

24.10 Debugging

When working with atlases it can be useful to see the contents. We provide two methods for this.

arcade.TextureAtlas.show() will display the atlas using Pillow:

atlas.show()

arcade.TextureAtlas.save() will save the atlas contents to a png file:

atlas.write("path/to/atlas.png")

Both of these methods will “download” the atlas texture from graphics memory for you to inspect the raw data.

368 Chapter 24. Texture Atlas

CHAPTER

TWENTYFIVE

EDGE ARTIFACTS

When working with images, particularly ones with transparency, graphics cards can create graphic artifacts on their
edges. Images can have ‘borders’ where they aren’t wanted. For example, here there’s a line on the top and left:

Why does this happen? How do we fix it?

25.1 Why Edge Artifacts Appear

This happens when the edge of an image does not fall cleanly onto an image.

25.1.1 Edge Mis-Alignment

Typically edge artifacts happen when the edge of an image doesn’t land on an exact pixel boundary. Below in Figure
1, the left image is 128 pixels square and drawn at (100, 100), and looks fine. The image on the right is drawn with a
center of (100, 300.5) and has an artifact that shows up as a line on the left edge. That artifact will not appear if the
sprite is drawn at (100, 300) instead of (100, 300.5)

Fig. 1: Figure 1: Edge artifacts caused by images that aren’t on integer pixel boundaries.

The left edge falls on a coordinate of 300.5 - (128/2) = 236.5. The computer tries to select a color that’s an average
between 236 and 237, but since there is no 237 we get a dark color. Typically this only happens if the edge is transparent.

369

Python Arcade Library, Release 3.0.0.dev26

A shape that has a height or width that is not evenly divisible by two can also cause artifacts. If the shape is 15 pixels
wide, then the center will fall between the 7th and 8th pixel making it harder to line up the pixels to the screen.

25.1.2 Scaling

Scaling an image can also cause artifacts. In Figure 2, the second sprite is scaled down by two-thirds. Since 128 pixels
doesn’t evenly scale down by two-thirds, we end up with edge artifacts. If we had scaled down by one-half, that is
possible to do with 128 pixels (to 64), so there would be no artifacts.

The third image in Figure 2 is scaled up by a factor of two. The edge spans two pixels and we end up with a line artifact
as well. (Scaling down by two usually works if the image is divisible by four. Scaling up typically doesn’t.)

Fig. 2: Figure 2: Edge artifacts caused by scaling.

25.1.3 Rotating

With rotation, it can be very difficult to get pixels lined up, and edge artifacts are common.

25.1.4 Improper Viewport

If a window is 800 wide, and the viewport is set to 799 or 801, then lines can also appear. Alternatively, if a viewport
left or right edge is set to a non-integer number such as 23.5, this can cause the artifacts to appear.

370 Chapter 25. Edge Artifacts

Python Arcade Library, Release 3.0.0.dev26

Fig. 3: Figure 3: Incorrect viewport

25.1. Why Edge Artifacts Appear 371

Python Arcade Library, Release 3.0.0.dev26

25.2 Solutions

Keeping sprite sizes to a power of two or at least have a width and heights divisible by 2. For pixel-art types of games,
using the pixelated drawing mode will greatly reduce the problem.

25.2.1 Aligning to the Nearest Pixel

By default, Arcade draws sprites with a filter called “linear” which makes for smoother scaling and lines. If instead
you want a pixel-look, you can use a different filter called “nearest.” This filter also reduces issues with edge artifacts.

You enable the nearest filter using the pixelated argument when drawing

def on_draw(self):
self.my_sprite_list.draw(pixelated=True)

25.2.2 Double-Check Viewport Code

Double-check your viewport code to make sure the edges are only set to integers and the size of the window matches
up exactly, without any off-by-one errors.

372 Chapter 25. Edge Artifacts

CHAPTER

TWENTYSIX

LOGGING

Arcade has a few options to log additional information around timings and how things are working internally. The two
major ways to do this by turning on logging, and by querying the OpenGL context.

26.1 Turn on logging

The quickest way to turn on logging is to add this to the start of your main program file:

arcade.configure_logging()

This will cause the Arcade library to output some basic debugging information:

2409.0003967285156 arcade.sprite_list DEBUG - [386411600] Creating SpriteList use_
→˓spatial_hash=True capacity=100
2413.9978885650635 arcade.gl.context INFO - Arcade version : 2.4a5
2413.9978885650635 arcade.gl.context INFO - OpenGL version : 3.3
2413.9978885650635 arcade.gl.context INFO - Vendor : NVIDIA Corporation
2413.9978885650635 arcade.gl.context INFO - Renderer : GeForce GTX 980 Ti/PCIe/SSE2
2413.9978885650635 arcade.gl.context INFO - Python : 3.7.4 (tags/v3.7.
→˓4:e09359112e, Jul 8 2019, 19:29:22) [MSC v.1916 32 bit (Intel)]
2413.9978885650635 arcade.gl.context INFO - Platform : win32
3193.9964294433594 arcade.sprite_list DEBUG - [386411600] _calculate_sprite_buffer: 0.
→˓013532099999999936 sec

26.1.1 Custom Log Configurations

If you want to add your own logging, or change the information printed in the log, you can do it with just a bit more
code.

First, in your program import the logging library:

import logging

The code to turn on logging looks like this:

logging.basicConfig(level=logging.DEBUG)

You can get even more information by using a formatter to add time, file name, and even line number information to
your output:

373

https://docs.python.org/3/library/logging.html

Python Arcade Library, Release 3.0.0.dev26

format = '%(asctime)s,%(msecs)03d %(levelname)-8s [%(filename)s:%(lineno)d
→˓%(funcName)s()] %(message)s'
logging.basicConfig(format=format,

datefmt='%H:%M:%S',
level=logging.DEBUG)

. . .which changes the output to look like:

13:40:50,226 DEBUG [sprite_list.py:720 _calculate_sprite_buffer()] [365177904] _
→˓calculate_sprite_buffer: 0.00849660000000041 sec
13:40:50,398 DEBUG [ui_element.py:58 on_mouse_over()] UIElement mouse over

You can add logging to your own programs by putting one of these lines at the top of your program:

Get your own logger
LOG = logging.getLogger(__name__)
or get Arcade's logger
LOG = logging.getLogger('arcade')

Then, any time you want to print, just use:

LOG.debug("This is my debug statement.")

26.2 Getting OpenGL Stats Using Query Objects

If you’d like more information on the time it takes to draw, you can query the OpenGL context arcade.Window.ctx
as this example shows:

def on_draw(self):
""" Render the screen. """
self.clear()

query = self.ctx.query()
with query:

Put the drawing commands you want to get info on here:
self.my_sprite_list.draw()

print()
print(f"Time elapsed : {query.time_elapsed:,} ns")
print(f"Samples passed : {query.samples_passed:,}")
print(f"Primitives created : {query.primitives_generated:,}")

The output from this looks like the following:

Time elapsed : 7,136 ns
Samples passed : 390,142
Primitives created : 232

374 Chapter 26. Logging

CHAPTER

TWENTYSEVEN

OPENGL

Arcade is using OpenGL for the underlying rendering. OpenGL functionality is given to use through pyglet when a
window is crated. The underlying representation of this is an OpenGL context. Arcade’s representation of this context
is the arcade.Window.ctx. This is an ArcadeContext.

Working with OpenGL adds some challenges we need to be aware of.

27.1 Initialization

Certain operations can’t be done before a window is created. In Arcade we do deferred initialization in many of our
types to make this as painless as possible for the user. SpriteList can for example be built before window creation
and will be initialized internally in the first draw call.

TextureAtlas on the other hand cannot be crated before the window is created, but Texture can freely be loaded at
any time since these only manage pixel data with Pillow and calculate hit box data on the cpu.

27.2 Garbage Collection & Threads

OpenGL is not thread safe meaning doing actions from anything but the main thread is not possible. You can still
use threads with arcade, but they cannot interact with anything that affects OpenGL objects. This will throw an error
immediately.

When threads are used in a project or underlying libraries there is always the risk that Python’s garbage collector will
run outside the main thread. This is just how Python’s garbage collector works.

For this reason, Arcade’s default garbage collection mode requires actively releasing OpenGL objects. We are doing
this for you in the arcade.Window.flip() method that is automatically called every frame.

This garbage collection mode is called context_gc since dead OpenGL objects are collected in the context and only
released when ctx.gc() is called.

Garbage collection modes can be configured during window creation or changed runtime in the context.

auto mode works like python's garbage collection (but more risky)
window = Window(gc_mode="auto")

This context mode is implied by default
window = Window(gc_mode="context_gc")
From now on you need to manually call window.ctx.gc()
for OpenGL resources to be deleted. This can be
done very frame if needed or in shorter intervals

(continues on next page)

375

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

num_released = window.ctx.gc()
print("Resources released:", num_released)

Change gc mode runtime
window.gc_mode = "auto"
window.gc_mode = "context_gc"

If you for some reason need garbage collection to run more often than once per frame it can safely be called as many
times as you want from the main thread.

In the vast majority of cases this is nothing you need to be worried about. The current default exists to make your life
as easy as possible.

27.3 Threads & vsync

Note that if vsync is enabled all threads will stall when all rendering is done and OpenGL is waiting for the next vertical
blank. The only way to combat this is to disable vsync or use sub-processes.

27.4 SpriteList & Threads

SpriteLists can be created in threads if they are created with the lazy=True parameters. This ensures OpenGL re-
sources are not created until the first draw() call or initialize() is called.

27.5 Writing Raw Bytes to GL Buffers & Textures

Many of arcade’s OpenGL classes support creation from or writing to any object that supports the buffer protocol. The
classes most useful to end users are:

• arcade.gl.Buffer

• arcade.gl.Texture

This functionality can be used for displaying the results of calculations such as:

• Scientific visualizations displaying data from numpy arrays

• Simple console emulators drawing their internal screen buffer

There should be no typing issues when using Python’s built-in buffer protocol objects as arguments to the writemethod
of arcade’s GL objects. We list these built-in types in the arcade.arcade_types.BufferProtocol Union type.

For objects from third-party libraries, your type checker may warn you about type mismatches. This is because Python
will not support general annotations for buffer protocol objects until version 3.12 at the earliest.

In the meantime, there are workarounds for users who want to write to arcade’s GL objects from third-party buffer
protocol objects:

• use the typing.cast method to convert the object’s type for the linter

• use # type: ignore to silence the warnings

376 Chapter 27. OpenGL

https://docs.python.org/3/c-api/buffer.html
https://docs.python.org/3/library/typing.html#typing.Union
https://peps.python.org/pep-0688/
https://docs.python.org/3/library/typing.html#typing.cast

CHAPTER

TWENTYEIGHT

PERFORMANCE

The three areas where a game might experience the greatest slowdowns are collision detection, drawing primitive
performance, and sprite drawing performance.

28.1 Collision detection performance

Detecting collisions between sprites can take a while. If you have a map with 50,000 sprites making up walls, then
every frame you have to make 50,000 checks. (An O(N) operation, if you are familiar with Big O notation.) If your
game includes multiple things that need to check for collisions (enemies, bullets, etc.) then each of those need to do
checks. That can take long enough a game can start slowing below 60 FPS.

How can we speed things up? Arcade can use a technique called spatial hashing.

28.1.1 Spatial Hashing

Arcade divides the screen up into a grid. We track which grid location(s) each sprite overlaps, and put them in a hash
map. For each grid location, we can quickly pull the sprites in that grid in a fast O(1) operation. When looking for
sprites that collide with our target sprite, we only look at sprites in sharing its grid location. This can reduce checks
from 50,000 to just 3 or 4.

There is a drawback. If the sprite moves, we have to recalculate and re-hash its location. This takes time. This doesn’t
mean we can’t ever move the sprite! But it does mean we have to make a choice around using spatial hashing or not:

• Only have a few sprites? Less than 100? Then it is too small to matter what you pick.

• Do we not need to check for collisions with a sprite list? Spatial hashing off.

• Do all the sprites in our sprite list move every frame? Spatial hashing off.

• Are the sprites platforms? Most of them not moving? Spatial hashing on.

Arcade defaults to no spatial hashing. Spatial hashing can be turned on by:

self.my_sprite_list = arcade.SpriteList(use_spatial_hashing=True)

377

Python Arcade Library, Release 3.0.0.dev26

28.1.2 Compute Shader

Currently on the drawing board, is the use of a compute shader on your graphics card to detect collisions. This has
the speed advantages of spatial hashing, without the speed penalty.

28.2 Drawing primitive performance

Drawing lines, rectangles, and circles can be slow. Every drawing command is sent individually to the graphics card
60 times per second. If you are drawing hundreds or thousands of lines/boxes then performance will be terrible.

If you are encountering this, you can speed things up by using arcade.ShapeElement lists where you batch together
the drawing commands. If you can group items together, than drawing a complex tree can be done with just one
command.

For more information see: shape_list_demo.

28.3 Sprite drawing performance

Sprite drawing is done in batches via the arcade.SpriteList class. Sprites are loaded to the graphics card and
drawn in a batch. Sprites that don’t move can be re-drawn incredibly fast. Sprites that do move only need their position
updated. Sprite drawing with Arcade is incredibly fast, and requires rarely needs any extra effort from the programmer.

28.4 Text drawing performance

Arcade’s arcade.draw_text() can be quite slow. To speed things up, use text objects. See drawing_text_objects.

378 Chapter 28. Performance

CHAPTER

TWENTYNINE

HEADLESS ARCADE

For some applications, it may be that we want to run Arcade, but not open up a window. We might want to draw to a
buffer and save an image to be used in a server or data science visualization. In remote cloud operations, we might not
even have a monitor for the computer. Running Arcade this way is called headless mode.

Arcade can render in headless mode on Linux servers with EGL installed. This should work both in a desktop en-
vironment and on servers and even in virtual machines. Both software and hardware rendering should be acceptable
depending on your use case.

We are leveraging the headless mode in pyglet. If you are seeking knowledege about the inner workings of headless,
that’s the right place to look.

29.1 Enabling headless mode

Headless mode needs to be configured before arcade is imported. This can be done in the following ways:

Before arcade is imported
import os
os.environ["ARCADE_HEADLESS"] = "True"

The above is a shortcut for
import pyglet
pyglet.options["headless"] = True

This of course also means you can configure headless externally.

$ export ARCADE_HEADLESS=True

To quickly check the enviroment such as renderer and versions:

$ python -m arcade

Arcade 2.6.12

vendor: AMD
renderer: AMD Radeon(TM) Vega 11 Graphics (RAVEN, DRM 3.41.0, 5.13.0-37-generic, LLVM 12.
→˓0.0)
version: (4, 6)
python: 3.9.9 (main, Dec 20 2021, 08:19:16)
[GCC 9.3.0]
platform: linux

379

https://en.wikipedia.org/wiki/Headless_software
https://en.wikipedia.org/wiki/EGL_(API)

Python Arcade Library, Release 3.0.0.dev26

29.2 How is this affecting my code?

In headless mode we don’t have any window events or inputs events. This means events like on_key_press and
on_mouse_motion will never be called. A project not created for a headless setting will need some tweaking.

In headless mode the arcade Window will extend pyglet’s headless window instead. We’ve added a property arcade.
Window.headless (bool) that can be used to separate headless logic.

Note that the window itself still has a framebuffer you can render to and read pixels from. The size of this framebuffer
is the size you specify when creating the window. More framebuffers can be created through the ArcadeContext if
needed.

Warning: If you are creating and destroying a lot of arcade objects you might want to look into arcade.
ArcadeContext.gc_mode. In Arcade we normally do garbage collection of OpenGL objects once per frame
by calling gc().

Warning: If you are loading an increasing amount of textures you might need to clean up the texture cache. This
only caches arcade.Texture objects. See cleanup_texture_cache(). This might also involve removing them
from the global texture atlas if you are using these textures on sprites.

29.3 Examples

There are two recommended approaches: Simple headless mode and Headless mode while extending the Arcade Win-
dow.

29.3.1 Simple headless mode

For simpler applications we don’t need to subclass the window.

Configure headless before importing arcade
import os
os.environ["ARCADE_HEADLESS"] = "true"
import arcade

Create a 100 x 100 headless window
window = arcade.open_window(100, 100)

Draw a quick rectangle
arcade.draw_rectangle_filled(50, 50, 50, 50, color=arcade.color.AMAZON)

Dump the framebuffer to a png
image = arcade.get_image(0, 0, *window.get_size())
image.save(f"framebuffer.png")

You are free to clear() the window and render new contents at any time.

380 Chapter 29. Headless Arcade

Python Arcade Library, Release 3.0.0.dev26

29.3.2 Headless mode while extending the Arcade Window

For Arcade users extending the window, this method makes more sense. The run() method supports headless mode
and will emulate Pyglet’s event loop by calling on_update, on_draw and flip() (swap buffers) in a loop until you
close the window.

import os
os.environ["ARCADE_HEADLESS"] = "true"
import arcade

class App(arcade.Window):

def __init__(self):
super().__init__(200, 200)
self.frame = 0
self.sprite = arcade.Sprite(

":resources:images/animated_characters/female_adventurer/femaleAdventurer_
→˓idle.png",

center_x=self.width / 2,
center_y=self.height / 2,

)

def on_draw(self):
self.clear()
self.sprite.draw()

Dump the window framebuffer to disk
image = arcade.get_image(0, 0, *self.get_size())
image.save("framebuffer.png")

def on_update(self, delta_time: float):
Close the window on the second frame
if self.frame == 2:

self.close()

self.frame += 1

App().run()

You can also split your code into arcade.View classes if needed. Doing it this way might make it simpler to work
with headless and non-headless mode during development. You just need to programmatically close the window and
switch views. We can easily separate logic with the arcade.Window.headless flag. When calling run() we also
garbage collect OpenGL resources every frame.

29.3. Examples 381

Python Arcade Library, Release 3.0.0.dev26

29.4 Advanced

The lower level rendering API is of course still available through arcade.Window.ctx. It exposes methods to create
framebuffers, textures, shaders (including compute shaders) and other higher level wrappers over OpenGL types.

When working in a multi-gpu environment you can also select a specific device id. This is 0 by default and must
be set before the window is created. These device ids usually refers to a physical device (graphics card) or a virtual
card/device.

Default setting
pyglet.options['headless_device'] = 0

Use the second gpu/device
pyglet.options['headless_device'] = 1

29.5 Issues?

If you run into issues or have questions please create an issue on github or join our discord server.

382 Chapter 29. Headless Arcade

CHAPTER

THIRTY

VERTICAL SYNCHRONIZATION

30.1 What is vertical sync?

Vertical synchronization (vsync) is a window option in which the video card is prevented from doing anything visible
to the display memory until after the monitor finishes its current refresh cycle.

To enable vsync in arcade:

On window creation
arcade.Window(800, 600, "Window Title", vsync=True)

While the application is running
window.set_vsync(True)

This have advantages and disadvantages depending on the situation.

Most windows are what we call “double buffered”. This means the window actually has two surfaces. A visible surface
and a hidden surface. All drawing commands will end up in the hidden surface. When we’re done drawing our frame
the hidden and visible surfaces swap places and the new frame is revealed to the user.

If this “dance” of swapping surfaces is not timed correctly with your monitor you might experience small hiccups in
movement.

30.2 Vertical sync disabled as a default

The arcade window is by default created with vertical sync disabled. This is a much safer default for a number of
reasons.

• In some environments vertical sync is capped to 30 fps. This can make the game run at half the speed if
delta_time is not accounted for. We don’t expect beginners take delta_time into consideration in their
projects.

• If threads are used all threads will stall while the application is waiting for vertical sync

We cannot guarantee that vertical sync is disabled if this is enforced on driver level. The vast amount of driver defaults
lets the application control this.

383

Python Arcade Library, Release 3.0.0.dev26

30.3 Advantages of vertical sync

If you have any kind of movement, scrolling or animation in your application you might have noticed a very subtle
hiccup periodically or randomly. This can be reduced or entirely removed by enabling vertical sync. In some environ-
ments/platforms you can even experience screen tearing.

When vsync is enabled we have to make sure all movement is takes delta_time into consideration. This can also
improve smoothness when vsync is not enabled:

Move 100 units in one second
MOVEMENT_SPEED = 100

def on_update(self, delta_time):
Move your sprite based on the time since the last frame.
This will make the sprite move along the x axis by
100 units in one second
self.sprite.center_x += MOVEMENT_SPEED * delta_time

384 Chapter 30. Vertical Synchronization

https://en.wikipedia.org/wiki/Screen_tearing

CHAPTER

THIRTYONE

PYGAME COMPARISON

Both Pygame and Arcade are Python libraries for making it easy to create 2D games. Pygame is raster-graphics based.
It is very fast at manipulating individual pixels and can run on almost anything. Arcade uses OpenGL. It is very fast at
drawing sprites and off-loads functions such as rotation and transparency to the graphics card.

In 2023 Pygame split between the Original Pygame and the Pygame Community Edition (Pygame-ce). At this point,
the code bases are still pretty similar.

31.1 Library Information

Table 1: Library Information

Feature Arcade Pygame Original Pygame CE
Website https://arcade.academy https://www.pygame.org https://pyga.me/
API Docs API Docs API Docs API Docs
Example code Arcade Examples Pygame Examples
License MIT License LGPL LGPL
Back-end graphics engine OpenGL 3.3+ and Pyglet SDL 2 SDL 2
Back-end audio engine ffmpeg via Pyglet SDL 2 SDL 2
Example Projects Games Made With Arcade Games Made With

Pygame
First Started 2016 Before 2000 Branched 2023

385

https://github.com/pygame/
https://github.com/pygame-community/pygame-ce
https://arcade.academy
https://www.pygame.org
https://pyga.me/
https://www.pygame.org/docs/
https://pyga.me/docs/
https://github.com/pygame/pygame/tree/main/examples
https://github.com/pythonarcade/arcade/blob/development/license.rst
https://github.com/pygame/pygame/blob/main/docs/LGPL.txt
https://github.com/pygame/pygame/blob/main/docs/LGPL.txt
http://pyglet.org/
https://www.libsdl.org/
https://www.libsdl.org/
http://pyglet.org/
https://www.libsdl.org/
https://www.libsdl.org/
https://www.pygame.org/tags/all
https://www.pygame.org/tags/all

Python Arcade Library, Release 3.0.0.dev26

31.2 Feature Comparison

Here are some comparisons between Arcade 3.0 and Pygame 2.2.0 ce:

Table 2: Feature Comparison

Feature Arcade Pygame
Drawing primitives support rotation Yes No1

Sprites support rotation Yes NoPage 386, 1

Sprites support scaling Yes No1

Texture atlas2 Yes No
Type Hints Yes No
Transparency support Yes Must specify transparent colorkey
Camera support Yes No
Android support No Yes
Raspberry Pi support No Yes
Batch drawing Via GPU Via Surface3

Default Hitbox
Tiled Map Support Yes No
Physics engines Simple, platformer, and PyMunk None
Event Management Pyglet-based, write functions to han-

dle events
Write your own event loop. Can get
around this by add-ons like Pygame
Zero)

View Support Yes No
Light Support Yes No
GUI Support Yes No (or add pygame-gui)
GPU Shader Support Yes No
Built-in Resources Yes No

31.3 Performance Comparison

These performance tests were done on an Intel Core i7-9700F with GeForce GTX 980 Ti. Source code for tests available
at:

• https://craven-performance-testing.s3-us-west-2.amazonaws.com/index.html

• https://github.com/pythonarcade/performance_tests
1 To support rotation and/or scaling, PyGame programs must write the image to a surface, transform the surface, then create a sprite out of the

surface. This takes a lot of CPU. Arcade off-loads all these operations to the graphics card. See for more information.
2 When creating a sprite from an image, Pygame will load the image from the disk every time unless the user caches the image with their own

code for better performance. Arcade will create an atlas of textures, so that multiple sprites with the same image will just reference the same atlas
location.

3 A programmer can achieve a similar result by drawing to a surface, then draw the surface to the screen.

386 Chapter 31. Pygame Comparison

api/camera.html
examples/platform_tutorial/step_09.html
examples/platform_tutorial/step_04.html
examples/platform_tutorial/step_05.html
tutorials/pymunk_platformer/index.html
https://pygame-zero.readthedocs.io/en/stable/
https://pygame-zero.readthedocs.io/en/stable/
tutorials/views/index.html
tutorials/lights/index.html
gui/index.html
https://pygame-gui.readthedocs.io/en/latest/
tutorials/gpu_particle_burst/index.html
resources.html
https://craven-performance-testing.s3-us-west-2.amazonaws.com/index.html
https://github.com/pythonarcade/performance_tests

Python Arcade Library, Release 3.0.0.dev26

31.3.1 Sprite Drawing

How fast can the graphics libraries draw sprites that don’t move? This graph shows the Frames Per Second (FPS) the
computer can maintain vs. the number of sprites being drawn each frame:

Why is Arcade so fast? Arcade loads the sprites to the GPU and can redraw stationary sprites with almost no CPU
effort. This allows it to scale drawing of stationary sprites to even 1 million plus, and still keep 60 FPS.

While Pygame’s speed may drop off fast, there’s still a few thousand sprites that can be drawn on the screen before FPS
drops off. For many games that’s plenty. Also, for sprites that don’t move, Pygame programs can draw the sprites to a
‘surface’ at the start of a game. A program can then use that surface to the screen in one operation.

How fast can we draw moving sprites? Moving sprites are more challenging to draw, as we can’t simply use what we
did in the prior frame.

Arcade only updates the changed location of the sprite, keeping the dimensions and image on the GPU allowing it to
still have fast updates.

Arcade also has two sprite classes available. The full-featured arcade.Sprite class and the smaller and faster
arcade.BasicSprite class. If you don’t need collision detection or physics support, the BasicSprite class works
great.

31.3.2 Collision Processing

Another time-critical component in games is the time it takes to figure out if sprites collide:

Normally collision detection is an O(N) operation. That is, if are checking to see if a sprite collides with any of 1,000
other sprites, we have 1,000 checks to do. If there are a lot of sprites, this takes time.

Arcade has two ways to speed this up.

1. Spatial Hashing. If we know those 1,000 sprites aren’t going to move at all (or very much) we can set up a grid.
We figure out what grid location the player is in. Then we only check the player against whichever of the 1,000
sprites are in the same grid location. This works great for tiled maps where the platforms, ramps, etc. don’t
move. It gets us closer to O(1) time.

2. Off-load to the GPU. As there are 1,000s of processors on your graphics card, we can calculate collisions there.
However it takes time to set up the GPU. This is only faster if we have more than 1500 or so sprites to check.

3. “Simple” checks everything. There are still a lot of tricks used to make this faster, and particularly with Python
3.11 code, it runs fine for most cases.

Arcade has multiple modes that allow you to select these collision options.

31.3.3 Shapes

Aside from sprites, how fast can a library draw various graphical shapes? Rectangle, circles, arcs, and more?

This next benchmark looks at drawing rectangles. Important things to keep in mind:

• Pygame uses memory bliting which is crazy fast and why it comes out in first-place. This doesn’t work as well
if you are drawing anything but unrotated rectangles.

• Arcade’s shapes are easy, but crazy-slow. Thankfully you can use Pyglet shapes in the same program as Arcade.
For anything more than a dozen or so shapes, a program should do that.

• Arcade has a Sprite class for solid-color rectangles. If you needed rectangles the SpriteSolidColor would be a
high performance option not shown here.

31.3. Performance Comparison 387

Python Arcade Library, Release 3.0.0.dev26

What if a shape needs to be rotated? Pyglet can offload this to the GPU and this allows it to perform faster than Pygame
that relies on the CPU.

388 Chapter 31. Pygame Comparison

CHAPTER

THIRTYTWO

API INDEX

• arcade.color package

• arcade.csscolor package

• arcade.key package

• Built-In Resources

32.1 The arcade module

Name Group
arcade.shape_list.Shape Shape Lists
arcade.shape_list.ShapeElementList Shape Lists
arcade.shape_list.create_ellipse() Shape Lists
arcade.shape_list.create_ellipse_filled() Shape Lists
arcade.shape_list.
create_ellipse_filled_with_colors()

Shape Lists

arcade.shape_list.create_ellipse_outline() Shape Lists
arcade.shape_list.create_line() Shape Lists
arcade.shape_list.create_line_generic() Shape Lists
arcade.shape_list.
create_line_generic_with_colors()

Shape Lists

arcade.shape_list.create_line_loop() Shape Lists
arcade.shape_list.create_line_strip() Shape Lists
arcade.shape_list.create_lines() Shape Lists
arcade.shape_list.
create_lines_with_colors()

Shape Lists

arcade.shape_list.create_polygon() Shape Lists
arcade.shape_list.create_rectangle() Shape Lists
arcade.shape_list.
create_rectangle_filled()

Shape Lists

arcade.shape_list.
create_rectangle_filled_with_colors()

Shape Lists

arcade.shape_list.
create_rectangle_outline()

Shape Lists

arcade.shape_list.
create_rectangles_filled_with_colors()

Shape Lists

arcade.shape_list.
create_triangles_filled_with_colors()

Shape Lists

continues on next page

389

Python Arcade Library, Release 3.0.0.dev26

Table 1 – continued from previous page
Name Group
arcade.shape_list.
create_triangles_strip_filled_with_colors()

Shape Lists

arcade.shape_list.get_rectangle_points() Shape Lists
arcade.NoOpenGLException Window and View
arcade.View Window and View
arcade.Window Window and View
arcade.get_screens() Window and View
arcade.open_window() Window and View
arcade.close_window() Window and View
arcade.exit() Window and View
arcade.finish_render() Window and View
arcade.get_display_size() Window and View
arcade.get_window() Window and View
arcade.pause() Window and View
arcade.run() Window and View
arcade.schedule() Window and View
arcade.schedule_once() Window and View
arcade.set_background_color() Window and View
arcade.set_viewport() Window and View
arcade.set_window() Window and View
arcade.start_render() Window and View
arcade.unschedule() Window and View
arcade.draw_arc_filled() Drawing - Primitives
arcade.draw_arc_outline() Drawing - Primitives
arcade.draw_circle_filled() Drawing - Primitives
arcade.draw_circle_outline() Drawing - Primitives
arcade.draw_ellipse_filled() Drawing - Primitives
arcade.draw_ellipse_outline() Drawing - Primitives
arcade.draw_line() Drawing - Primitives
arcade.draw_line_strip() Drawing - Primitives
arcade.draw_lines() Drawing - Primitives
arcade.draw_lrbt_rectangle_filled() Drawing - Primitives
arcade.draw_lrbt_rectangle_outline() Drawing - Primitives
arcade.draw_lrtb_rectangle_filled() Drawing - Primitives
arcade.draw_lrtb_rectangle_outline() Drawing - Primitives
arcade.draw_lrwh_rectangle_textured() Drawing - Primitives
arcade.draw_parabola_filled() Drawing - Primitives
arcade.draw_parabola_outline() Drawing - Primitives
arcade.draw_point() Drawing - Primitives
arcade.draw_points() Drawing - Primitives
arcade.draw_polygon_filled() Drawing - Primitives
arcade.draw_polygon_outline() Drawing - Primitives
arcade.draw_rectangle_filled() Drawing - Primitives
arcade.draw_rectangle_outline() Drawing - Primitives
arcade.draw_scaled_texture_rectangle() Drawing - Primitives
arcade.draw_texture_rectangle() Drawing - Primitives
arcade.draw_triangle_filled() Drawing - Primitives
arcade.draw_triangle_outline() Drawing - Primitives
arcade.draw_xywh_rectangle_filled() Drawing - Primitives
arcade.draw_xywh_rectangle_outline() Drawing - Primitives

continues on next page

390 Chapter 32. API Index

Python Arcade Library, Release 3.0.0.dev26

Table 1 – continued from previous page
Name Group
arcade.get_image() Drawing - Primitives
arcade.get_pixel() Drawing - Primitives
arcade.ArcadeContext OpenGL Context
arcade.types.Color Types
arcade.types.TiledObject Types
arcade.Camera Camera
arcade.SimpleCamera Camera
arcade.AStarBarrierList Pathfinding
arcade.astar_calculate_path() Pathfinding
arcade.has_line_of_sight() Pathfinding
arcade.easing.EasingData Easing
arcade.easing.ease_angle() Easing
arcade.easing.ease_angle_update() Easing
arcade.easing.ease_in() Easing
arcade.easing.ease_in_back() Easing
arcade.easing.ease_in_out() Easing
arcade.easing.ease_in_out_sin() Easing
arcade.easing.ease_in_sin() Easing
arcade.easing.ease_out() Easing
arcade.easing.ease_out_back() Easing
arcade.easing.ease_out_bounce() Easing
arcade.easing.ease_out_elastic() Easing
arcade.easing.ease_out_sin() Easing
arcade.easing.ease_position() Easing
arcade.easing.ease_update() Easing
arcade.easing.ease_value() Easing
arcade.easing.easing() Easing
arcade.easing.linear() Easing
arcade.easing.smoothstep() Easing
arcade.Sound Sound
arcade.load_sound() Sound
arcade.play_sound() Sound
arcade.stop_sound() Sound
arcade.utils.ByteRangeError Misc Utility Functions
arcade.utils.FloatOutsideRangeError Misc Utility Functions
arcade.utils.IntOutsideRangeError Misc Utility Functions
arcade.utils.NormalizedRangeError Misc Utility Functions
arcade.utils.OutsideRangeError Misc Utility Functions
arcade.utils.PerformanceWarning Misc Utility Functions
arcade.utils.ReplacementWarning Misc Utility Functions
arcade.utils.generate_uuid_from_kwargs() Misc Utility Functions
arcade.utils.get_raspberry_pi_info() Misc Utility Functions
arcade.utils.is_raspberry_pi() Misc Utility Functions
arcade.utils.warning() Misc Utility Functions
arcade.Scene Sprite Scenes
arcade.SceneKeyError Sprite Scenes
arcade.PerfGraph Performance Information
arcade.get_points_for_thick_line() Drawing - Utility
arcade.math.clamp() Math
arcade.math.get_angle_degrees() Math

continues on next page

32.1. The arcade module 391

Python Arcade Library, Release 3.0.0.dev26

Table 1 – continued from previous page
Name Group
arcade.math.get_angle_radians() Math
arcade.math.get_distance() Math
arcade.math.lerp() Math
arcade.math.lerp_angle() Math
arcade.math.lerp_vec() Math
arcade.math.rand_angle_360_deg() Math
arcade.math.rand_angle_spread_deg() Math
arcade.math.rand_in_circle() Math
arcade.math.rand_in_rect() Math
arcade.math.rand_on_circle() Math
arcade.math.rand_on_line() Math
arcade.math.rand_vec_magnitude() Math
arcade.math.rand_vec_spread_deg() Math
arcade.math.rotate_point() Math
arcade.math.round_fast() Math
arcade.Text Text
arcade.create_text_sprite() Text
arcade.draw_text() Text
arcade.load_font() Text
arcade.clear_timings() Performance Information
arcade.disable_timings() Performance Information
arcade.enable_timings() Performance Information
arcade.get_fps() Performance Information
arcade.get_timings() Performance Information
arcade.print_timings() Performance Information
arcade.timings_enabled() Performance Information
arcade.configure_logging() Misc Utility Functions
arcade.geometry.are_lines_intersecting() Geometry Support
arcade.geometry.are_polygons_intersecting() Geometry Support
arcade.geometry.get_triangle_orientation() Geometry Support
arcade.geometry.is_point_in_box() Geometry Support
arcade.geometry.is_point_in_polygon() Geometry Support
arcade.get_game_controllers() Joystick Support
arcade.get_joysticks() Joystick Support
arcade.isometric.create_isometric_grid_lines()Isometric Map Support (incomplete)
arcade.isometric.isometric_grid_to_screen() Isometric Map Support (incomplete)
arcade.isometric.screen_to_isometric_grid() Isometric Map Support (incomplete)
arcade.PymunkException Physics Engines
arcade.PymunkPhysicsEngine Physics Engines
arcade.PymunkPhysicsObject Physics Engines
arcade.Section Window and View
arcade.SectionManager Window and View
arcade.earclip.earclip() Earclip
arcade.PhysicsEnginePlatformer Physics Engines
arcade.PhysicsEngineSimple Physics Engines
arcade.ControllerManager Game Controller Support
arcade.get_controllers() Game Controller Support
arcade.check_for_collision() Sprite Lists
arcade.check_for_collision_with_list() Sprite Lists
arcade.check_for_collision_with_lists() Sprite Lists

continues on next page

392 Chapter 32. API Index

Python Arcade Library, Release 3.0.0.dev26

Table 1 – continued from previous page
Name Group
arcade.get_closest_sprite() Sprite Lists
arcade.get_distance_between_sprites() Sprite Lists
arcade.get_sprites_at_exact_point() Sprite Lists
arcade.get_sprites_at_point() Sprite Lists
arcade.get_sprites_in_rect() Sprite Lists
arcade.SpatialHash Sprite Lists
arcade.SpriteList Sprite Lists
arcade.PyMunk Sprites
arcade.PymunkMixin Sprites
arcade.SpriteCircle Sprites
arcade.SpriteSolidColor Sprites
arcade.AnimatedTimeBasedSprite Sprites
arcade.AnimatedWalkingSprite Sprites
arcade.AnimationKeyframe Sprites
arcade.Sprite Sprites
arcade.BasicSprite Sprites
arcade.load_animated_gif() Sprites
arcade.make_circle_texture() Texture Management
arcade.make_soft_circle_texture() Texture Management
arcade.make_soft_square_texture() Texture Management
arcade.texture.transforms.
FlipLeftRightTransform

Texture Transforms

arcade.texture.transforms.
FlipTopBottomTransform

Texture Transforms

arcade.texture.transforms.
Rotate180Transform

Texture Transforms

arcade.texture.transforms.
Rotate270Transform

Texture Transforms

arcade.texture.transforms.
Rotate90Transform

Texture Transforms

arcade.texture.transforms.Transform Texture Transforms
arcade.texture.transforms.
TransposeTransform

Texture Transforms

arcade.texture.transforms.
TransverseTransform

Texture Transforms

arcade.texture.transforms.VertexOrder Texture Transforms
arcade.texture.transforms.
get_orientation()

Texture Transforms

arcade.cleanup_texture_cache() Texture Management
arcade.get_default_image() Texture Management
arcade.get_default_texture() Texture Management
arcade.load_spritesheet() Texture Management
arcade.load_texture() Texture Management
arcade.load_texture_pair() Texture Management
arcade.load_textures() Texture Management
arcade.Texture Texture Management
arcade.TextureAtlas Texture Atlas
arcade.load_atlas() Texture Atlas
arcade.save_atlas() Texture Atlas
arcade.gui.UIDraggableMixin GUI

continues on next page

32.1. The arcade module 393

Python Arcade Library, Release 3.0.0.dev26

Table 1 – continued from previous page
Name Group
arcade.gui.UIMouseFilterMixin GUI
arcade.gui.UIWindowLikeMixin GUI
arcade.gui.UIStyleBase GUI Style
arcade.gui.UIStyledWidget GUI Style
arcade.gui.Surface GUI
arcade.gui.UIButtonRow GUI
arcade.gui.UIMessageBox GUI
arcade.gui.UIManager GUI
arcade.gui.NinePatchTexture GUI
arcade.gui.UIEvent GUI Events
arcade.gui.UIKeyEvent GUI Events
arcade.gui.UIKeyPressEvent GUI Events
arcade.gui.UIKeyReleaseEvent GUI Events
arcade.gui.UIMouseDragEvent GUI Events
arcade.gui.UIMouseEvent GUI Events
arcade.gui.UIMouseMovementEvent GUI Events
arcade.gui.UIMousePressEvent GUI Events
arcade.gui.UIMouseReleaseEvent GUI Events
arcade.gui.UIMouseScrollEvent GUI Events
arcade.gui.UIOnActionEvent GUI Events
arcade.gui.UIOnChangeEvent GUI Events
arcade.gui.UIOnClickEvent GUI Events
arcade.gui.UIOnUpdateEvent GUI Events
arcade.gui.UITextEvent GUI Events
arcade.gui.UITextMotionEvent GUI Events
arcade.gui.UITextMotionSelectEvent GUI Events
arcade.gui.DictProperty GUI Properties
arcade.gui.ListProperty GUI Properties
arcade.gui.Property GUI Properties
arcade.gui.bind() GUI Properties
arcade.gui.UIImage GUI Widgets
arcade.gui.UISlider GUI Widgets
arcade.gui.UISliderStyle GUI Widgets
arcade.gui.UIAnchorLayout GUI Widgets
arcade.gui.UIBoxLayout GUI Widgets
arcade.gui.UIGridLayout GUI Widgets
arcade.gui.UIDropdown GUI Widgets
arcade.gui.UIInputText GUI Widgets
arcade.gui.UILabel GUI Widgets
arcade.gui.UITextArea GUI Widgets
arcade.gui.UITextWidget GUI Widgets
arcade.gui.Rect GUI Widgets
arcade.gui.UIDummy GUI Widgets
arcade.gui.UIInteractiveWidget GUI Widgets
arcade.gui.UILayout GUI Widgets
arcade.gui.UISpace GUI Widgets
arcade.gui.UISpriteWidget GUI Widgets
arcade.gui.UIWidget GUI Widgets
arcade.gui.UITextureToggle GUI Widgets
arcade.gui.UIFlatButton GUI Widgets

continues on next page

394 Chapter 32. API Index

Python Arcade Library, Release 3.0.0.dev26

Table 1 – continued from previous page
Name Group
arcade.gui.UITextureButton GUI Widgets
arcade.gui.UITextureButtonStyle GUI Widgets
arcade.tilemap.TileMap Tiled Map Reader
arcade.tilemap.load_tilemap() Tiled Map Reader
arcade.tilemap.read_tmx() Tiled Map Reader

32.1. The arcade module 395

Python Arcade Library, Release 3.0.0.dev26

396 Chapter 32. API Index

CHAPTER

THIRTYTHREE

API REFERENCE

This page documents the Application Programming Interface (API) for the Python Arcade library. See also:

• API Index

• How-To Example Code

33.1 Types

class arcade.types.Color(r: int, g: int, b: int, a: int = 255)
Bases: Tuple[int, int, int, int]

A tuple subclass representing an RGBA Color.

This class provides helpful utility methods and properties. When performance or brevity matters, arcade will
usually allow you to use an ordinary tuple of RGBA values instead.

All channels are byte values from 0 to 255, inclusive. If any are outside this range, a ByteRangeError will be
raised, which can be handled as a ValueError.

Examples:

>>> from arcade.types import Color
>>> Color(255, 0, 0)
Color(r=255, g=0, b=0, a=0)

>>> Color(*rgb_green_tuple, 127)
Color(r=0, g=255, b=0, a=127)

Parameters
• r – the red channel of the color, between 0 and 255

• g – the green channel of the color, between 0 and 255

• b – the blue channel of the color, between 0 and 255

• a – the alpha or transparency channel of the color, between 0 and 255

classmethod from_gray(brightness: int, a: int = 255)→ Self
Return a shade of gray of the given brightness.

Example:

397

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Python Arcade Library, Release 3.0.0.dev26

>>> custom_white = Color.from_gray(255)
>>> print(custom_white)
Color(r=255, g=255, b=255, a=255)

>>> half_opacity_gray = Color.from_gray(128, 128)
>>> print(half_opacity_gray)
Color(r=128, g=128, b=128, a=128)

Parameters
• brightness – How bright the shade should be

• a – a transparency value, fully opaque by default

Returns

classmethod from_hex_string(code: str)→ Self
Make a color from a hex code that is 3, 4, 6, or 8 hex digits long

Prefixing it with a pound sign (# / hash symbol) is optional. It will be ignored if present.

The capitalization of the hex digits ('f' vs 'F') does not matter.

3 and 6 digit hex codes will be treated as if they have an opacity of 255.

3 and 4 digit hex codes will be expanded.

Examples:

>>> Color.from_hex_string("#ff00ff")
Color(r=255, g=0, b=255, a=255)

>>> Color.from_hex_string("#ff00ff00")
Color(r=255, g=0, b=255, a=0)

>>> Color.from_hex_string("#FFF")
Color(r=255, g=255, b=255, a=255)

>>> Color.from_hex_string("FF0A")
Color(r=255, g=255, b=0, a=170)

classmethod from_iterable(iterable: Iterable[int])→ Self
Create a color from an :py:class`Iterable` with 3-4 elements

If the passed iterable is already a Color instance, it will be returned unchanged. If the iterable has less than
3 or more than 4 elements, a ValueError will be raised.

Otherwise, the function will attempt to create a new Color instance. The usual rules apply, ie all values
must be between 0 and 255, inclusive.

Parameters
iterable – An iterable which unpacks to 3 or 4 elements, each between 0 and 255, inclusive.

classmethod from_normalized(color_normalized: Tuple[float, float, float, float])→ Self
Convert normalized (0.0 to 1.0) channels into an RGBA Color

If the input channels aren’t normalized, a arcade.utils.NormalizedRangeError will be raised. This
is a subclass of :py:class`ValueError` and can be handled as such.

Examples:

398 Chapter 33. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Python Arcade Library, Release 3.0.0.dev26

>>> Color.from_normalized((1.0, 0.0, 0.0, 1.0))
Color(r=255, g=0, b=0, a=255)

>>> normalized_half_opacity_green = (0.0, 1.0, 0.0, 0.5)
>>> Color.from_normalized(normalized_half_opacity_green)
Color(r=0, g=255, b=0, a=127)

Parameters
color_normalized – The color as normalized (0.0 to 1.0) RGBA values.

Returns

classmethod from_uint24(color: int, a: int = 255)→ Self
Return a Color from an unsigned 3-byte (24 bit) integer.

These ints may be between 0 and 16777215 (0xFFFFFF), inclusive.

Example:

>>> Color.from_uint24(16777215)
Color(r=255, g=255, b=255, a=255)

>>> Color.from_uint24(0xFF0000)
Color(r=255, g=0, b=0, a=255)

Parameters
• color – a 3-byte int between 0 and 16777215 (0xFFFFFF)

• a – an alpha value to use between 0 and 255, inclusive.

classmethod from_uint32(color: int)→ Self
Return a Color tuple for a given unsigned 4-byte (32-bit) integer

The bytes are interpreted as R, G, B, A.

Examples:

>>> Color.from_uint32(4294967295)
Color(r=255, g=255, b=255, a=255)

>>> Color.from_uint32(0xFF0000FF)
Color(r=255, g=0, b=0, a=255)

Parameters
color – An int between 0 and 4294967295 (0xFFFFFFFF)

classmethod random(r: int | None = None, g: int | None = None, b: int | None = None, a: int | None =
None)→ Self

Return a random color.

The parameters are optional and can be used to fix the value of a particular channel. If a channel is not
fixed, it will be randomly generated.

Examples:

33.1. Types 399

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

Python Arcade Library, Release 3.0.0.dev26

Randomize all channels
>>> Color.random()
Color(r=35, g=145, b=4, a=200)

Random color with fixed alpha
>>> Color.random(a=255)
Color(r=25, g=99, b=234, a=255)

Parameters
• r – Fixed value for red channel

• g – Fixed value for green channel

• b – Fixed value for blue channel

• a – Fixed value for alpha channel

a

b

g

normalized

Return this color as a tuple of 4 normalized floats.

Examples:

>>> arcade.color.WHITE.normalized
(1.0, 1.0, 1.0, 1.0)

>>> arcade.color.BLACK.normalized
(0.0, 0.0, 0.0, 1.0)

>>> arcade.color.TRANSPARENT_BLACK.normalized
(0.0, 0.0, 0.0, 0.0)

r

class arcade.types.TiledObject(shape, properties, name, type)
Bases: NamedTuple

repr(self)
Return a nicely formatted representation string

name: str | None

Alias for field number 2

properties: Dict[str, float | Path | str | bool | Color] | None

Alias for field number 1

shape: Tuple[float, float] | Sequence[Tuple[float, float]] | Tuple[int, int, int,
int] | List[int]

Alias for field number 0

type: str | None

Alias for field number 3

400 Chapter 33. API Reference

https://docs.python.org/3/library/typing.html#typing.NamedTuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

Python Arcade Library, Release 3.0.0.dev26

33.2 Drawing - Primitives

arcade.draw_arc_filled(center_x: float, center_y: float, width: float, height: float, color: Tuple[int, int, int, int],
start_angle: float, end_angle: float, tilt_angle: float = 0, num_segments: int = 128)

Draw a filled in arc. Useful for drawing pie-wedges, or Pac-Man.

Parameters
• center_x – x position that is the center of the arc.

• center_y – y position that is the center of the arc.

• width – width of the arc.

• height – height of the arc.

• color – A 3 or 4 length tuple of 0-255 channel values or a Color instance.

• start_angle – start angle of the arc in degrees.

• end_angle – end angle of the arc in degrees.

• tilt_angle – angle the arc is tilted (clockwise).

• num_segments – Number of line segments used to draw arc.

arcade.draw_arc_outline(center_x: float, center_y: float, width: float, height: float, color: Tuple[int, int, int,
int], start_angle: float, end_angle: float, border_width: float = 1, tilt_angle: float =
0, num_segments: int = 128)

Draw the outside edge of an arc. Useful for drawing curved lines.

Parameters
• center_x – x position that is the center of the arc.

• center_y – y position that is the center of the arc.

• width – width of the arc.

• height – height of the arc.

• color – A 3 or 4 length tuple of 0-255 channel values or a Color instance.

• start_angle – start angle of the arc in degrees.

• end_angle – end angle of the arc in degrees.

• border_width – width of line in pixels.

• tilt_angle – angle the arc is tilted (clockwise).

• num_segments – float of triangle segments that make up this circle. Higher is better quality,
but slower render time.

arcade.draw_circle_filled(center_x: float, center_y: float, radius: float, color: Tuple[int, int, int, int],
tilt_angle: float = 0, num_segments: int = -1)

Draw a filled-in circle.

Parameters
• center_x – x position that is the center of the circle.

• center_y – y position that is the center of the circle.

• radius – width of the circle.

33.2. Drawing - Primitives 401

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

Python Arcade Library, Release 3.0.0.dev26

• color – A 3 or 4 length tuple of 0-255 channel values or a Color instance.

• tilt_angle – Angle in degrees to tilt the circle. Useful for low segment count circles

• num_segments – Number of triangle segments that make up this circle. Higher is better
quality, but slower render time. The default value of -1 means arcade will try to calculate a
reasonable amount of segments based on the size of the circle.

arcade.draw_circle_outline(center_x: float, center_y: float, radius: float, color: Tuple[int, int, int, int],
border_width: float = 1, tilt_angle: float = 0, num_segments: int = -1)

Draw the outline of a circle.

Parameters
• center_x – x position that is the center of the circle.

• center_y – y position that is the center of the circle.

• radius – width of the circle.

• color – A 3 or 4 length tuple of 0-255 channel values or a Color instance.

• border_width – Width of the circle outline in pixels.

• tilt_angle – Angle in degrees to tilt the circle (clockwise). Useful for low segment count
circles

• num_segments – Number of triangle segments that make up this circle. Higher is better
quality, but slower render time. The default value of -1 means arcade will try to calculate a
reasonable amount of segments based on the size of the circle.

arcade.draw_ellipse_filled(center_x: float, center_y: float, width: float, height: float, color: Tuple[int, int,
int, int], tilt_angle: float = 0, num_segments: int = -1)

Draw a filled in ellipse.

Parameters
• center_x – x position that is the center of the circle.

• center_y – y position that is the center of the circle.

• width – width of the ellipse.

• height – height of the ellipse.

• color – A 3 or 4 length tuple of 0-255 channel values or a Color instance.

• color – Either a Color instance or an RGBA tuple of 4 byte values (0 to 255).

• tilt_angle – Angle in degrees to tilt the ellipse (clockwise). Useful when drawing a circle
with a low segment count, to make an octagon for example.

• num_segments – Number of triangle segments that make up this circle. Higher is better
quality, but slower render time. The default value of -1 means arcade will try to calculate a
reasonable amount of segments based on the size of the circle.

arcade.draw_ellipse_outline(center_x: float, center_y: float, width: float, height: float, color: Tuple[int, int,
int, int], border_width: float = 1, tilt_angle: float = 0, num_segments: int = -1)

Draw the outline of an ellipse.

Parameters
• center_x – x position that is the center of the circle.

• center_y – y position that is the center of the circle.

402 Chapter 33. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

Python Arcade Library, Release 3.0.0.dev26

• width – width of the ellipse.

• height – height of the ellipse.

• color – A 3 or 4 length tuple of 0-255 channel values or a Color instance.

• border_width – Width of the circle outline in pixels.

• tilt_angle – Angle in degrees to tilt the ellipse (clockwise). Useful when drawing a circle
with a low segment count, to make an octagon for example.

• num_segments – Number of triangle segments that make up this circle. Higher is better
quality, but slower render time. The default value of -1 means arcade will try to calculate a
reasonable amount of segments based on the size of the circle.

arcade.draw_line(start_x: float, start_y: float, end_x: float, end_y: float, color: Tuple[int, int, int, int],
line_width: float = 1)

Draw a line.

Parameters
• start_x – x position of line starting point.

• start_y – y position of line starting point.

• end_x – x position of line ending point.

• end_y – y position of line ending point.

• color – A color, specified as an RGBA tuple or a Color instance.

• line_width – Width of the line in pixels.

arcade.draw_line_strip(point_list: Sequence[Tuple[float, float]], color: Tuple[int, int, int, int], line_width:
float = 1)

Draw a multi-point line.

Parameters
• point_list – List of x, y points that make up this strip

• color – A color, specified as an RGBA tuple or a Color instance.

• line_width – Width of the line

arcade.draw_lines(point_list: Sequence[Tuple[float, float]], color: Tuple[int, int, int, int], line_width: float = 1)
Draw a set of lines.

Draw a line between each pair of points specified.

Parameters
• point_list – List of points making up the lines. Each point is in a list. So it is a list of

lists.

• color – A color, specified as an RGBA tuple or a Color instance.

• line_width – Width of the line in pixels.

arcade.draw_lrbt_rectangle_filled(left: float, right: float, bottom: float, top: float, color: Tuple[int, int, int,
int])

Draw a rectangle by specifying left, right, bottom and top edges.

Parameters
• left – The x coordinate of the left edge of the rectangle.

33.2. Drawing - Primitives 403

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Python Arcade Library, Release 3.0.0.dev26

• right – The x coordinate of the right edge of the rectangle.

• bottom – The y coordinate of the rectangle bottom.

• top – The y coordinate of the top of the rectangle.

• color – The color of the rectangle.

Raises ValueError
Raised if left > right or top < bottom.

arcade.draw_lrbt_rectangle_outline(left: float, right: float, bottom: float, top: float, color: Tuple[int, int,
int, int], border_width: float = 1)

Draw a rectangle by specifying left, right, bottom and top edges.

Parameters
• left – The x coordinate of the left edge of the rectangle.

• right – The x coordinate of the right edge of the rectangle.

• bottom – The y coordinate of the rectangle bottom.

• top – The y coordinate of the top of the rectangle.

• color – The color of the rectangle.

• border_width – The width of the border in pixels. Defaults to one.

Raises ValueError
Raised if left > right or top < bottom.

arcade.draw_lrtb_rectangle_filled(left: float, right: float, top: float, bottom: float, color: Tuple[int, int, int,
int])

Draw a rectangle by specifying left, right, top and bottom edges.

Deprecated since version 3.0: Use draw_lrbt_rectangle_filled() instead!

Parameters
• left – The x coordinate of the left edge of the rectangle.

• right – The x coordinate of the right edge of the rectangle.

• top – The y coordinate of the top of the rectangle.

• bottom – The y coordinate of the rectangle bottom.

• color – The color of the rectangle as an RGBA tuple or :py:class`~arcade.types.Color`
instance.

Raises AttributeError
Raised if left > right or top < bottom.

arcade.draw_lrtb_rectangle_outline(left: float, right: float, top: float, bottom: float, color: Tuple[int, int,
int, int], border_width: float = 1)

Draw a rectangle by specifying left, right, top and bottom edges.

Deprecated since version 3.0: Use draw_lrbt_rectangle_outline() instead!

Parameters
• left – The x coordinate of the left edge of the rectangle.

• right – The x coordinate of the right edge of the rectangle.

• top – The y coordinate of the top of the rectangle.

404 Chapter 33. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

Python Arcade Library, Release 3.0.0.dev26

• bottom – The y coordinate of the rectangle bottom.

• color – The color of the rectangle as an RGBA tuple or :py:class`~arcade.types.Color`
instance.

• border_width – The width of the border in pixels. Defaults to one.

Raises AttributeError
Raised if left > right or top < bottom.

arcade.draw_lrwh_rectangle_textured(bottom_left_x: float, bottom_left_y: float, width: float, height: float,
texture: Texture, angle: float = 0, alpha: int = 255)

Draw a texture extending from bottom left to top right.

Parameters
• bottom_left_x – The x coordinate of the left edge of the rectangle.

• bottom_left_y – The y coordinate of the bottom of the rectangle.

• width – The width of the rectangle.

• height – The height of the rectangle.

• texture – identifier of texture returned from load_texture() call

• angle – rotation of the rectangle. Defaults to zero (clockwise).

• alpha – Transparency of image. 0 is fully transparent, 255 (default) is visible

arcade.draw_parabola_filled(start_x: float, start_y: float, end_x: float, height: float, color: Tuple[int, int, int,
int], tilt_angle: float = 0)

Draws a filled in parabola.

Parameters
• start_x – The starting x position of the parabola

• start_y – The starting y position of the parabola

• end_x – The ending x position of the parabola

• height – The height of the parabola

• color – A 3 or 4 length tuple of 0-255 channel values or a Color instance.

• tilt_angle – The angle of the tilt of the parabola (clockwise)

arcade.draw_parabola_outline(start_x: float, start_y: float, end_x: float, height: float, color: Tuple[int, int,
int, int], border_width: float = 1, tilt_angle: float = 0)

Draws the outline of a parabola.

Parameters
• start_x – The starting x position of the parabola

• start_y – The starting y position of the parabola

• end_x – The ending x position of the parabola

• height – The height of the parabola

• color – A 3 or 4 length tuple of 0-255 channel values or a Color instance.

• border_width – The width of the parabola

• tilt_angle – The angle of the tilt of the parabola (clockwise)

33.2. Drawing - Primitives 405

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Python Arcade Library, Release 3.0.0.dev26

arcade.draw_point(x: float, y: float, color: Tuple[int, int, int, int], size: float)
Draw a point.

Parameters
• x – x position of point.

• y – y position of point.

• color – A color, specified as an RGBA tuple or a Color instance.

• size – Size of the point in pixels.

arcade.draw_points(point_list: Sequence[Tuple[float, float]], color: Tuple[int, int, int, int], size: float = 1)
Draw a set of points.

Parameters
• point_list – List of points Each point is in a list. So it is a list of lists.

• color – A color, specified as an RGBA tuple or a Color instance.

• size – Size of the point in pixels.

arcade.draw_polygon_filled(point_list: Sequence[Tuple[float, float]], color: Tuple[int, int, int, int])
Draw a polygon that is filled in.

Parameters
• point_list – List of points making up the lines. Each point is in a list. So it is a list of

lists.

• color – The color, specified in RGB or RGBA format.

arcade.draw_polygon_outline(point_list: Sequence[Tuple[float, float]], color: Tuple[int, int, int, int],
line_width: float = 1)

Draw a polygon outline. Also known as a “line loop.”

Parameters
• point_list – List of points making up the lines. Each point is in a list. So it is a list of

lists.

• color – The color of the outline as an RGBA tuple or Color instance.

• line_width – Width of the line in pixels.

arcade.draw_rectangle_filled(center_x: float, center_y: float, width: float, height: float, color: Tuple[int, int,
int, int], tilt_angle: float = 0)

Draw a filled-in rectangle.

Parameters
• center_x – x coordinate of rectangle center.

• center_y – y coordinate of rectangle center.

• width – width of the rectangle.

• height – height of the rectangle.

• color – The color of the rectangle as an RGBA tuple or :py:class`~arcade.types.Color`
instance.

• tilt_angle – rotation of the rectangle (clockwise). Defaults to zero.

406 Chapter 33. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple

Python Arcade Library, Release 3.0.0.dev26

arcade.draw_rectangle_outline(center_x: float, center_y: float, width: float, height: float, color: Tuple[int,
int, int, int], border_width: float = 1, tilt_angle: float = 0)

Draw a rectangle outline.

Parameters
• center_x – x coordinate of top left rectangle point.

• center_y – y coordinate of top left rectangle point.

• width – width of the rectangle.

• height – height of the rectangle.

• color – The color of the rectangle as an RGBA tuple or :py:class`~arcade.types.Color`
instance.

• border_width – width of the lines, in pixels.

• tilt_angle – rotation of the rectangle. Defaults to zero (clockwise).

arcade.draw_scaled_texture_rectangle(center_x: float, center_y: float, texture: Texture, scale: float = 1.0,
angle: float = 0, alpha: int = 255)

Draw a textured rectangle on-screen.

Warning: This method can be slow!

Most users should consider using arcade.Sprite with arcade.SpriteList instead of this function.

OpenGL accelerates drawing by using batches to draw multiple things at once. This method doesn’t do that.

If you need finer control or less overhead than arcade allows, consider pyglet’s batching features.

Parameters
• center_x – x coordinate of rectangle center.

• center_y – y coordinate of rectangle center.

• texture – identifier of texture returned from load_texture() call

• scale – scale of texture

• angle – rotation of the rectangle (clockwise). Defaults to zero.

• alpha – Transparency of image. 0 is fully transparent, 255 (default) is fully visible

arcade.draw_texture_rectangle(center_x: float, center_y: float, width: float, height: float, texture: Texture,
angle: float = 0, alpha: int = 255)

Draw a textured rectangle on-screen.

Parameters
• center_x – x coordinate of rectangle center.

• center_y – y coordinate of rectangle center.

• width – width of texture

• height – height of texture

• texture – identifier of texture returned from load_texture() call

• angle – rotation of the rectangle. Defaults to zero (clockwise).

33.2. Drawing - Primitives 407

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://pyglet.readthedocs.io/en/master/modules/graphics/index.html#batches-and-groups
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

Python Arcade Library, Release 3.0.0.dev26

• alpha – Transparency of image. 0 is fully transparent, 255 (default) is visible

arcade.draw_triangle_filled(x1: float, y1: float, x2: float, y2: float, x3: float, y3: float, color: Tuple[int, int,
int, int])

Draw a filled in triangle.

Parameters
• x1 – x value of first coordinate.

• y1 – y value of first coordinate.

• x2 – x value of second coordinate.

• y2 – y value of second coordinate.

• x3 – x value of third coordinate.

• y3 – y value of third coordinate.

• color – Color of the triangle as an RGBA tuple or Color instance.

arcade.draw_triangle_outline(x1: float, y1: float, x2: float, y2: float, x3: float, y3: float, color: Tuple[int, int,
int, int], border_width: float = 1)

Draw a the outline of a triangle.

Parameters
• x1 – x value of first coordinate.

• y1 – y value of first coordinate.

• x2 – x value of second coordinate.

• y2 – y value of second coordinate.

• x3 – x value of third coordinate.

• y3 – y value of third coordinate.

• color – RGBA255 of triangle as an RGBA tuple or :py:class`~arcade.types.Color` in-
stance.

• border_width – Width of the border in pixels. Defaults to 1.

arcade.draw_xywh_rectangle_filled(bottom_left_x: float, bottom_left_y: float, width: float, height: float,
color: Tuple[int, int, int, int])

Draw a filled rectangle extending from bottom left to top right

Parameters
• bottom_left_x – The x coordinate of the left edge of the rectangle.

• bottom_left_y – The y coordinate of the bottom of the rectangle.

• width – The width of the rectangle.

• height – The height of the rectangle.

• color – The color of the rectangleas an RGBA tuple or :py:class`~arcade.types.Color`
instance.

arcade.draw_xywh_rectangle_outline(bottom_left_x: float, bottom_left_y: float, width: float, height: float,
color: Tuple[int, int, int, int], border_width: float = 1)

Draw a rectangle extending from bottom left to top right

Parameters

408 Chapter 33. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

Python Arcade Library, Release 3.0.0.dev26

• bottom_left_x – The x coordinate of the left edge of the rectangle.

• bottom_left_y – The y coordinate of the bottom of the rectangle.

• width – The width of the rectangle.

• height – The height of the rectangle.

• color – The color of the rectangle as an RGBA tuple or :py:class`~arcade.types.Color`
instance.

• border_width – The width of the border in pixels. Defaults to one.

arcade.get_image(x: int = 0, y: int = 0, width: int | None = None, height: int | None = None)→ Image
Get an image from the screen.

Example:

image = get_image()
image.save('screenshot.png', 'PNG')

Parameters
• x – Start (left) x location

• y – Start (top) y location

• width – Width of image. Leave blank for grabbing the ‘rest’ of the image

• height – Height of image. Leave blank for grabbing the ‘rest’ of the image

Returns
A Pillow Image

arcade.get_pixel(x: int, y: int, components: int = 3)→ Tuple[int, ...]
Given an x, y, will return a color value of that point.

Parameters
• x – x location

• y – y location

• components – Number of components to fetch. By default we fetch 3 3 components (RGB).
4 components would be RGBA.

33.3 Shape Lists

class arcade.shape_list.Shape(points: Sequence[Tuple[float, float]], colors: Sequence[Tuple[int, int, int,
int]], mode: int = 4, program: Program | None = None)

Bases:

A container for arbitrary geometry representing a shape.

This shape can be drawn using the draw() method, or added to a ShapeElementList for drawing in batch.

Parameters
• points – A list of points that make up the shape.

• colors – A list of colors that correspond to the points.

33.3. Shape Lists 409

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://pillow.readthedocs.io/en/stable/reference/Image.html#PIL.Image.Image
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

Python Arcade Library, Release 3.0.0.dev26

• mode – The OpenGL drawing mode. Defaults to GL_TRIANGLES.

• program – The program to use when drawing this shape (Shape.draw() only)

draw()

Draw this shape. Drawing this way isn’t as fast as drawing multiple shapes batched together in a ShapeEle-
mentList.

class arcade.shape_list.ShapeElementList

Bases: Generic[TShape]

A ShapeElementList is a list of shapes that can be drawn together in a back for better performance. ShapeEle-
mentLists are suited for drawing a large number of shapes that are static. If you need to move a lot of shapes it’s
better to use pyglet’s shape system.

Adding new shapes is fast, but removing them is slow.

iter(self)→ Iterable[TShape]
Return an iterable object of sprites.

len(self)→ int
Return the length of the sprite list.

append(item: TShape)
Add a new shape to the list.

clear(position: bool = True, angle: bool = True)→ None
Clear all the contents from the shape list.

Parameters
• position – Reset the position to 0,0

• angle – Reset the angle to 0

draw()→ None
Draw all the shapes.

move(change_x: float, change_y: float)
Change the center_x/y of the shape list relative to the current position.

Parameters
• change_x – Amount to move on the x axis

• change_y – Amount to move on the y axis

remove(item: TShape)
Remove a specific shape from the list.

update()→ None
Update the internals of the shape list. This is automatically called when you call draw().

In some instances you may need to call this manually to update the shape list before drawing.

angle

Get or set the rotation in degrees (clockwise)

center_x

Get or set the center x coordinate of the ShapeElementList.

410 Chapter 33. API Reference

https://docs.python.org/3/library/typing.html#typing.Generic
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None

Python Arcade Library, Release 3.0.0.dev26

center_y

Get or set the center y coordinate of the ShapeElementList.

position

Get or set the position of the ShapeElementList.

This is the equivalent of setting center_x and center_y

arcade.shape_list.create_ellipse(center_x: float, center_y: float, width: float, height: float, color:
Tuple[int, int, int, int], border_width: float = 1, tilt_angle: float = 0,
num_segments: int = 32, filled: bool = True)→ Shape

This creates an ellipse vertex buffer object (VBO).

The function returns a Shape object that can be drawn with my_shape.draw(). Don’t create the shape in the
draw method, create it in the setup method and then draw it in on_draw.

For even faster performance, add multiple shapes into a ShapeElementList and draw that list. This allows nearly
unlimited shapes to be drawn just as fast as one.

Parameters
• center_x – X position of the center of the ellipse.

• center_y – Y position of the center of the ellipse.

• width – Width of the ellipse.

• height – Height of the ellipse.

• color – Color of the ellipse.

• border_width – Width of the border.

• tilt_angle – Angle to tilt the ellipse.

• num_segments – Number of segments to use to draw the ellipse.

• filled – If True, create a filled ellipse. If False, create an outline.

arcade.shape_list.create_ellipse_filled(center_x: float, center_y: float, width: float, height: float, color:
Tuple[int, int, int, int], tilt_angle: float = 0, num_segments: int
= 128)→ Shape

Create a filled ellipse. Or circle if you use the same width and height.

The function returns a Shape object that can be drawn with my_shape.draw(). Don’t create the shape in the
draw method, create it in the setup method and then draw it in on_draw.

For even faster performance, add multiple shapes into a ShapeElementList and draw that list. This allows nearly
unlimited shapes to be drawn just as fast as one.

arcade.shape_list.create_ellipse_filled_with_colors(center_x: float, center_y: float, width: float,
height: float, outside_color: Tuple[int, int, int,
int], inside_color: Tuple[int, int, int, int],
tilt_angle: float = 0, num_segments: int = 32)
→ Shape

Draw an ellipse, and specify inside/outside color. Used for doing gradients.

The function returns a Shape object that can be drawn with my_shape.draw(). Don’t create the shape in the
draw method, create it in the setup method and then draw it in on_draw.

For even faster performance, add multiple shapes into a ShapeElementList and draw that list. This allows nearly
unlimited shapes to be drawn just as fast as one.

Parameters

33.3. Shape Lists 411

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

Python Arcade Library, Release 3.0.0.dev26

• center_x – X position of the center of the ellipse.

• center_y – Y position of the center of the ellipse.

• width – Width of the ellipse.

• height – Height of the ellipse.

• outside_color – Color of the outside of the ellipse.

• inside_color – Color of the inside of the ellipse.

• tilt_angle – Angle to tilt the ellipse.

• num_segments – Number of segments to use to draw the ellipse.

arcade.shape_list.create_ellipse_outline(center_x: float, center_y: float, width: float, height: float,
color: Tuple[int, int, int, int], border_width: float = 1,
tilt_angle: float = 0, num_segments: int = 128)→ Shape

Create an outline of an ellipse.

The function returns a Shape object that can be drawn with my_shape.draw(). Don’t create the shape in the
draw method, create it in the setup method and then draw it in on_draw.

For even faster performance, add multiple shapes into a ShapeElementList and draw that list. This allows nearly
unlimited shapes to be drawn just as fast as one.

arcade.shape_list.create_line(start_x: float, start_y: float, end_x: float, end_y: float, color: Tuple[int, int,
int, int], line_width: float = 1)→ Shape

Create a Shape object for a line.

Parameters
• start_x – Starting x position

• start_y – Starting y position

• end_x – Ending x position

• end_y – Ending y position

• color – Color of the line

• line_width – Width of the line

arcade.shape_list.create_line_generic(point_list: Sequence[Tuple[float, float]], color: Tuple[int, int, int,
int], shape_mode: int)→ Shape

This function is used by create_line_strip and create_line_loop, just changing the OpenGL type for the
line drawing.

Parameters
• point_list – A list of points that make up the shape.

• color – A color such as a Color

• shape_mode – The OpenGL drawing mode. Defaults to GL_TRIANGLES.

arcade.shape_list.create_line_generic_with_colors(point_list: Sequence[Tuple[float, float]],
color_sequence: Sequence[Tuple[int, int, int, int]],
shape_mode: int)→ Shape

This function is used by create_line_strip and create_line_loop, just changing the OpenGL type for the
line drawing.

Parameters

412 Chapter 33. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Python Arcade Library, Release 3.0.0.dev26

• point_list – A list of points that make up the shape.

• color_sequence – A sequence of colors such as a list; each color must be either a Color
instance or a 4-length RGBA tuple.

• shape_mode – The OpenGL drawing mode. Defaults to GL_TRIANGLES.

arcade.shape_list.create_line_loop(point_list: Sequence[Tuple[float, float]], color: Tuple[int, int, int, int],
line_width: float = 1)→ Shape

Create a multi-point line loop to be rendered later. This works faster than draw_line because the vertexes are
only loaded to the graphics card once, rather than each frame.

Parameters
• point_list – A list of points that make up the shape.

• color – A color such as a Color

• line_width – Width of the line

arcade.shape_list.create_line_strip(point_list: Sequence[Tuple[float, float]], color: Tuple[int, int, int,
int], line_width: float = 1)→ Shape

Create a multi-point line to be rendered later. This works faster than draw_line because the vertexes are only
loaded to the graphics card once, rather than each frame.

Internally, thick lines are created by two triangles.

Parameters
• point_list –

• color –

• line_width –

arcade.shape_list.create_lines(point_list: Sequence[Tuple[float, float]], color: Tuple[int, int, int, int])→
Shape

Create a multi-point line loop to be rendered later. This works faster than draw_line because the vertexes are
only loaded to the graphics card once, rather than each frame.

Parameters
• point_list – A list of points that make up the shape.

• color – A color such as a Color

• line_width – Width of the line

arcade.shape_list.create_lines_with_colors(point_list: Sequence[Tuple[float, float]], color_list:
Sequence[Tuple[int, int, int, int]], line_width: float = 1)→
Shape

Create a line segments to be rendered later. This works faster than draw_line because the vertexes are only loaded
to the graphics card once, rather than each frame.

Parameters
• point_list – Line segments start and end point tuples list

• color_list – Three or four byte tuples list for every point

• line_width – Width of the line

Returns Shape

33.3. Shape Lists 413

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

Python Arcade Library, Release 3.0.0.dev26

arcade.shape_list.create_polygon(point_list: Sequence[Tuple[float, float]], color: Tuple[int, int, int, int])
→ Shape

Draw a convex polygon. This will NOT draw a concave polygon. Because of this, you might not want to use this
function.

The function returns a Shape object that can be drawn with my_shape.draw(). Don’t create the shape in the
draw method, create it in the setup method and then draw it in on_draw.

For even faster performance, add multiple shapes into a ShapeElementList and draw that list. This allows nearly
unlimited shapes to be drawn just as fast as one.

Parameters
• point_list – A list of points that make up the shape.

• color – A color such as a Color

arcade.shape_list.create_rectangle(center_x: float, center_y: float, width: float, height: float, color:
Tuple[int, int, int, int], border_width: float = 1, tilt_angle: float = 0,
filled=True)→ Shape

This function creates a rectangle using a vertex buffer object.

The function returns a Shape object that can be drawn with my_shape.draw(). Don’t create the shape in the
draw method, create it in the setup method and then draw it in on_draw.

For even faster performance, add multiple shapes into a ShapeElementList and draw that list. This allows nearly
unlimited shapes to be drawn just as fast as one.

Parameters
• center_x – X position of the center of the rectangle

• center_y – Y position of the center of the rectangle

• width – Width of the rectangle

• height – Height of the rectangle

• color – A color such as a Color

• border_width – Width of the border

• tilt_angle – Angle to tilt the rectangle in degrees

• filled – If True, the rectangle is filled. If False, it is an outline.

arcade.shape_list.create_rectangle_filled(center_x: float, center_y: float, width: float, height: float,
color: Tuple[int, int, int, int], tilt_angle: float = 0)→ Shape

Create a filled rectangle.

The function returns a Shape object that can be drawn with my_shape.draw(). Don’t create the shape in the
draw method, create it in the setup method and then draw it in on_draw.

For even faster performance, add multiple shapes into a ShapeElementList and draw that list. This allows nearly
unlimited shapes to be drawn just as fast as one.

Parameters
• center_x – X position of the center of the rectangle

• center_y – Y position of the center of the rectangle

• width – Width of the rectangle

• height – Height of the rectangle

414 Chapter 33. API Reference

https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

Python Arcade Library, Release 3.0.0.dev26

• color – A color such as a Color

• tilt_angle – Angle to tilt the rectangle in degrees

arcade.shape_list.create_rectangle_filled_with_colors(point_list, color_list)→ Shape
This function creates one rectangle/quad using a vertex buffer object.

The function returns a Shape object that can be drawn with my_shape.draw(). Don’t create the shape in the
draw method, create it in the setup method and then draw it in on_draw.

For even faster performance, add multiple shapes into a ShapeElementList and draw that list. This allows nearly
unlimited shapes to be drawn just as fast as one.

Parameters
• point_list – List of points to create the rectangle from

• color_list – List of colors to create the rectangle from

arcade.shape_list.create_rectangle_outline(center_x: float, center_y: float, width: float, height: float,
color: Tuple[int, int, int, int], border_width: float = 1,
tilt_angle: float = 0)→ Shape

Create a rectangle outline.

The function returns a Shape object that can be drawn with my_shape.draw(). Don’t create the shape in the
draw method, create it in the setup method and then draw it in on_draw.

For even faster performance, add multiple shapes into a ShapeElementList and draw that list. This allows nearly
unlimited shapes to be drawn just as fast as one.

Parameters
• center_x – X position of the center of the rectangle

• center_y – Y position of the center of the rectangle

• width – Width of the rectangle

• height – Height of the rectangle

• color – A color such as a Color

• border_width – Width of the border

• tilt_angle – Angle to tilt the rectangle in degrees

arcade.shape_list.create_rectangles_filled_with_colors(point_list, color_list: Sequence[Tuple[int,
int, int, int]])→ Shape

This function creates multiple rectangle/quads using a vertex buffer object.

The function returns a Shape object that can be drawn with my_shape.draw(). Don’t create the shape in the
draw method, create it in the setup method and then draw it in on_draw.

For even faster performance, add multiple shapes into a ShapeElementList and draw that list. This allows nearly
unlimited shapes to be drawn just as fast as one.

arcade.shape_list.create_triangles_filled_with_colors(point_list: Sequence[Tuple[float, float]],
color_sequence: Sequence[Tuple[int, int, int,
int]])→ Shape

This function creates multiple triangles using a vertex buffer object. Triangles are build for every 3 sequential
vertices with step of 3 vertex Total amount of triangles to be rendered: len(point_list) / 3

The function returns a Shape object that can be drawn with my_shape.draw(). Don’t create the shape in the
draw method, create it in the setup method and then draw it in on_draw.

33.3. Shape Lists 415

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Python Arcade Library, Release 3.0.0.dev26

For even faster performance, add multiple shapes into a ShapeElementList and draw that list. This allows nearly
unlimited shapes to be drawn just as fast as one.

Parameters
• point_list – Triangles vertices tuples.

• color_sequence – A sequence of colors such as a list; each color must be either a Color
instance or a 4-length RGBA tuple.

arcade.shape_list.create_triangles_strip_filled_with_colors(point_list, color_sequence:
Sequence[Tuple[int, int, int, int]])→
Shape

This function creates multiple triangles using a vertex buffer object. Triangles are built for every 3 sequential
vertices with step of 1 vertex Total amount of triangles to be rendered: len(point_list) - 2

The function returns a Shape object that can be drawn with my_shape.draw(). Don’t create the shape in the
draw method, create it in the setup method and then draw it in on_draw.

For even faster performance, add multiple shapes into a ShapeElementList and draw that list. This allows nearly
unlimited shapes to be drawn just as fast as one.

Parameters
• point_list – Triangles vertices tuples.

• color_sequence – A sequence of colors such as a list; each color must be either a Color
instance or a 4-length RGBA tuple.

arcade.shape_list.get_rectangle_points(center_x: float, center_y: float, width: float, height: float,
tilt_angle: float = 0)→ Sequence[Tuple[float, float]]

Utility function that will return all four coordinate points of a rectangle given the x, y center, width, height, and
rotation.

Parameters
• center_x – X position of the center of the rectangle

• center_y – Y position of the center of the rectangle

• width – Width of the rectangle

• height – Height of the rectangle

• tilt_angle – Angle to tilt the rectangle in degrees

33.4 Drawing - Utility

arcade.get_points_for_thick_line(start_x: float, start_y: float, end_x: float, end_y: float, line_width: float)
Function used internally for Arcade. OpenGL draws triangles only, so a thick line must be two triangles that
make up a rectangle. This calculates and returns those points.

416 Chapter 33. API Reference

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Python Arcade Library, Release 3.0.0.dev26

33.5 Sprites

class arcade.PyMunk

Bases:

Object used to hold pymunk info for a sprite.

damping

gravity

max_horizontal_velocity

max_velocity

max_vertical_velocity

class arcade.PymunkMixin

Bases:

pymunk_moved(physics_engine, dx, dy, d_angle)
Called by the pymunk physics engine if this sprite moves.

class arcade.SpriteCircle(radius: int, color: Tuple[int, int, int, int], soft: bool = False, **kwargs)
Bases: Sprite

A circle of the specified radius.

The texture is automatically generated instead of loaded from a file.

There may be a stutter the first time a combination of radius, color, and soft is used due to texture generation.
All subsequent calls for the same combination will run faster because they will re-use the texture generated earlier.

For a gradient fill instead of a solid color, set soft to True. The circle will fade from an opaque center to
transparent at the edges.

Parameters
• radius – Radius of the circle in pixels

• color – The Color of the sprite as an RGB or RGBA tuple

• soft – If True, the circle will fade from an opaque center to transparent edges.

boundary_bottom: float | None

boundary_left: float | None

boundary_right: float | None

boundary_top: float | None

change_angle: float

cur_texture_index: int

force

guid: str | None

physics_engines: List[Any]

33.5. Sprites 417

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://simple.wikipedia.org/wiki/Radius
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

Python Arcade Library, Release 3.0.0.dev26

textures: List[Texture]

class arcade.SpriteSolidColor(width: int, height: int, center_x: float = 0, center_y: float = 0, color:
Tuple[int, int, int, int] = (255, 255, 255, 255), angle: float = 0, **kwargs)

Bases: Sprite

A rectangular sprite of the given width, height, and color.

The texture is automatically generated instead of loaded from a file. Internally only a single global texture is
used for this sprite type, so concerns about memory usage non-existent regardless of size or number of sprite
variations.

Parameters
• width – Width of the sprite in pixels

• height – Height of the sprite in pixels

• center_x – Initial x position of the sprite

• center_y – Initial y position of the sprite

• color – The color of the sprite as a Color, an RGBA tuple, or an RGB tuple.

• angle – Initial angle of the sprite in degrees

class arcade.AnimatedTimeBasedSprite(path_or_texture: str | Path | Texture | None = None, center_x: float
= 0.0, center_y: float = 0.0, scale: float = 1.0, **kwargs)

Bases: Sprite

Sprite for platformer games that supports animations. These can be automatically created by the Tiled Map
Editor.

Parameters
• path_or_texture – Path to the image file, or a Texture object.

• center_x – Initial x position of the sprite.

• center_y – Initial y position of the sprite.

• scale – Initial scale of the sprite.

update_animation(delta_time: float = 0.016666666666666666)→ None
Logic for updating the animation.

Parameters
delta_time – Time since last update.

boundary_bottom: float | None

boundary_left: float | None

boundary_right: float | None

boundary_top: float | None

change_angle: float

cur_texture_index: int

force

guid: str | None

418 Chapter 33. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

Python Arcade Library, Release 3.0.0.dev26

physics_engines: List[Any]

textures: List[Texture]

class arcade.AnimatedWalkingSprite(scale: float = 1.0, center_x: float = 0.0, center_y: float = 0.0,
**kwargs)

Bases: Sprite

Deprecated Sprite for platformer games that supports walking animations. Make sure to call update_animation
after loading the animations so the initial texture can be set. Or manually set it.

It is highly recommended you create your own version of this class rather than try to use this pre-packaged one.

For an example, see this section of the platformer tutorial: Step 12 - Loading a Map From a Map Editor.

Parameters
• scale – Initial scale of the sprite.

• center_x – Initial x position of the sprite.

• center_y – Initial y position of the sprite.

update_animation(delta_time: float = 0.016666666666666666)→ None
Logic for texture animation.

Parameters
delta_time – Time since last update.

boundary_bottom: float | None

boundary_left: float | None

boundary_right: float | None

boundary_top: float | None

change_angle: float

cur_texture_index: int

force

guid: str | None

physics_engines: List[Any]

textures: List[Texture]

class arcade.AnimationKeyframe(tile_id: int, duration: int, texture: Texture)
Bases:

Keyframe for texture animations.

duration: int

texture: Texture

tile_id: int

33.5. Sprites 419

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Python Arcade Library, Release 3.0.0.dev26

class arcade.Sprite(path_or_texture: str | Path | Texture | None = None, scale: float = 1.0, center_x: float =
0.0, center_y: float = 0.0, angle: float = 0.0, **kwargs: Any)

Bases: BasicSprite, PymunkMixin

Sprites are used to render image data to the screen & perform collisions.

Most games center around sprites. They are most frequently used as follows:

1. Create Sprite instances from image data

2. Add the sprites to a SpriteList instance

3. Call SpriteList.draw() on the instance inside your on_draw method.

For runnable examples of how to do this, please see arcade’s built-in Sprite examples.

Tip: Advanced users should see BasicSprite

It uses fewer resources at the cost of having fewer features.

Parameters
• path_or_texture – Path to an image file, or a texture object.

• center_x – Location of the sprite in pixels.

• center_y – Location of the sprite in pixels.

• scale – Show the image at this many times its original size.

• angle – The initial rotation of the sprite in degrees

append_texture(texture: Texture)
Appends a new texture to the list of textures that can be applied to this sprite.

Parameters
texture – Texture to add to the list of available textures

draw(*, filter: Tuple[int, int] | None = None, pixelated: bool | None = None, blend_function: Tuple[int, int] |
Tuple[int, int, int, int] | None = None)→ None

A debug method which draws the sprite into the current OpenGL context.

Warning: You are probably looking for SpriteList.draw()!

Drawing individual sprites is slow compared to using SpriteList. See Why SpriteLists? for more
information.

This method should not be relied on. It may be removed one day.

Parameters
• filter – Optional parameter to set OpenGL filter, such as gl.GL_NEAREST to avoid

smoothing.

• pixelated – True for pixelated and False for smooth interpolation. Shortcut for setting
filter=GL_NEAREST.

• blend_function – Optional parameter to set the OpenGL blend function used
for drawing the sprite list, such as ‘arcade.Window.ctx.BLEND_ADDITIVE’ or ‘ar-
cade.Window.ctx.BLEND_DEFAULT’

420 Chapter 33. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

Python Arcade Library, Release 3.0.0.dev26

forward(speed: float = 1.0)→ None
Adjusts a Sprites forward.

Parameters
speed – speed

register_physics_engine(physics_engine: Any)→ None
Register a physics engine on the sprite. This is only needed if you actually need a reference to your physics
engine in the sprite itself. It has no other purposes.

The registered physics engines can be accessed through the physics_engines attribute.

It can for example be the pymunk physics engine or a custom one you made.

remove_from_sprite_lists()→ None
Remove this sprite from all sprite lists it is in including registered physics engines.

reverse(speed: float = 1.0)→ None
Adjusts a Sprite backwards.

Parameters
speed – speed

set_texture(texture_no: int)→ None
Set the current texture by texture number. The number is the index into self.textures.

Parameters
texture_no – Index into self.textures

stop()→ None
Stop the Sprite’s motion by setting the velocity and angle change to 0.

strafe(speed: float = 1.0)→ None
Adjusts a Sprite sideways.

Parameters
speed – speed

turn_left(theta: float = 90.0)→ None
Rotate the sprite left by the passed number of degrees.

Parameters
theta – change in angle, in degrees

turn_right(theta: float = 90.0)→ None
Rotate the sprite right by the passed number of degrees.

Parameters
theta – change in angle, in degrees

update()→ None
The default update method for a Sprite. Can be overridden by a subclass.

This method moves the sprite based on its velocity and angle change.

update_spatial_hash()→ None
Update the sprites location in the spatial hash.

angle

Get or set the rotation or the sprite.

The value is in degrees and is clockwise.

33.5. Sprites 421

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

Python Arcade Library, Release 3.0.0.dev26

boundary_bottom: float | None

boundary_left: float | None

boundary_right: float | None

boundary_top: float | None

change_angle: float

change_x

Get or set the velocity in the x plane of the sprite.

change_y

Get or set the velocity in the y plane of the sprite.

cur_texture_index: int

force

guid: str | None

hit_box

Get or set the hit box for this sprite.

physics_engines: List[Any]

properties

Get or set custom sprite properties.

radians

Get or set the rotation of the sprite in radians.

The value is in radians and is clockwise.

texture

Get or set the active texture for this sprite

textures: List[Texture]

velocity

Get or set the velocity of the sprite.

The x and y velocity can also be set separately using the sprite.change_x and sprite.change_y prop-
erties.

Example:

sprite.velocity = 1.0, 0.0

Returns
Tuple[float, float]

class arcade.BasicSprite(texture: Texture, scale: float = 1.0, center_x: float = 0, center_y: float = 0,
**kwargs: Any)

Bases:

The absolute minimum needed for a sprite.

It does not support features like rotation or changing the hitbox after creation. For more built-in features, please
see Sprite.

422 Chapter 33. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Any

Python Arcade Library, Release 3.0.0.dev26

Parameters
• texture – The texture data to use for this sprite.

• scale – The scaling factor for drawing the texture.

• center_x – Location of the sprite along the X axis in pixels.

• center_y – Location of the sprite along the Y axis in pixels.

collides_with_list(sprite_list: SpriteList)→ List[SpriteType]
Check if current sprite is overlapping with any other sprite in a list

Parameters
sprite_list – SpriteList to check against

Returns
List of all overlapping Sprites from the original SpriteList

collides_with_point(point: Tuple[float, float])→ bool
Check if point is within the current sprite.

Parameters
point – Point to check.

Returns
True if the point is contained within the sprite’s boundary.

collides_with_sprite(other: SpriteType)→ bool
Will check if a sprite is overlapping (colliding) another Sprite.

Parameters
other – the other sprite to check against.

Returns
True or False, whether or not they are overlapping.

draw_hit_box(color: Tuple[int, int, int, int] = (0, 0, 0, 255), line_thickness: float = 2.0)→ None
Draw a sprite’s hit-box. This is useful for debugging.

Parameters
• color – Color of box

• line_thickness – How thick the box should be

kill()→ None
Alias of remove_from_sprite_lists().

on_update(delta_time: float = 0.016666666666666666)→ None
Update the sprite. Similar to update, but also takes a delta-time. It can be called manually or by the
SpriteList’s on_update method.

Parameters
delta_time – Time since last update.

register_sprite_list(new_list: SpriteList)→ None
Register this sprite as belonging to a list. We will automatically remove ourselves from the list when kill()
is called.

remove_from_sprite_lists()→ None
Remove the sprite from all sprite lists.

33.5. Sprites 423

https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

Python Arcade Library, Release 3.0.0.dev26

rescale_relative_to_point(point: Tuple[float, float], factor: float)→ None
Rescale the sprite and its distance from the passed point.

This function does two things:

1. Multiply both values in the sprite’s scale_xy value by factor.

2. Scale the distance between the sprite and point by factor.

If point equals the sprite’s position, the distance will be zero and the sprite will not move.

Parameters
• point – The reference point for rescaling.

• factor – Multiplier for sprite scale & distance to point.

Returns
rescale_xy_relative_to_point(point: Tuple[float, float], factors_xy: Iterable[float])→ None

Rescale the sprite and its distance from the passed point.

This method can scale by different amounts on each axis. To scale along only one axis, set the other axis
to 1.0 in factors_xy.

Internally, this function does the following:

1. Multiply the x & y of the sprite’s scale_xy attribute by the corresponding part from factors_xy.

2. Scale the x & y of the difference between the sprite’s position and point by the corresponding com-
ponent from factors_xy.

If point equals the sprite’s position, the distance will be zero and the sprite will not move.

Parameters
• point – The reference point for rescaling.

• factors_xy – A 2-length iterable containing x and y multipliers for scale & distance to
point.

Returns
update()→ None

Generic update method. It can be called manually or by the SpriteList’s update method.

update_animation(delta_time: float = 0.016666666666666666)→ None
Generic update animation method. Usually involves changing the active texture on the sprite.

This can be called manually or by the SpriteList’s update_animation method.

Parameters
delta_time – Time since last update.

update_spatial_hash()→ None
Update the sprites location in the spatial hash if present.

alpha

Get or set the alpha value of the sprite

bottom

The lowest y coordinate in the hit box.

When setting this property the sprite is positioned relative to the lowest y coordinate in the hit box.

424 Chapter 33. API Reference

https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

Python Arcade Library, Release 3.0.0.dev26

center_x

Get or set the center x position of the sprite.

center_y

Get or set the center y position of the sprite.

color

Get or set the RGBA multiply color for the sprite.

When setting the color, it may be specified as any of the following:

• an RGBA tuple with each channel value between 0 and 255

• an instance of Color

• an RGB tuple, in which case the color will be treated as opaque

Example usage:

>>> print(sprite.color)
Color(255, 255, 255, 255)

>>> sprite.color = arcade.color.RED

>>> sprite.color = 255, 0, 0

>>> sprite.color = 255, 0, 0, 128

depth

Get or set the depth of the sprite.

This is really the z coordinate of the sprite and can be used with OpenGL depth testing with opaque sprites.

height

Get or set the height of the sprite in pixels.

hit_box

left

The leftmost x coordinate in the hit box.

When setting this property the sprite is positioned relative to the leftmost x coordinate in the hit box.

position

Get or set the center x and y position of the sprite.

Returns
(center_x, center_y)

right

The rightmost x coordinate in the hit box.

When setting this property the sprite is positioned relative to the rightmost x coordinate in the hit box.

scale

Get or set the sprite’s x scale value or set both x & y scale to the same value.

Note: Negative values are supported. They will flip & mirror the sprite.

33.5. Sprites 425

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple

Python Arcade Library, Release 3.0.0.dev26

scale_xy

Get or set the x & y scale of the sprite as a pair of values.

sprite_lists: List['SpriteList']

texture

Get or set the visible texture for this sprite This property can be changed over time to animate a sprite.

Note that this doesn’t change the hit box of the sprite.

top

The highest y coordinate in the hit box.

When setting this property the sprite is positioned relative to the highest y coordinate in the hit box.

visible

Get or set the visibility of this sprite. This is a shortcut for changing the alpha value of a sprite to 0 or 255:

Make the sprite invisible
sprite.visible = False
Change back to visible
sprite.visible = True
Toggle visible
sprite.visible = not sprite.visible

width

Get or set width or the sprite in pixels

arcade.load_animated_gif(resource_name)→ AnimatedTimeBasedSprite
Attempt to load an animated GIF as an AnimatedTimeBasedSprite.

Many older GIFs will load with incorrect transparency for every frame but the first. Until the Pillow library
handles the quirks of the format better, loading animated GIFs will be pretty buggy. A good workaround is
loading GIFs in another program and exporting them as PNGs, either as sprite sheets or a frame per file.

33.6 Sprite Lists

arcade.check_for_collision(sprite1: BasicSprite, sprite2: BasicSprite)→ bool
Check for a collision between two sprites.

Parameters
• sprite1 – First sprite

• sprite2 – Second sprite

Returns
True or False depending if the sprites intersect.

arcade.check_for_collision_with_list(sprite: SpriteType, sprite_list: SpriteList, method: int = 0)→
List[SpriteType]

Check for a collision between a sprite, and a list of sprites.

Parameters
• sprite – Sprite to check

• sprite_list – SpriteList to check against

426 Chapter 33. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List

Python Arcade Library, Release 3.0.0.dev26

• method – Collision check method. 0 is auto-select. (spatial if available, GPU if 1500+
sprites, else simple) 1 is Spatial Hashing if available, 2 is GPU based, 3 is simple check-
everything. Defaults to 0.

Returns
List of sprites colliding, or an empty list.

arcade.check_for_collision_with_lists(sprite: BasicSprite, sprite_lists: Iterable[SpriteList[SpriteType]],
method=1)→ List[SpriteType]

Check for a collision between a Sprite, and a list of SpriteLists.

Parameters
• sprite – Sprite to check

• sprite_lists – SpriteLists to check against

• method – Collision check method. 1 is Spatial Hashing if available, 2 is GPU based, 3 is
slow CPU-bound check-everything. Defaults to 1.

Returns
List of sprites colliding, or an empty list.

arcade.get_closest_sprite(sprite: SpriteType, sprite_list: SpriteList)→ Tuple[SpriteType, float] | None
Given a Sprite and SpriteList, returns the closest sprite, and its distance.

Parameters
• sprite – Target sprite

• sprite_list – List to search for closest sprite.

Returns
A tuple containing the closest sprite and the minimum distance. If the spritelist is empty we
return None.

arcade.get_distance_between_sprites(sprite1: SpriteType, sprite2: SpriteType)→ float
Returns the distance between the center of two given sprites

Parameters
• sprite1 – Sprite one

• sprite2 – Sprite two

Returns
Distance

arcade.get_sprites_at_exact_point(point: Tuple[float, float], sprite_list: SpriteList[SpriteType])→
List[SpriteType]

Get a list of sprites whose center_x, center_y match the given point. This does NOT return sprites that overlap
the point, the center has to be an exact match.

Parameters
• point – Point to check

• sprite_list – SpriteList to check against

Returns
List of sprites colliding, or an empty list.

33.6. Sprite Lists 427

https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.List

Python Arcade Library, Release 3.0.0.dev26

arcade.get_sprites_at_point(point: Tuple[float, float], sprite_list: SpriteList[SpriteType])→
List[SpriteType]

Get a list of sprites at a particular point. This function sees if any sprite overlaps the specified point. If a sprite
has a different center_x/center_y but touches the point, this will return that sprite.

Parameters
• point – Point to check

• sprite_list – SpriteList to check against

Returns
List of sprites colliding, or an empty list.

arcade.get_sprites_in_rect(rect: Tuple[int, int, int, int] | List[int], sprite_list: SpriteList[SpriteType])→
List[SpriteType]

Get a list of sprites in a particular rectangle. This function sees if any sprite overlaps the specified rectangle. If
a sprite has a different center_x/center_y but touches the rectangle, this will return that sprite.

The rectangle is specified as a tuple of (left, right, bottom, top).

Parameters
• rect – Rectangle to check

• sprite_list – SpriteList to check against

Returns
List of sprites colliding, or an empty list.

class arcade.SpatialHash(cell_size: int)
Bases: Generic[SpriteType]

Structure for fast collision checking with sprites.

See: https://www.gamedev.net/articles/programming/general-and-gameplay-programming/
spatial-hashing-r2697/

Parameters
cell_size – Size (width and height) of the cells in the spatial hash

add(sprite: SpriteType)→ None
Add a sprite to the spatial hash.

Parameters
sprite – The sprite to add

get_sprites_near_point(point: Tuple[float, float])→ Set[SpriteType]
Return sprites in the same bucket as the given point.

Parameters
point – The point to check

Returns
A set of close-by sprites

get_sprites_near_rect(rect: Tuple[int, int, int, int] | List[int])→ Set[SpriteType]
Return sprites in the same buckets as the given rectangle.

Parameters
rect – The rectangle to check (left, right, bottom, top)

428 Chapter 33. API Reference

https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Generic
https://www.gamedev.net/articles/programming/general-and-gameplay-programming/spatial-hashing-r2697/
https://www.gamedev.net/articles/programming/general-and-gameplay-programming/spatial-hashing-r2697/
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Set

Python Arcade Library, Release 3.0.0.dev26

Returns
A set of sprites in the rectangle

get_sprites_near_sprite(sprite: BasicSprite)→ Set[SpriteType]
Get all the sprites that are in the same buckets as the given sprite.

Parameters
sprite – The sprite to check

Returns
A set of close-by sprites

hash(point: Tuple[int, int])→ Tuple[int, int]
Convert world coordinates to cell coordinates

move(sprite: SpriteType)→ None
Shortcut to remove and re-add a sprite.

Parameters
sprite – The sprite to move

remove(sprite: SpriteType)→ None
Remove a Sprite.

Parameters
sprite – The sprite to remove

reset()

Clear all the sprites from the spatial hash.

count

Return the number of sprites in the spatial hash

class arcade.SpriteList(use_spatial_hash: bool = False, spatial_hash_cell_size: int = 128, atlas:
'TextureAtlas' | None = None, capacity: int = 100, lazy: bool = False, visible: bool =
True)

Bases: Generic[SpriteType]

The purpose of the spriteList is to batch draw a list of sprites. Drawing single sprites will not get you anywhere
performance wise as the number of sprites in your project increases. The spritelist contains many low level
optimizations taking advantage of your graphics processor. To put things into perspective, a spritelist can contain
tens of thousands of sprites without any issues. Sprites outside the viewport/window will not be rendered.

If the spritelist are going to be used for collision it’s a good idea to enable spatial hashing. Especially if no sprites
are moving. This will make collision checking a lot faster. In technical terms collision checking is O(1) with
spatial hashing enabled and O(N) without. However, if you have a list of moving sprites the cost of updating the
spatial hash when they are moved can be greater than what you save with spatial collision checks. This needs to
be profiled on a case by case basis.

For the advanced options check the advanced section in the arcade documentation.

Parameters
• use_spatial_hash – If set to True, this will make creating a sprite, and moving a sprite

in the SpriteList slower, but it will speed up collision detection with items in the SpriteList.
Great for doing collision detection with static walls/platforms in large maps.

• spatial_hash_cell_size – The cell size of the spatial hash (default: 128)

• atlas – (Advanced) The texture atlas for this sprite list. If no atlas is supplied the
global/default one will be used.

33.6. Sprite Lists 429

https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Generic

Python Arcade Library, Release 3.0.0.dev26

• capacity – (Advanced) The initial capacity of the internal buffer. It’s a suggestion for the
maximum amount of sprites this list can hold. Can normally be left with default value.

• lazy – (Advanced) True delays creating OpenGL resources for the sprite list until either its
draw() or initialize() method is called. See Lazy SpriteLists to learn more.

• visible – Setting this to False will cause the SpriteList to not be drawn. When draw is
called, the method will just return without drawing.

sprite: Sprite in self → bool
Return if the sprite list contains the given sprite

iter(self)→ Iterator[SpriteType]
Return an iterable object of sprites.

len(self)→ int
Return the length of the sprite list.

self[index: int] = sprite: SpriteType
Replace a sprite at a specific index

append(sprite: SpriteType)
Add a new sprite to the list.

Parameters
sprite – Sprite to add to the list.

clear(deep: bool = True)
Remove all the sprites resetting the spritelist to it’s initial state.

The complexity of this method is O(N)with a deep clear (default). If ALL the sprites in the list gets garbage
collected with the list itself you can do an O(1)` clear using deep=False. Make sure you know exactly
what you are doing before using this option. Any lingering sprite reference will cause a massive memory
leak. The deep option will iterate all the sprites and remove their references to this spritelist. Sprite and
SpriteList have a circular reference for performance reasons.

disable_spatial_hashing()→ None
Deletes the internal spatial hash object

draw(*, filter: int | Tuple[int, int] | None = None, pixelated: bool | None = None, blend_function: Tuple[int,
int] | Tuple[int, int, int, int] | None = None)→ None

Draw this list of sprites.

Uninitialized sprite lists will first create OpenGL resources before drawing. This may cause a performance
stutter when the following are true:

1. You created the sprite list with lazy=True

2. You did not call initialize() before drawing

3. You are initializing many sprites and/or lists at once

See Lazy SpriteLists to learn more.

Parameters
• filter – Optional parameter to set OpenGL filter, such as gl.GL_NEAREST to avoid

smoothing.

• pixelated – True for pixelated and False for smooth interpolation. Shortcut for setting
filter=GL_NEAREST.

430 Chapter 33. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

Python Arcade Library, Release 3.0.0.dev26

• blend_function – Optional parameter to set the OpenGL blend function used
for drawing the sprite list, such as ‘arcade.Window.ctx.BLEND_ADDITIVE’ or ‘ar-
cade.Window.ctx.BLEND_DEFAULT’

draw_hit_boxes(color: Tuple[int, int, int, int] = (0, 0, 0, 255), line_thickness: float = 1)
Draw all the hit boxes in this list

enable_spatial_hashing(spatial_hash_cell_size: int = 128)
Turn on spatial hashing.

extend(sprites: Iterable[SpriteType] | SpriteList)
Extends the current list with the given iterable

Parameters
sprites – Iterable of Sprites to add to the list

index(sprite: SpriteType)→ int
Return the index of a sprite in the spritelist

Parameters
sprite – Sprite to find and return the index of

initialize()→ None
Request immediate creation of OpenGL resources for this list.

Calling this method is optional. It only has an effect for lists created with lazy=True. If this method is not
called, uninitialized sprite lists will automatically initialize OpenGL resources on their first draw() call
instead.

This method is useful for performance optimization, advanced techniques, and writing tests. Do not call it
across thread boundaries. See Lazy SpriteLists to learn more.

insert(index: int, sprite: SpriteType)
Inserts a sprite at a given index.

Parameters
• index – The index at which to insert

• sprite – The sprite to insert

move(change_x: float, change_y: float)→ None
Moves all Sprites in the list by the same amount. This can be a very expensive operation depending on the
size of the sprite list.

Parameters
• change_x – Amount to change all x values by

• change_y – Amount to change all y values by

on_update(delta_time: float = 0.016666666666666666)
Update the sprite. Similar to update, but also takes a delta-time.

pop(index: int = -1)→ SpriteType
Pop off the last sprite, or the given index, from the list

Parameters
index – Index of sprite to remove, defaults to -1 for the last item.

33.6. Sprite Lists 431

https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

Python Arcade Library, Release 3.0.0.dev26

preload_textures(texture_list: List['Texture'])→ None
Preload a set of textures that will be used for sprites in this sprite list.

Parameters
texture_list – List of textures.

remove(sprite: SpriteType)
Remove a specific sprite from the list. :param sprite: Item to remove from the list

rescale(factor: float)→ None
Rescale all sprites in the list relative to the spritelists center.

reverse()

Reverses the current list in-place

shuffle()

Shuffles the current list in-place

sort(*, key: Callable, reverse: bool = False)
Sort the spritelist in place using < comparison between sprites. This function is similar to python’s list.
sort().

Example sorting sprites based on y-axis position using a lambda:

Normal order
spritelist.sort(key=lambda x: x.position[1])
Reversed order
spritelist.sort(key=lambda x: x.position[1], reverse=True)

Example sorting sprites using a function:

More complex sorting logic can be applied, but let's just stick to y position
def create_y_pos_comparison(sprite):

return sprite.position[1]

spritelist.sort(key=create_y_pos_comparison)

Parameters
• key – A function taking a sprite as an argument returning a comparison key

• reverse – If set to True the sprites will be sorted in reverse

swap(index_1: int, index_2: int)
Swap two sprites by index :param index_1: Item index to swap :param index_2: Item index to swap

update()→ None
Call the update() method on each sprite in the list.

update_animation(delta_time: float = 0.016666666666666666)
Call the update_animation in every sprite in the sprite list.

write_sprite_buffers_to_gpu()→ None
Ensure buffers are resized and fresh sprite data is written into the internal sprite buffers.

This is automatically called in SpriteList.draw(), but there are instances when using custom shaders
we need to force this to happen since we might have not called SpriteList.draw() since the spritelist
was modified.

432 Chapter 33. API Reference

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list.sort
https://docs.python.org/3/library/stdtypes.html#list.sort
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None

Python Arcade Library, Release 3.0.0.dev26

If you have added, removed, moved or changed ANY sprite property this method will synchronize the data
on the gpu side (buffer resizing and writing in new data).

alpha

Get or set the alpha/transparency of the entire spritelist. This is a byte value from 0 to 255 were 0 is
completely transparent/invisible and 255 is opaque.

alpha_normalized

Get or set the alpha/transparency of all the sprites in the list. This is a floating point number from 0.0 to
1.0 were 0.0 is completely transparent/invisible and 1.0 is opaque.

This is a shortcut for setting the alpha value in the spritelist color.

atlas

Get the texture atlas for this sprite list

buffer_angles

Get the internal OpenGL angle buffer for the spritelist.

This buffer contains a series of 32 bit floats representing the rotation angle for each sprite in degrees.

This buffer is attached to the geometry instance with name in_angle.

buffer_colors

Get the internal OpenGL color buffer for this spritelist.

This buffer contains a series of 32 bit floats representing the RGBA color for each sprite. 4 x floats = RGBA.

This buffer is attached to the geometry instance with name in_color.

buffer_indices

Get the internal index buffer for this spritelist.

The data in the other buffers are not in the correct order matching spritelist[i]. The index buffer has
to be used used to resolve the right order. It simply contains a series of integers referencing locations in the
other buffers.

Also note that the length of this buffer might be bigger than the number of sprites. Rely on
len(spritelist) for the correct length.

This index buffer is attached to the geometry instance and will be automatically be applied the the input
buffers when rendering or transforming.

buffer_positions

Get the internal OpenGL position buffer for this spritelist.

The buffer contains 32 bit float values with x, y and z positions. These are the center positions for each
sprite.

This buffer is attached to the geometry instance with name in_pos.

buffer_sizes

Get the internal OpenGL size buffer for this spritelist.

The buffer contains 32 bit float width and height values.

This buffer is attached to the geometry instance with name in_size.

buffer_textures

Get the internal openGL texture id buffer for the spritelist.

This buffer contains a series of single 32 bit floats referencing a texture ID. This ID references a texture in
the texture atlas assigned to this spritelist. The ID is used to look up texture coordinates in a 32bit floating

33.6. Sprite Lists 433

Python Arcade Library, Release 3.0.0.dev26

point texture the texter atlas provides. This system makes sure we can resize and rebuild a texture atlas
without having to rebuild every single spritelist.

This buffer is attached to the geometry instance with name in_texture.

Note that it should ideally an unsigned integer, but due to compatibility we store them as 32 bit floats. We
cast them to integers in the shader.

center

Get the mean center coordinates of all sprites in the list.

color

Get or set the multiply color for all sprites in the list RGBA integers

This will affect all sprites in the list, and each value must be between 0 and 255.

The color may be specified as any of the following:

• an RGBA tuple with each channel value between 0 and 255

• an instance of Color

• an RGB tuple, in which case the color will be treated as opaque

Each individual sprite can also be assigned a color via its color property.

When SpriteList.draw() is called, each pixel will default to a value equivalent to the following:

1. Convert the sampled texture, sprite, and list colors into normalized floats (0.0 to 1.0)

2. Multiply the color channels together: texture_color * sprite_color * spritelist_color

3. Multiply the floating point values by 255 and round the result

color_normalized

Get or set the spritelist color in normalized form (0.0 -> 1.0 floats). This property works the same as color.

geometry

Returns the internal OpenGL geometry for this spritelist. This can be used to execute custom shaders with
the spritelist data.

One or multiple of the following inputs must be defined in your vertex shader:

in vec2 in_pos;
in float in_angle;
in vec2 in_size;
in float in_texture;
in vec4 in_color;

visible

Get or set the visible flag for this spritelist. If visible is False the draw() has no effect.

434 Chapter 33. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple

Python Arcade Library, Release 3.0.0.dev26

33.7 Sprite Scenes

class arcade.Scene

Bases:

Stores SpriteList instances as named layers, allowing bulk updates & drawing.

In addition to helping you update or draw multiple sprite lists at once, this class also provides the following
convenience methods:

• add_sprite(), which adds sprites to layers by name

• Scene.from_tilemap(), which creates a scene from a TileMap already loaded from tiled data

• Fine-grained convenience methods for adding, deleting, and reordering sprite lists

• Flexible but slow general convenience methods

• Flexible but slow support for the in & del Python keywords.

For another example of how to use this class, see Step 3 - Many Sprites with SpriteList.

bool(self)→ bool
Returns whether or not _sprite_lists contains anything

item: str | SpriteList in self → bool
True when item is in _sprite_lists or is a value in _name_mapping

del self[sprite_list: int | str | SpriteList]→ None
Remove a sprite list from this scene by its index, name, or instance value.

Tip: Use a more specific method when speed is important!

This method uses isinstance(), which will slow down your program if used frequently!

Consider the following alternatives:

• remove_sprite_list_by_index()

• remove_sprite_list_by_name()

• remove_sprite_list_by_object()

Parameters
sprite_list – The index, name, or SpriteList instance to remove from this scene.

self[key: str]→ SpriteList
Retrieve a sprite list by name.

This is here for ease of use to make sub-scripting the scene object directly to retrieve a SpriteList possible.

Parameters
key – The name of the sprite list to retrieve

len(self)→ int
Return the number of sprite lists in this scene.

33.7. Sprite Scenes 435

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#isinstance
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Python Arcade Library, Release 3.0.0.dev26

add_sprite(name: str, sprite: Sprite)→ None
Add a Sprite to the SpriteList with the specified name.

If there is no SpriteList for the given name, one will be created with SpriteList’s default arguments and
added to the end (top) of the scene’s current draw order.

To fully customize the SpriteList’s options, you should create it directly and add it to the scene with one of
the following:

• add_sprite_list_before()

• add_sprite_list()

• add_sprite_list_after()

Parameters
• name – The name of the sprite list to add to or create.

• sprite – The sprite to add.

add_sprite_list(name: str, use_spatial_hash: bool = False, sprite_list: SpriteList | None = None)→
None

Add a SpriteList to the scene with the specified name.

This will add a new SpriteList as a layer above the others in the scene.

If no SpriteList is supplied via the sprite_list parameter then a new one will be created, and the
use_spatial_hash parameter will be respected for that creation.

Parameters
• name – The name to give the new layer.

• use_spatial_hash – If creating a new sprite list, whether to enable spatial hashing on it.

• sprite_list – Use a specific sprite list rather than creating a new one.

add_sprite_list_after(name: str, after: str, use_spatial_hash: bool = False, sprite_list: SpriteList |
None = None)→ None

Add a SpriteList to the scene with the specified name after a specific SpriteList.

If no sprite list is supplied via the sprite_list parameter, then a new one will be created. Aside
from the value of use_spatial_hash passed to this method, it will use the default arguments for a new
SpriteList.

The added sprite list will be drawn above the sprite list named in after.

Parameters
• name – The name to give the layer.

• after – The name of the layer to place the new one after.

• use_spatial_hash – If creating a new sprite list, selects whether to enable spatial hash-
ing.

• sprite_list – If a sprite list is passed via this argument, it will be used instead of creating
a new one.

add_sprite_list_before(name: str, before: str, use_spatial_hash: bool = False, sprite_list: SpriteList |
None = None)→ None

436 Chapter 33. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

Python Arcade Library, Release 3.0.0.dev26

Add a sprite list to the scene with the specified name before another SpriteList.

If no sprite list is supplied via the sprite_list parameter, then a new one will be created. Aside
from the value of use_spatial_hash passed to this method, it will use the default arguments for a new
SpriteList.

The added sprite list will be drawn under the sprite list named in before.

Parameters
• name – The name to give the new layer.

• before – The name of the layer to place the new one before.

• use_spatial_hash – If creating a new sprite list, selects whether to enable spatial hash-
ing.

• sprite_list – If a sprite list is passed via this argument, it will be used instead of creating
a new one.

draw(names: Iterable[str] | None = None, filter: Tuple[int, int] | None = None, pixelated: bool = False,
blend_function: Tuple[int, int] | Tuple[int, int, int, int] | None = None, **kwargs)→ None

Call draw() on the scene’s sprite lists.

By default, this method calls draw() on each sprite list in the scene in the default draw order.

You can limit and reorder the draw calls with the names argument by passing a list of names in the scene.
The sprite lists will be drawn in the order of the passed iterable. If a name is not in the scene, a KeyError
will be raised.

The other named keyword arguments are the same as those of SpriteList.draw(). The **kwargs option
is for advanced users who have subclassed SpriteList.

Parameters
• names – Which layers to draw & what order to draw them in.

• filter – Optional parameter to set OpenGL filter, such as gl.GL_NEAREST to avoid
smoothing.

• pixelated – True for pixel art and False for smooth scaling.

• blend_function – Use the specified OpenGL blend function while drawing the
sprite list, such as arcade.Window.ctx.BLEND_ADDITIVE or arcade.Window.ctx.
BLEND_DEFAULT.

draw_hit_boxes(color: Tuple[int, int, int, int] = (0, 0, 0, 255), line_thickness: float = 1.0, names:
Iterable[str] | None = None)→ None

Draw debug hit box outlines for sprites in the scene’s layers.

If names is a valid iterable of layer names in the scene, then hit boxes will be drawn for the specified layers
in the order of the passed iterable.

If names is not provided, then every layer’s hit boxes will be drawn in the order specified.

Parameters
• color – The RGBA color to use to draw the hit boxes with.

• line_thickness – How many pixels thick the hit box outlines should be

• names – Which layers & what order to draw their hit boxes in.

33.7. Sprite Scenes 437

https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

Python Arcade Library, Release 3.0.0.dev26

classmethod from_tilemap(tilemap: TileMap)→ Scene
Create a new Scene from a TileMap object.

The SpriteLists will use the layer names and ordering as defined in the Tiled file.

Parameters
tilemap – The TileMap object to create the scene from.

get_sprite_list(name: str)→ SpriteList
Retrieve a sprite list by name.

It is also possible to access sprite lists the following ways:

• scene_instance[name]

• directly accessing scene_instance._name_mapping, although this will get flagged by linters as bad
style.

Parameters
name – The name of the sprite list to retrieve.

move_sprite_list_after(name: str, after: str)→ None
Move a named SpriteList in the scene to be after another SpriteList in the scene.

A SceneKeyError will be raised if either name or after contain a name not currently in the scene. This
exception can be handled as a KeyError.

Parameters
• name – The name of the SpriteList to move.

• after – The name of the SpriteList to place it after.

move_sprite_list_before(name: str, before: str)→ None
Move a named SpriteList in the scene to be before another SpriteList in the scene.

A SceneKeyError will be raised if either name or before contain a name not currently in the scene. This
exception can be handled as a KeyError.

Parameters
• name – The name of the SpriteList to move.

• before – The name of the SpriteList to place it before.

on_update(delta_time: float = 0.016666666666666666, names: Iterable[str] | None = None)→ None
Call on_update() on the scene’s sprite lists.

By default, this method calls on_update() on the scene’s sprite lists in the default draw order.

You can limit and reorder the updates with the names argument by passing a list of names in the scene. The
sprite lists will be drawn in the order of the passed iterable. If a name is not in the scene, a KeyError will
be raised.

Parameters
• delta_time – The time step to update by in seconds.

• names – Which layers & what order to update them in.

remove_sprite_list_by_index(index: int)→ None
Remove a layer from the scene by its index in the draw order.

438 Chapter 33. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

Python Arcade Library, Release 3.0.0.dev26

Parameters
index – The index of the sprite list to remove.

remove_sprite_list_by_name(name: str)→ None
Remove a layer from the scene by its name.

A KeyError will be raised if the SpriteList is not in the scene.

Parameters
name – The name of the sprite list to remove.

remove_sprite_list_by_object(sprite_list: SpriteList)→ None
Remove the passed SpriteList instance from the Scene.

A ValueError will be raised if the passed sprite list is not in the scene.

Parameters
sprite_list – The sprite list to remove.

update(names: Iterable[str] | None = None)→ None
Call update() on the scene’s sprite lists.

By default, this method calls update() on the scene’s sprite lists in the default draw order.

You can limit and reorder the updates with the names argument by passing a list of names in the scene. The
sprite lists will be drawn in the order of the passed iterable. If a name is not in the scene, a KeyError will
be raised.

Parameters
names – Which layers & what order to update them in.

update_animation(delta_time: float, names: Iterable[str] | None = None)→ None
Call update_animation() on the scene’s sprite lists.

By default, this method calls update_animation() on each sprite list in the scene in the default draw
order.

You can limit and reorder the updates with the names argument by passing a list of names in the scene. The
sprite lists will be drawn in the order of the passed iterable. If a name is not in the scene, a KeyError will
be raised.

Parameters
• delta_time – The time step to update by in seconds.

• names – Which layers & what order to update them in.

class arcade.SceneKeyError(name: str)
Bases: KeyError

Raised when a py:class:.Scene cannot find a layer for a specified name.

It is a subclass of KeyError, and you can handle it as one if you wish:

try:
this will raise a SceneKeyError
scene_instance.add_sprite("missing_layer_name", arcade.SpriteSolidColor(10,10))

We can handle it as a KeyError because it is a subclass of it
except KeyError as e:

print("Your error handling should go here")

33.7. Sprite Scenes 439

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/exceptions.html#KeyError

Python Arcade Library, Release 3.0.0.dev26

The main purpose of this class is to help arcade’s developers keep error messages consistent.

Parameters
name – the name of the missing SpriteList

33.8 Camera

class arcade.Camera(*, viewport: Tuple[int, int, int, int] | None = None, projection: Tuple[float, float, float,
float] | None = None, zoom: float = 1.0, rotation: float = 0.0, anchor: Tuple[float, float] |
None = None, window: Window | None = None)

Bases: SimpleCamera

The Camera class is used for controlling the visible viewport, the projection, zoom and rotation. It is very
useful for separating a scrolling screen of sprites, and a GUI overlay. For an example of this in action, see
sprite_move_scrolling.

Parameters
• viewport – (left, bottom, width, height) size of the viewport. If None the window size will

be used.

• projection – (left, right, bottom, top) size of the projection. If None the window size will
be used.

• zoom – the zoom to apply to the projection

• rotation – the angle in degrees to rotate the projection

• anchor – the x, y point where the camera rotation will anchor. Default is the center of the
viewport.

• window – Window to associate with this camera, if working with a multi-window program.

get_sprites_at_point(point: Point, sprite_list: SpriteList)→ List['Sprite']
Get a list of sprites at a particular point when This function sees if any sprite overlaps the specified point.
If a sprite has a different center_x/center_y but touches the point, this will return that sprite.

Parameters
• point – Point to check

• sprite_list – SpriteList to check against

Returns
List of sprites colliding, or an empty list.

set_viewport(viewport: Tuple[int, int, int, int])→ None
Sets the viewport

shake(velocity: Vec2 | tuple, speed: float = 1.5, damping: float = 0.9)→ None
Add a camera shake.

Parameters
• velocity – Vector to start moving the camera

• speed – How fast to shake

• damping – How fast to stop shaking

440 Chapter 33. API Reference

https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://pyglet.readthedocs.io/en/latest/modules/math.html#pyglet.math.Vec2
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None

Python Arcade Library, Release 3.0.0.dev26

update()→ None
Update the camera’s viewport to the current settings.

use()→ None
Select this camera for use. Do this right before you draw.

anchor

Get or set the rotation anchor for the camera.

By default, the anchor is the center of the screen and the anchor value is None. Assigning a custom anchor
point will override this behavior. The anchor point is in world / global coordinates.

Example:

Set the anchor to the center of the world
camera.anchor = 0, 0
Set the anchor to the center of the player
camera.anchor = player.position

far

The far applied to the projection

near

The near applied to the projection

rotation

Get or set the rotation in degrees.

This will rotate the camera clockwise meaning the contents will rotate counter-clockwise.

scale

Returns the x, y scale.

zoom

The zoom applied to the projection. Just returns the x scale value.

class arcade.SimpleCamera(*, viewport: Tuple[int, int, int, int] | None = None, projection: Tuple[float, float,
float, float] | None = None, window: Window | None = None)

Bases:

A simple camera that allows to change the viewport, the projection and can move around. That’s it. See ar-
cade.Camera for more advance stuff.

Parameters
• viewport – Size of the viewport: (left, bottom, width, height)

• projection – Space to allocate in the viewport of the camera (left, right, bottom, top)

center(vector: Vec2 | tuple, speed: float = 1.0)→ None
Centers the camera on coordinates

get_map_coordinates(camera_vector: Vec2 | tuple)→ Vec2
Returns map coordinates in pixels from screen coordinates based on the camera position

Parameters
camera_vector – Vector captured from the camera viewport

33.8. Camera 441

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://pyglet.readthedocs.io/en/latest/modules/math.html#pyglet.math.Vec2
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://pyglet.readthedocs.io/en/latest/modules/math.html#pyglet.math.Vec2
https://docs.python.org/3/library/stdtypes.html#tuple
https://pyglet.readthedocs.io/en/latest/modules/math.html#pyglet.math.Vec2

Python Arcade Library, Release 3.0.0.dev26

move(vector: Vec2 | tuple)→ None
Moves the camera with a speed of 1.0, aka instant move

This is equivalent to calling move_to(my_pos, 1.0)

move_to(vector: Vec2 | tuple, speed: float = 1.0)→ None
Sets the goal position of the camera.

The camera will lerp towards this position based on the provided speed, updating its position every time
the use() function is called.

Parameters
• vector – Vector to move the camera towards.

• speed – How fast to move the camera, 1.0 is instant, 0.1 moves slowly

resize(viewport_width: int, viewport_height: int, *, resize_projection: bool = True)→ None
Resize the camera’s viewport. Call this when the window resizes.

Parameters
• viewport_width – Width of the viewport

• viewport_height – Height of the viewport

• resize_projection – if True the projection will also be resized

set_viewport(viewport: Tuple[int, int, int, int])→ None
Sets the viewport

update()

Update the camera’s viewport to the current settings.

use()→ None
Select this camera for use. Do this right before you draw.

projection

The dimensions of the space to project in the camera viewport (left, right, bottom, top). The projection is
what you want to project into the camera viewport.

projection_to_viewport_height_ratio

The ratio of projection height to viewport height

projection_to_viewport_width_ratio

The ratio of projection width to viewport width

viewport

The space the camera will hold on the screen (left, bottom, width, height)

viewport_height

Returns the height of the viewport

viewport_to_projection_height_ratio

The ratio of viewport height to projection height

viewport_to_projection_width_ratio

The ratio of viewport width to projection width

viewport_width

Returns the width of the viewport

442 Chapter 33. API Reference

https://pyglet.readthedocs.io/en/latest/modules/math.html#pyglet.math.Vec2
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/constants.html#None
https://pyglet.readthedocs.io/en/latest/modules/math.html#pyglet.math.Vec2
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

Python Arcade Library, Release 3.0.0.dev26

33.9 Text

class arcade.Text(text: str, start_x: int, start_y: int, color: Tuple[int, int, int] | Tuple[int, int, int, int] = (255,
255, 255, 255), font_size: float = 12, width: int | None = 0, align: str = 'left', font_name: str |
Tuple[str, ...] = ('calibri', 'arial'), bold: bool = False, italic: bool = False, anchor_x: str =
'left', anchor_y: str = 'baseline', multiline: bool = False, rotation: float = 0, batch: Batch |
None = None, group: Group | None = None, start_z: int = 0)

Bases:

An object-oriented way to draw text to the screen.

Tip: Use this class when performance matters!

Unlike draw_text(), this class does not risk wasting time recalculating and re-setting any text each time draw()
is called. This makes it faster while:

• requiring you to manage instances and drawing yourself

• using negligible extra RAM

The speed advantage scales as more text needs to be drawn to the screen.

The constructor arguments work identically to those of draw_text(). See its documentation for in-depth ex-
planation for how to use each of them. For example code, see drawing_text_objects.

Parameters
• text – Initial text to display. Can be an empty string

• start_x – x position to align the text’s anchor point with

• start_y – y position to align the text’s anchor point with

• start_z – z position to align the text’s anchor point with

• color – Color of the text as an RGBA tuple or a Color instance.

• font_size – Size of the text in points

• width – A width limit in pixels

• align – Horizontal alignment; values other than “left” require width to be set

• font_name (Union[str, Tuple[str, ...]]) – A font name, path to a font file, or list
of names

• bold – Whether to draw the text as bold

• italic – Whether to draw the text as italic

• anchor_x – How to calculate the anchor point’s x coordinate. Options: “left”, “center”, or
“right”

• anchor_y – How to calculate the anchor point’s y coordinate. Options: “top”, “bottom”,
“center”, or “baseline”.

• multiline – Requires width to be set; enables word wrap rather than clipping

• rotation – rotation in degrees, counter-clockwise from horizontal

All constructor arguments other than text have a corresponding property. To access the current text, use the
value property instead.

33.9. Text 443

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://pyglet.readthedocs.io/en/latest/modules/graphics/index.html#pyglet.graphics.Batch
https://docs.python.org/3/library/constants.html#None
https://pyglet.readthedocs.io/en/latest/modules/graphics/index.html#pyglet.graphics.Group
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Python Arcade Library, Release 3.0.0.dev26

By default, the text is placed so that:

• the left edge of its bounding box is at start_x

• its baseline is at start_y

The baseline is located along the line the bottom of the text would be written on, excluding letters with tails such
as y:

Fig. 1: The blue line is the baseline for the string "Python"

rotation allows for the text to be rotated around the anchor point by the passed number of degrees. Positive
values rotate counter-clockwise from horizontal, while negative values rotate clockwise:

Fig. 2: Rotation around the default anchor (anchor_y="baseline" and anchor_x="left")

draw()→ None
Draw the label to the screen at its current x and y position.

draw_debug(anchor_color: Tuple[int, int, int, int] = (255, 0, 0, 255), background_color: Tuple[int, int, int,
int] = (0, 0, 139, 255), outline_color: Tuple[int, int, int, int] = (255, 255, 255, 255))→ None

Draw test with debug geometry showing the content area, outline and the anchor point.

Parameters
• anchor_color – Color of the anchor point

• background_color – Color the content background

• outline_color – Color of the content outline

444 Chapter 33. API Reference

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

Python Arcade Library, Release 3.0.0.dev26

align

anchor_x

Get or set the horizontal anchor.

Options: “left”, “center”, or “right”

anchor_y

Get or set the vertical anchor.

Options : “top”, “bottom”, “center”, or “baseline”

batch

bold

Get or set bold state of the label

bottom

Pixel location of the bottom content border.

color

Get or set the text color for the label

content_height

Get the pixel height of the text content.

content_size

Get the pixel width and height of the text contents.

content_width

Get the pixel width of the text contents

font_name

Get or set the font name(s) for the label

font_size

Get or set the font size of the label

group

height

Get or set the height of the label in pixels This value affects text flow when multiline text is used. If you
are looking for the physical size if the text, see content_height

italic

Get or set the italic state of the label

left

Pixel location of the left content border.

multiline

Get or set the multiline flag of the label.

position

The current x, y position as a tuple.

This is faster than setting x and y position separately because the underlying geometry only needs to change
position once.

33.9. Text 445

Python Arcade Library, Release 3.0.0.dev26

right

Pixel location of the right content border.

rotation

size

Get the size of the label

start_z

Get or set the z position of the label

text

Get or set the current text string to display.

The value assigned will be converted to a string.

This is an alias for value

top

Pixel location of the top content border.

value

Get or set the current text string to display.

The value assigned will be converted to a string.

width

Get or set the width of the label in pixels. This value affects text flow when multiline text is used. If you
are looking for the physical size if the text, see content_width

x

Get or set the x position of the label

y

Get or set the y position of the label

arcade.create_text_sprite(text: str, color: Tuple[int, int, int, int] = (255, 255, 255, 255), font_size: float = 12,
width: int = 0, align: str = 'left', font_name: str | Tuple[str, ...] = ('calibri', 'arial'),
bold: bool = False, italic: bool = False, anchor_x: str = 'left', multiline: bool =
False, texture_atlas: TextureAtlas | None = None)→ Sprite

Creates a sprite containing text based off of Text.

Internally this creates a Text object and an empty texture. It then uses either the provided texture atlas, or gets
the default one, and draws the Text object into the texture atlas.

It then creates a sprite referencing the newly created texture, and positions it accordingly, and that is final result
that is returned from the function.

If you are providing a custom texture atlas, something important to keep in mind is that the resulting Sprite can
only be added to SpriteLists which use that atlas. If it is added to a SpriteList which uses a different atlas, you
will likely just see a black box drawn in its place.

Parameters
• text – Initial text to display. Can be an empty string

• color – Color of the text as a tuple or list of 3 (RGB) or 4 (RGBA) integers

• font_size – Size of the text in points

• width – A width limit in pixels

446 Chapter 33. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None

Python Arcade Library, Release 3.0.0.dev26

• align – Horizontal alignment; values other than “left” require width to be set

• font_name – A font name, path to a font file, or list of names

• bold – Whether to draw the text as bold

• italic – Whether to draw the text as italic

• anchor_x – How to calculate the anchor point’s x coordinate. Options: “left”, “center”, or
“right”

• multiline – Requires width to be set; enables word wrap rather than clipping

• texture_atlas – The texture atlas to use for the newly created texture. The default global
atlas will be used if this is None.

arcade.draw_text(text: Any, start_x: int, start_y: int, color: Tuple[int, int, int, int] = (255, 255, 255, 255),
font_size: float = 12, width: int = 0, align: str = 'left', font_name: str | Tuple[str, ...] =
('calibri', 'arial'), bold: bool = False, italic: bool = False, anchor_x: str = 'left', anchor_y: str
= 'baseline', multiline: bool = False, rotation: float = 0, start_z: int = 0)

A simple way for beginners to draw text.

Warning: Use arcade.Text objects instead.

This method of drawing text is very slow and might be removed in the near future. Text objects can be 10-100
times faster depending on the use case.

Warning: Cameras affect text drawing!

If you want to draw a custom GUI that doesn’t move with the game world, you will need a second camera.
For information on how to do this, see sprite_move_scrolling.

This function lets you start draw text easily with better performance than the old pillow-based text. If you need
even higher performance, consider using Text.

Example code can be found at drawing_text.

Parameters
• text – Text to display. The object passed in will be converted to a string

• start_x – x position to align the text’s anchor point with

• start_y – y position to align the text’s anchor point with

• start_z – z position to align the text’s anchor point with

• color – Color of the text as an RGBA tuple or Color instance.

• font_size – Size of the text in points

• width – A width limit in pixels

• align – Horizontal alignment; values other than “left” require width to be set

• font_name (Union[str, Tuple[str, ...]]) – A font name, path to a font file, or list
of names

• bold – Whether to draw the text as bold

• italic – Whether to draw the text as italic

33.9. Text 447

https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Python Arcade Library, Release 3.0.0.dev26

• anchor_x – How to calculate the anchor point’s x coordinate

• anchor_y – How to calculate the anchor point’s y coordinate

• multiline – Requires width to be set; enables word wrap rather than clipping

• rotation – rotation in degrees, counter-clockwise from horizontal

By default, the text is placed so that:

• the left edge of its bounding box is at start_x

• its baseline is at start_y

The baseline of text is the line it would be written on:

Fig. 3: The blue line is the baseline for the string "Python"

font_name can be any of the following:

• a built-in font in the Built-In Resources

• the name of a system font

• a path to a font on the system

• a tuple containing any mix of the previous three

Each entry provided will be tried in order until one is found. If none of the fonts are found, a default font will be
chosen (usually Arial).

anchor_x and anchor_y specify how to calculate the anchor point, which affects how the text is:

• Placed relative to start_x and start_y

• Rotated

By default, the text is drawn so that start_x is at the left of the text’s bounding box and start_y is at the
baseline.

You can set a custom anchor point by passing combinations of the following values for anchor_x and anchor_y:

Table 1: Values allowed by anchor_x

String value Practical Effect Anchor Position
"left" (default) Text drawn with its left side at start_x Anchor point on the left side of the text’s

bounding box
"center" Text drawn horizontally centered on

start_x
Anchor point at horizontal center of text’s
bounding box

"right" Text drawn with its right side at start_x Anchor placed on the right side of the
text’s bounding box

448 Chapter 33. API Reference

Python Arcade Library, Release 3.0.0.dev26

Table 2: Values allowed by anchor_y

String value Practical Effect Anchor Position
"baseline" (de-
fault)

Text drawn with baseline on start_y. Anchor placed at the text rendering base-
line

"top" Text drawn with its top aligned with
start_y

Anchor point placed at the top of the text

"bottom" Text drawn with its absolute bottom
aligned with start_y, including the
space for tails on letters such as y and g

Anchor point placed at the bottom of the
text after the space allotted for letters such
as y and g

"center" Text drawn with its vertical center on
start_y

Anchor placed at the vertical center of the
text

rotation allows for the text to be rotated around the anchor point by the passed number of degrees. Positive
values rotate counter-clockwise from horizontal, while negative values rotate clockwise:

Fig. 4: Rotation around the default anchor point (anchor_y="baseline" and anchor_x="left")

It can be helpful to think of this function working as follows:

1. Text layout and alignment are calculated:

1. The text’s characters are laid out within a bounding box according to the current styling options

2. The anchor point on the text is calculated based on the text value, styling, as well as values for
anchor_x and anchor_y

2. The text is placed so its anchor point is at (start_x, start_y))

3. The text is rotated around its anchor point before finally being drawn

This function is less efficient than using Text because some steps above can be repeated each time a call is made
rather than fully cached as with the class.

arcade.load_font(path: str | Path)→ None
Load fonts in a file (usually .ttf) adding them to a global font registry.

A file can contain one or multiple fonts. Each font has a name. Open the font file to find the actual name(s).
These names are used to select font when drawing text.

33.9. Text 449

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/constants.html#None

Python Arcade Library, Release 3.0.0.dev26

Examples:

Load a font in the current working directory
(absolute path is often better)
arcade.load_font("Custom.ttf")
Load a font using a custom resource handle
arcade.load_font(":font:Custom.ttf")

Parameters
path – A string, or an array of paths with fonts.

Raises
FileNotFoundError – if the font specified wasn’t found

Returns

33.10 Tiled Map Reader

class arcade.tilemap.TileMap(map_file: str | Path = '', scaling: float = 1.0, layer_options: Dict[str, Dict[str,
Any]] | None = None, use_spatial_hash: bool = False, hit_box_algorithm:
HitBoxAlgorithm | None = None, tiled_map: pytiled_parser.TiledMap | None =
None, offset: Vec2 = Vec2(0, 0), texture_atlas: 'TextureAtlas' | None = None,
lazy: bool = False)

Bases:

Class that represents a fully parsed and loaded map from Tiled. For examples on how to use this class, see:
https://api.arcade.academy/en/latest/examples/platform_tutorial/step_09.html

Parameters
• map_file (Union[str, Path]) – A JSON map file for a Tiled map to initialize from

• scaling – Global scaling to apply to all Sprites.

• layer_options (Dict[str, Dict[str, Any]]) – Extra parameters for each layer.

• use_spatial_hash – If set to True, this will make moving a sprite in the SpriteList slower,
but it will speed up collision detection with items in the SpriteList. Great for doing collision
detection with static walls/platforms.

• hit_box_algorithm – The hit box algorithm to use for the Sprite’s in this layer.

• tiled_map – An already parsed pytiled-parser map object. Passing this means that the
map_file argument will be ignored, and the pre-parsed map will instead be used. This can
be helpful for working with Tiled World files.

• offset – Can be used to offset the position of all sprites and objects within the map. This
will be applied in addition to any offsets from Tiled. This value can be overridden with the
layer_options dict.

• texture_atlas – A default texture atlas to use for the SpriteLists created by this map. If
not supplied the global default atlas will be used.

• lazy – SpriteLists will be created lazily.

The layer_options parameter can be used to specify per layer arguments.

The available options for this are:

450 Chapter 33. API Reference

https://docs.python.org/3/library/exceptions.html#FileNotFoundError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://api.arcade.academy/en/latest/examples/platform_tutorial/step_09.html
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Python Arcade Library, Release 3.0.0.dev26

use_spatial_hash - A boolean to enable spatial hashing on this layer’s SpriteList. scaling - A float
providing layer specific Sprite scaling. hit_box_algorithm - The hit box algorithm to use for the
Sprite’s in this layer. offset - A tuple containing X and Y position offsets for the layer custom_class
- All objects in the layer are created from this class instead of Sprite. Must be subclass of Sprite.
custom_class_args - Custom arguments, passed into the constructor of the custom_class texture_atlas
- A texture atlas to use for the SpriteList from this layer, if none is supplied then the one defined at
the map level will be used.

For example:

code-block:

layer_options = {
"Platforms": {

"use_spatial_hash": True,
"scaling": 2.5,
"offset": (-128, 64),
"custom_class": Platform,
"custom_class_args": {

"health": 100
}

},
}

The keys and their values in each layer are passed to the layer processing functions using the ** operator on the
dictionary.

get_cartesian(x: float, y: float)→ Tuple[float, float]
Given a set of coordinates in pixel units, this returns the cartesian coordinates.

This assumes the supplied coordinates are pixel coordinates, and bases the cartesian grid off of the Map’s
tile size.

If you have a map with 128x128 pixel Tiles, and you supply coordinates 500, 250 to this function you’ll
receive back 3, 2

Parameters
• x – The X Coordinate to convert

• y – The Y Coordinate to convert

get_tilemap_layer(layer_path: str)→ Layer | None

background_color: Color | None

The background color of the map.

height: float

The height of the map in tiles. This is the number of tiles, not pixels.

object_lists: Dict[str, List[TiledObject]]

A dictionary mapping TiledObjects to their layer names. This is used for all object layers of the map.

offset: Vec2

A tuple containing the X and Y position offset values.

scaling: float

A global scaling value to be applied to all Sprites in the map.

33.10. Tiled Map Reader 451

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://pyglet.readthedocs.io/en/latest/modules/math.html#pyglet.math.Vec2
https://docs.python.org/3/library/functions.html#float

Python Arcade Library, Release 3.0.0.dev26

sprite_lists: Dict[str, SpriteList]

A dictionary mapping SpriteLists to their layer names. This is used for all tile layers of the map.

tile_height: float

The height in pixels of each tile.

tile_width: float

The width in pixels of each tile.

tiled_map: TiledMap

The pytiled-parser map object. This can be useful for implementing features that aren’t supported by this
class by accessing the raw map data directly.

width: float

The width of the map in tiles. This is the number of tiles, not pixels.

arcade.tilemap.load_tilemap(map_file: str | Path, scaling: float = 1.0, layer_options: Dict[str, Dict[str, Any]]
| None = None, use_spatial_hash: bool = False, hit_box_algorithm:
HitBoxAlgorithm | None = None, offset: Vec2 = Vec2(0, 0), texture_atlas:
'TextureAtlas' | None = None, lazy: bool = False)→ TileMap

Given a .json map file, loads in and returns a TileMap object.

A TileMap can be created directly using the classes __init__ function. This function exists for ease of use.

For more clarification on the layer_options key, see the __init__ function of the TileMap class

Parameters
• map_file (Union[str, Path]) – The JSON map file.

• scaling – The global scaling to apply to all Sprite’s within the map.

• use_spatial_hash – If set to True, this will make moving a sprite in the SpriteList slower,
but it will speed up collision detection with items in the SpriteList. Great for doing collision
detection with static walls/platforms.

• hit_box_algorithm – The hit box algorithm to use for collision detection.

• layer_options (Dict[str, Dict[str, Any]]) – Layer specific options for the map.

• offset – Can be used to offset the position of all sprites and objects within the map. This
will be applied in addition to any offsets from Tiled. This value can be overridden with the
layer_options dict.

• lazy – SpriteLists will be created lazily.

arcade.tilemap.read_tmx(map_file: str | Path)→ TiledMap
Deprecated function to raise a warning that it has been removed.

Exists to provide info for outdated code bases.

452 Chapter 33. API Reference

https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path

Python Arcade Library, Release 3.0.0.dev26

33.11 Texture Management

arcade.make_circle_texture(diameter: int, color: Tuple[int, int, int, int], name: str | None = None,
hitbox_algorithm: HitBoxAlgorithm | None = None)→ Texture

Return a Texture of a circle with the given diameter and color.

Parameters
• diameter – Diameter of the circle and dimensions of the square Texture returned.

• color – Color of the circle as a Color instance a 3 or 4 tuple.

• name – Custom or pre-chosen name for this texture

Returns
New Texture object.

arcade.make_soft_circle_texture(diameter: int, color: Tuple[int, int, int, int], center_alpha: int = 255,
outer_alpha: int = 0, name: str | None = None, hit_box_algorithm:
HitBoxAlgorithm | None = None)→ Texture

Return a Texture of a circle with the given diameter and color, fading out at its edges.

Parameters
• diameter – Diameter of the circle and dimensions of the square Texture returned.

• color – Color of the circle as a 4-length tuple or Color instance.

• center_alpha – Alpha value of the circle at its center.

• outer_alpha – Alpha value of the circle at its edges.

• name – Custom or pre-chosen name for this texture

• hit_box_algorithm – The hit box algorithm

Returns
New Texture object.

arcade.make_soft_square_texture(size: int, color: Tuple[int, int, int, int], center_alpha: int = 255,
outer_alpha: int = 0, name: str | None = None)→ Texture

Return a Texture of a square with the given diameter and color, fading out at its edges.

Parameters
• size – Diameter of the square and dimensions of the square Texture returned.

• color – Color of the square.

• center_alpha – Alpha value of the square at its center.

• outer_alpha – Alpha value of the square at its edges.

• name – Custom or pre-chosen name for this texture

Returns
New Texture object.

arcade.cleanup_texture_cache()

This cleans up the cache of textures. Useful when running unit tests so that the next test starts clean.

33.11. Texture Management 453

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

Python Arcade Library, Release 3.0.0.dev26

arcade.get_default_image(size: Tuple[int, int] = (128, 128))→ ImageData
Generates and returns a default image and caches it internally for future use.

Parameters
size – Size of the image to create.

Returns
The default image.

arcade.get_default_texture(size: Tuple[int, int] = (128, 128))→ Texture
Creates and returns a default texture and caches it internally for future use.

Parameters
size – Size of the texture to create

Returns
The default texture.

arcade.load_spritesheet(file_name: str | Path, sprite_width: int, sprite_height: int, columns: int, count: int,
margin: int = 0, hit_box_algorithm: HitBoxAlgorithm | None = None)→
List[Texture]

Parameters
• file_name – Name of the file to that holds the texture.

• sprite_width – Width of the sprites in pixels

• sprite_height – Height of the sprites in pixels

• columns – Number of tiles wide the image is.

• count – Number of tiles in the image.

• margin – Margin between images

• hit_box_algorithm – The hit box algorithm

Returns List
List of Texture objects.

arcade.load_texture(file_path: str | Path, *, x: int = 0, y: int = 0, width: int = 0, height: int = 0,
hit_box_algorithm: HitBoxAlgorithm | None = None)→ Texture

Load an image from disk and create a texture.

The x, y, width, and height parameters are used to specify a sub-rectangle of the image to load. If not specified,
the entire image is loaded.

Parameters
• file_name – Name of the file to that holds the texture.

• x – X coordinate of the texture in the image.

• y – Y coordinate of the texture in the image.

• width – Width of the texture in the image.

• height – Height of the texture in the image.

• hit_box_algorithm –

Returns
New Texture object.

454 Chapter 33. API Reference

https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

Python Arcade Library, Release 3.0.0.dev26

Raises
ValueError

arcade.load_texture_pair(file_name: str | Path, hit_box_algorithm: HitBoxAlgorithm | None = None)→
Tuple[Texture, Texture]

Load a texture pair, with the second being a mirror image of the first. Useful when doing animations and the
character can face left/right.

Parameters
• file_name – Path to texture

• hit_box_algorithm – The hit box algorithm

arcade.load_textures(file_name: str | Path, image_location_list: Tuple[Tuple[int, int, int, int] | List[int], ...] |
List[Tuple[int, int, int, int] | List[int]], mirrored: bool = False, flipped: bool = False,
hit_box_algorithm: HitBoxAlgorithm | None = None)→ List[Texture]

Load a set of textures from a single image file.

Note: If the code is to load only part of the image, the given x, y coordinates will start with the origin (0, 0) in the
upper left of the image. When drawing, Arcade uses (0, 0) in the lower left corner. Be careful with this reversal.

For a longer explanation of why computers sometimes start in the upper left, see: http://programarcadegames.
com/index.php?chapter=introduction_to_graphics&lang=en#section_5

Parameters
• file_name – Name of the file.

• image_location_list – List of image sub-locations. Each rectangle should be a List of
four floats: [x, y, width, height].

• mirrored – If set to True, the image is mirrored left to right.

• flipped – If set to True, the image is flipped upside down.

• hit_box_algorithm – One of None, ‘None’, ‘Simple’ (default) or ‘Detailed’.

• hit_box_detail – Float, defaults to 4.5. Used with ‘Detailed’ to hit box

Returns
List of Texture’s.

Raises
ValueError

class arcade.Texture(image: Image | ImageData, *, hit_box_algorithm: HitBoxAlgorithm | None = None,
hit_box_points: Sequence[Tuple[float, float]] | None = None, hash: str | None = None,
**kwargs)

Bases:

An arcade.Texture is simply a wrapper for image data as a Pillow image and the hit box data for this image used
in collision detection. Usually created by the load_texture or load_textures commands.

Parameters
• image – The image or ImageData for this texture

• hit_box_algorithm – The algorithm to use for calculating the hit box.

• hit_box_points – A list of hitbox points for the texture to use (Optional). Completely
overrides the hit box algorithm.

• hash – Optional unique name for the texture. Can be used to make this texture globally
unique. By default the hash of the pixel data is used.

33.11. Texture Management 455

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.List
http://programarcadegames.com/index.php?chapter=introduction_to_graphics&lang=en#section_5
http://programarcadegames.com/index.php?chapter=introduction_to_graphics&lang=en#section_5
https://pillow.readthedocs.io/en/stable/reference/Image.html#PIL.Image.Image
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

Python Arcade Library, Release 3.0.0.dev26

add_atlas_ref(atlas: TextureAtlas)→ None
Add a reference to an atlas that this texture is in.

classmethod create_atlas_name(hash: str, vertex_order: Tuple[int, int, int, int] = (0, 1, 2, 3))

classmethod create_cache_name(*, hash: str, hit_box_algorithm: HitBoxAlgorithm, vertex_order:
Tuple[int, int, int, int] = (0, 1, 2, 3))→ str

Create a cache name for the texture.

Parameters
• image_data – The image data

• hit_box_algorithm – The hit box algorithm

• hit_box_args – The hit box algorithm arguments

• vertex_order (Tuple[int, int, int, int]) – The vertex order

Returns
str

classmethod create_empty(name: str, size: Tuple[int, int], color: Tuple[int, int, int, int] = (0, 0, 0, 0))→
Texture

Create a texture with all pixels set to transparent black.

The hit box of the returned Texture will be set to a rectangle with the dimensions in size because there is
no non-blank pixel data to calculate a hit box.

Parameters
• name – The unique name for this texture

• size – The xy size of the internal image

This function has multiple uses, including:

• Allocating space in texture atlases

• Generating custom cached textures from component images

The internal image can be altered with Pillow draw commands and then written/updated to a texture atlas.
This works best for infrequent changes such as generating custom cached sprites. For frequent texture
changes, you should instead render directly into the texture atlas.

Warning: If you plan to alter images using Pillow, read its documentation thoroughly! Some of the
functions can have unexpected behavior.

For example, if you want to draw one or more images that contain transparency onto a base image
that also contains transparency, you will likely need to use PIL.Image.alpha_composite as part of your
solution. Otherwise, blending may behave in unexpected ways.

This is especially important for customizable characters.

Be careful of your RAM usage when using this function. The Texture this method returns will have a new
internal RGBA Pillow image which uses 4 bytes for every pixel in it. This will quickly add up if you create
many large Textures.

If you want to create more than one blank texture with the same dimensions, you can save CPU time and
RAM by calling this function once, then passing the image attribute of the resulting Texture object to the
class constructor for each additional blank Texture instance you would like to create. This can be especially
helpful if you are creating multiple large Textures.

456 Chapter 33. API Reference

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://pillow.readthedocs.io/en/stable/reference/Image.html#PIL.Image.alpha_composite

Python Arcade Library, Release 3.0.0.dev26

classmethod create_filled(name: str, size: Tuple[int, int], color: Tuple[int, int, int, int])→ Texture
Create a filled texture. This is an alias for create_empty().

Parameters
• name – Name of the texture

• size (Tuple[int, int]) – Size of the texture

• color – Color of the texture

Returns
Texture

classmethod create_image_cache_name(path: str | Path, crop: Tuple[int, int, int, int] = (0, 0, 0, 0))

crop(x: int, y: int, width: int, height: int)→ Texture
Create a new texture from a sub-section of this texture.

If the crop is the same size as the original texture or the crop is 0 width or height, the original texture is
returned.

Parameters
• x – X position to start crop

• y – Y position to start crop

• width – Width of crop

• height – Height of crop

• cache – If True, the cropped texture will be cached

Returns
Texture

draw_scaled(center_x: float, center_y: float, scale: float = 1.0, angle: float = 0.0, alpha: int = 255)
Draw the texture.

Warning: This is a very slow method of drawing a texture, and should be used sparingly. The method
simply creates a sprite internally and draws it.

Parameters
• center_x – X location of where to draw the texture.

• center_y – Y location of where to draw the texture.

• scale – Scale to draw rectangle. Defaults to 1.

• angle – Angle to rotate the texture by.

• alpha – The transparency of the texture (0-255).

draw_sized(center_x: float, center_y: float, width: float, height: float, angle: float = 0.0, alpha: int = 255)
Draw a texture with a specific width and height.

Warning: This is a very slow method of drawing a texture, and should be used sparingly. The method
simply creates a sprite internally and draws it.

33.11. Texture Management 457

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

Python Arcade Library, Release 3.0.0.dev26

Parameters
• center_x – X position to draw texture

• center_y – Y position to draw texture

• width – Width to draw texture

• height – Height to draw texture

• angle – Angle to draw texture

• alpha – Alpha value to draw texture

flip_diagonally()→ Texture
Returns a new texture that is flipped diagonally from this texture. This is an alias for transpose().

This returns a new texture with the same image data, but has updated hit box data and a transform that will
be applied to the image when it’s drawn (GPU side).

Returns
Texture

flip_horizontally()→ Texture
Flip the texture left to right / horizontally.

This returns a new texture with the same image data, but has updated hit box data and a transform that will
be applied to the image when it’s drawn (GPU side).

Returns
Texture

flip_left_right()→ Texture
Flip the texture left to right / horizontally.

This returns a new texture with the same image data, but has updated hit box data and a transform that will
be applied to the image when it’s drawn (GPU side).

Returns
Texture

flip_top_bottom()→ Texture
Flip the texture top to bottom / vertically.

This returns a new texture with the same image data, but has updated hit box data and a transform that will
be applied to the image when it’s drawn (GPU side).

Returns
Texture

flip_vertically()→ Texture
Flip the texture top to bottom / vertically.

This returns a new texture with the same image data, but has updated hit box data and a transform that will
be applied to the image when it’s drawn (GPU side).

Returns
Texture

remove_atlas_ref(atlas: TextureAtlas)→ None
Remove a reference to an atlas that this texture is in.

458 Chapter 33. API Reference

https://docs.python.org/3/library/constants.html#None

Python Arcade Library, Release 3.0.0.dev26

remove_from_atlases()→ None
Remove this texture from all atlases.

remove_from_cache(ignore_error: bool = True)→ None
Remove this texture from the cache.

Parameters
ignore_error – If True, ignore errors if the texture is not in the cache

Returns
None

rotate_180()→ Texture
Rotate the texture 180 degrees.

This returns a new texture with the same image data, but has updated hit box data and a transform that will
be applied to the image when it’s drawn (GPU side).

Returns
Texture

rotate_270()→ Texture
Rotate the texture 270 degrees.

This returns a new texture with the same image data, but has updated hit box data and a transform that will
be applied to the image when it’s drawn (GPU side).

Returns
Texture

rotate_90(count: int = 1)→ Texture
Rotate the texture by a given number of 90 degree steps.

This returns a new texture with the same image data, but has updated hit box data and a transform that will
be applied to the image when it’s drawn (GPU side).

Parameters
count – Number of 90 degree steps to rotate.

Returns
Texture

transform(transform: Type[Transform])→ Texture
Create a new texture with the given transform applied.

Parameters
transform – Transform to apply

Returns
New texture

transpose()→ Texture
Returns a new texture that is transposed from this texture. This flips the texture diagonally from lower right
to upper left.

This returns a new texture with the same image data, but has updated hit box data and a transform that will
be applied to the image when it’s drawn (GPU side).

Returns
Texture

33.11. Texture Management 459

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Type

Python Arcade Library, Release 3.0.0.dev26

transverse()→ Texture
Returns a new texture that is transverse from this texture. This flips the texture diagonally from lower left
to upper right.

This returns a new texture with the same image data, but has updated hit box data and a transform that will
be applied to the image when it’s drawn (GPU side).

Returns
Texture

static validate_crop(image: Image, x: int, y: int, width: int, height: int)→ None
Validate the crop values for a given image.

atlas_name

The name of the texture used for the texture atlas (read only).

Returns
str

cache_name

The name of the texture used for caching (read only).

Returns
str

crop_values

The crop values used to create this texture in the referenced file

Returns
Tuple[int, int, int, int]

file_path

A Path object to the file this texture was loaded from

Returns
Path

height

The virtual width of the texture in pixels.

This can be different from the actual width if the texture has been transformed or the size have been set
manually.

hit_box_algorithm

(read only) The algorithm used to calculate the hit box for this texture.

hit_box_points

Get the hit box points for this texture.

Custom hit box points must be supplied during texture creation and should ideally not be changed after
creation.

Returns
PointList

image

Get or set the image of the texture.

Warning: This is an advanced function. Be absolutely sure you know the consequences of changing
the image. It can cause problems with the texture atlas and hit box points.

460 Chapter 33. API Reference

https://pillow.readthedocs.io/en/stable/reference/Image.html#PIL.Image.Image
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

Python Arcade Library, Release 3.0.0.dev26

Parameters
image – The image to set

image_data

The image data of the texture (read only).

This is a simple wrapper around the image containing metadata like hash and is used to determine the
uniqueness of the image in texture atlases.

Returns
ImageData

properties

A dictionary of properties for this texture. This can be used to store any data you want.

Returns
Dict[str, Any]

size

The virtual size of the texture in pixels.

This can be different from the actual width if the texture has been transformed or the size have been set
manually.

width

The virtual width of the texture in pixels. This can be different from the actual width if the texture has been
transformed or the size have been set manually.

33.12 Texture Transforms

class arcade.texture.transforms.FlipLeftRightTransform

Bases: Transform

Flip texture horizontally / left to right.

static transform_hit_box_points(points: Sequence[Tuple[float, float]])→ Sequence[Tuple[float,
float]]

order = (1, 0, 3, 2)

How texture coordinates order should be changed for this transform. upper_left, upper_right, lower_left,
lower_right

class arcade.texture.transforms.FlipTopBottomTransform

Bases: Transform

Flip texture vertically / top to bottom.

static transform_hit_box_points(points: Sequence[Tuple[float, float]])→ Sequence[Tuple[float,
float]]

order = (2, 3, 0, 1)

How texture coordinates order should be changed for this transform. upper_left, upper_right, lower_left,
lower_right

33.12. Texture Transforms 461

https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Python Arcade Library, Release 3.0.0.dev26

class arcade.texture.transforms.Rotate180Transform

Bases: Transform

Rotate 180 degrees clockwise.

static transform_hit_box_points(points: Sequence[Tuple[float, float]])→ Sequence[Tuple[float,
float]]

order = (3, 2, 1, 0)

How texture coordinates order should be changed for this transform. upper_left, upper_right, lower_left,
lower_right

class arcade.texture.transforms.Rotate270Transform

Bases: Transform

Rotate 270 degrees clockwise.

static transform_hit_box_points(points: Sequence[Tuple[float, float]])→ Sequence[Tuple[float,
float]]

order = (1, 3, 0, 2)

How texture coordinates order should be changed for this transform. upper_left, upper_right, lower_left,
lower_right

class arcade.texture.transforms.Rotate90Transform

Bases: Transform

Rotate 90 degrees clockwise.

static transform_hit_box_points(points: Sequence[Tuple[float, float]])→ Sequence[Tuple[float,
float]]

order = (2, 0, 3, 1)

How texture coordinates order should be changed for this transform. upper_left, upper_right, lower_left,
lower_right

class arcade.texture.transforms.Transform

Bases:

Base class for all texture transforms.

Transforms are responsible for transforming the texture coordinates and hit box points.

static transform_hit_box_points(points: Sequence[Tuple[float, float]])→ Sequence[Tuple[float,
float]]

Transforms hit box points.

classmethod transform_texture_coordinates_order(texture_coordinates: Tuple[float, float, float,
float, float, float, float, float], order: Tuple[int,
int, int, int])→ Tuple[float, float, float, float,
float, float, float, float]

Change texture coordinates order.

Parameters
• texture_coordinates – Texture coordinates to transform

• order – The new order

462 Chapter 33. API Reference

https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Python Arcade Library, Release 3.0.0.dev26

classmethod transform_vertex_order(order: Tuple[int, int, int, int])→ Tuple[int, int, int, int]
Transforms and exiting vertex order with this transform. This gives us important metadata on how to quickly
transform the texture coordinates without iterating all applied transforms.

order = (0, 1, 2, 3)

How texture coordinates order should be changed for this transform. upper_left, upper_right, lower_left,
lower_right

class arcade.texture.transforms.TransposeTransform

Bases: Transform

Transpose texture.

static transform_hit_box_points(points: Sequence[Tuple[float, float]])→ Sequence[Tuple[float,
float]]

order = (0, 2, 1, 3)

How texture coordinates order should be changed for this transform. upper_left, upper_right, lower_left,
lower_right

class arcade.texture.transforms.TransverseTransform

Bases: Transform

Transverse texture.

static transform_hit_box_points(points: Sequence[Tuple[float, float]])→ Sequence[Tuple[float,
float]]

order = (3, 1, 2, 0)

How texture coordinates order should be changed for this transform. upper_left, upper_right, lower_left,
lower_right

class arcade.texture.transforms.VertexOrder(value)
Bases: Enum

Order for texture coordinates.

LOWER_LEFT = 2

LOWER_RIGHT = 3

UPPER_LEFT = 0

UPPER_RIGHT = 1

arcade.texture.transforms.get_orientation(order: Tuple[int, int, int, int])→ int
Get orientation info from the vertex order

33.13 Texture Atlas

class arcade.TextureAtlas(size: Tuple[int, int], *, border: int = 1, textures: Sequence['Texture'] | None =
None, auto_resize: bool = True, ctx: 'ArcadeContext' | None = None, capacity: int
= 2)

Bases:

A texture atlas with a size in a context.

33.13. Texture Atlas 463

https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/enum.html#enum.Enum
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int

Python Arcade Library, Release 3.0.0.dev26

A texture atlas is a large texture containing several textures so OpenGL can easily batch draw thousands or
hundreds of thousands of sprites on one draw operation.

This is a fairly simple atlas that stores horizontal strips were the height of the strip is the texture/image with the
larges height.

Adding a texture to this atlas generates a texture id. This id is used the sprite list vertex data to reference what
texture each sprite is using. The actual texture coordinates are located in a float32 texture this atlas is responsible
for keeping up to date.

The atlas deals with image and textures. The image is the actual image data. The texture is the arcade texture
object that contains the image and other information about such as transforms. Several textures can share the same
image with different transforms applied. The transforms are simply changing the order of the texture coordinates
to flip, rotate or mirror the image.

Parameters
• size (Tuple[int, int]) – The width and height of the atlas in pixels

• border – Currently no effect; Should always be 1 to avoid textures bleeding

• textures – The texture for this atlas

• auto_resize – Automatically resize the atlas when full

• ctx – The context for this atlas (will use window context if left empty)

• capacity – The number of textures the atlas keeps track of. This is multiplied by 4096.
Meaning capacity=2 is 8192 textures. This value can affect the performance of the atlas.

add(texture: Texture)→ Tuple[int, AtlasRegion]
Add a texture to the atlas.

Parameters
texture – The texture to add

Returns
texture_id, AtlasRegion tuple

allocate(image_data: ImageData)→ Tuple[int, int, int, AtlasRegion]
Attempts to allocate space for an image in the atlas.

This doesn’t write the texture to the atlas texture itself. It only allocates space.

Returns
The x, y texture_id, TextureRegion

classmethod calculate_minimum_size(textures: Sequence['Texture'], border: int = 1)
Calculate the minimum atlas size needed to store the the provided sequence of textures

Parameters
• textures – Sequence of textures

• border – The border around each texture in pixels

Returns
An estimated minimum size as a (width, height) tuple

clear(*, clear_image_ids: bool = True, clear_texture_ids: bool = True, texture: bool = True)→ None
Clear and reset the texture atlas. Note that also clearing “texture_ids” makes the atlas lose track of the old
texture ids. This means the sprite list must be rebuild from scratch.

Parameters

464 Chapter 33. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None

Python Arcade Library, Release 3.0.0.dev26

• texture_ids – Clear the assigned texture ids

• texture – Clear the contents of the atlas texture itself

classmethod create_from_texture_sequence(textures: Sequence['Texture'], border: int = 1)→
TextureAtlas

Create a texture atlas of a reasonable size from a sequence of textures.

Parameters
• textures – A sequence of textures (list, set, tuple, generator etc.)

• border – The border for the atlas in pixels (space between each texture)

get_image_id(hash: str)→ int
Get the uv slot for a image by hash

Parameters
hash – The hash of the image

Returns
The texture id for the given texture name

get_image_region_info(hash: str)→ AtlasRegion
Get the region info for and image by has

Parameters
hash – The hash of the image

Returns
The AtlasRegion for the given texture name

get_texture_id(atlas_name: str)→ int
Get the uv slot for a texture by atlas name

Parameters
atlas_name – The name of the texture in the atlas

Returns
The texture id for the given texture name

get_texture_image(texture: Texture)→ Image.Image
Get a Pillow image of a texture’s region in the atlas. This can be used to inspect the contents of the atlas or
to save the texture to disk.

Parameters
texture – The texture to get the image for

Returns
A pillow image containing the pixel data in the atlas

get_texture_region_info(atlas_name: str)→ AtlasRegion
Get the region info for a texture by atlas name

Returns
The AtlasRegion for the given texture name

has_image(image_data: ImageData)→ bool
Check if a image is already in the atlas

has_texture(texture: Texture)→ bool
Check if a texture is already in the atlas

33.13. Texture Atlas 465

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Python Arcade Library, Release 3.0.0.dev26

print_contents()

Debug method to print the contents of the atlas

rebuild()→ None
Rebuild the underlying atlas texture.

This method also tries to organize the textures more efficiently ordering them by size. The texture ids will
persist so the sprite list don’t need to be rebuilt.

remove(texture: Texture)→ None
Remove a texture from the atlas.

This doesn’t erase the pixel data from the atlas texture itself, but leaves the area unclaimed.

Parameters
texture – The texture to remove

render_into(texture: Texture, projection: Tuple[float, float, float, float] | None = None)
Render directly into a sub-section of the atlas. The sub-section is defined by the already allocated space of
the texture supplied in this method.

By default the projection will be set to match the texture area size were 0, 0 is the lower left corner and
width, height (of texture) is the upper right corner.

This method should should be used with the with statement:

with atlas.render_into(texture):
Draw commands here

Specify projection
with atlas.render_into(texture, projection=(0, 100, 0, 100))

Draw geometry

Parameters
• texture – The texture area to render into

• projection – The ortho projection to render with. This parameter can be left blank if no
projection changes are needed. The tuple values are: (left, right, button, top)

resize(size: Tuple[int, int])→ None
Resize the atlas on the gpu.

This will copy the pixel data from the old to the new atlas retaining the exact same data. This is useful
if the atlas was rendered into directly and we don’t have to transfer each texture individually from system
memory to graphics memory.

Parameters
size – The new size

save(path: str | Path, flip: bool = False, components: int = 4, draw_borders: bool = False, border_color:
Tuple[int, int, int] = (255, 0, 0))→ None

Save the texture atlas to a png.

Borders can also be drawn into the image to visualize the regions of the atlas.

Parameters
• path – The path to save the atlas on disk

• flip – Flip the image horizontally

466 Chapter 33. API Reference

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

Python Arcade Library, Release 3.0.0.dev26

• components – Number of components. (3 = RGB, 4 = RGBA)

• color – RGB color of the borders

Returns
A pillow image containing the atlas texture

show(flip: bool = False, components: int = 4, draw_borders: bool = False, border_color: Tuple[int, int, int]
= (255, 0, 0))→ None

Show the texture atlas using Pillow.

Borders can also be drawn into the image to visualize the regions of the atlas.

Parameters
• flip – Flip the image horizontally

• components – Number of components. (3 = RGB, 4 = RGBA)

• draw_borders – Draw region borders into image

• color – RGB color of the borders

sync_texture_image(texture: Texture)→ None
Updates a texture’s image with the contents in the texture atlas. This is usually not needed, but if you have
altered a texture in the atlas directly this can be used to copy the image data back into the texture.

Updating the image will not change the texture’s hash or the texture’s hit box points.

Warning: This method is somewhat expensive and should be used sparingly. Altering the internal im-
age of a texture is not recommended unless you know exactly what you’re doing. Textures are supposed
to be immutable.

Parameters
texture – The texture to update

to_image(flip: bool = False, components: int = 4, draw_borders: bool = False, border_color: Tuple[int, int,
int] = (255, 0, 0))→ Image

Convert the atlas to a Pillow image.

Borders can also be drawn into the image to visualize the regions of the atlas.

Parameters
• flip – Flip the image horizontally

• components – Number of components. (3 = RGB, 4 = RGBA)

• draw_borders – Draw region borders into image

• color – RGB color of the borders

Returns
A pillow image containing the atlas texture

update_texture_image(texture: Texture)
Updates the internal image of a texture in the atlas texture. The new image needs to be the exact same size
as the original one meaning the texture already need to exist in the atlas.

This can be used in cases were the image is manipulated in some way and we need a quick way to sync
these changes to graphics memory. This operation is fairly expensive, but still orders of magnitude faster
than removing the old texture, adding the new one and re-building the entire atlas.

33.13. Texture Atlas 467

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://pillow.readthedocs.io/en/stable/reference/Image.html#PIL.Image.Image

Python Arcade Library, Release 3.0.0.dev26

Parameters
texture – The texture to update

use_uv_texture(unit: int = 0)→ None
Bind the texture coordinate texture to a channel. In addition this method writes the texture coordinate to
the texture if the data is stale. This is to avoid a full update every time a texture is added to the atlas.

Parameters
unit – The texture unit to bind the uv texture

write_image(image: Image, x: int, y: int)→ None
Write a PIL image to the atlas in a specific region.

Parameters
• image – The pillow image

• x – The x position to write the texture

• y – The y position to write the texture

auto_resize

Get or set the auto resize flag for the atlas. If enabled the atlas will resize itself when full.

border

The texture border in pixels

fbo

The framebuffer object for this atlas

height

The height of the texture atlas in pixels

image_uv_texture

Texture coordinate texture for images.

images

Return a list of all the images in the atlas.

A new list is constructed from the internal weak set of images.

max_height

The maximum height of the atlas in pixels

max_size

The maximum size of the atlas in pixels (x, y)

max_width

The maximum width of the atlas in pixels

size

The width and height of the texture atlas in pixels

texture

The atlas texture.

texture_uv_texture

Texture coordinate texture for textures.

468 Chapter 33. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://pillow.readthedocs.io/en/stable/reference/Image.html#PIL.Image.Image
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

Python Arcade Library, Release 3.0.0.dev26

textures

Return a list of all the textures in the atlas.

A new list is constructed from the internal weak set of textures.

width

The width of the texture atlas in pixels

arcade.load_atlas(meta_file: Path, resource_root: Path)→ Tuple[TextureAtlas, Dict[str, float]]
Load a texture atlas from disk.

arcade.save_atlas(atlas: TextureAtlas, directory: Path, name: str, resource_root: Path)
Dump the atlas to a file. This includes the atlas image and metadata.

Parameters
• atlas – The atlas to dump

• directory – The directory to dump the atlas to

• name – The name of the atlas

33.14 Performance Information

class arcade.PerfGraph(width: int, height: int, graph_data: str = 'FPS', update_rate: float = 0.1,
background_color: Tuple[int, int, int, int] = (0, 0, 0, 255), data_line_color: Tuple[int,
int, int, int] = (255, 255, 255, 255), axis_color: Tuple[int, int, int, int] = (155, 135, 12,
255), grid_color: Tuple[int, int, int, int] = (155, 135, 12, 255), font_color: Tuple[int,
int, int, int] = (255, 255, 255, 255), font_size: int = 10, y_axis_num_lines: int = 4,
view_y_scale_step: float = 20.0)

Bases: Sprite

An auto-updating line chart of FPS or event handler execution times.

You must use arcade.enable_timings() to turn on performance tracking for the chart to display data.

Aside from instantiation and updating the chart, this class behaves like other arcade.Sprite instances. You
can use it with SpriteList normally. See performance_statistics_example for an example of how to use this
class.

Unlike other Sprite instances, this class neither loads an arcade.Texture nor accepts one as a constructor
argument. Instead, it creates a new internal Texture instance. The chart is automatically redrawn to this internal
Texture every update_rate seconds.

Parameters
• width – The width of the chart texture in pixels

• height – The height of the chart texture in pixels

• graph_data – The pyglet event handler or statistic to track

• update_rate – How often the graph updates, in seconds

• background_color – The background color of the chart

• data_line_color – Color of the line tracking drawn

• axis_color – The color to draw the x & y axes in

• font_color – The color of the label font

33.14. Performance Information 469

https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

Python Arcade Library, Release 3.0.0.dev26

• font_size – The size of the label font in points

• y_axis_num_lines – How many grid lines should be used to divide the y scale of the graph.

• view_y_scale_step – The graph’s view area will be scaled to a multiple of this value to
fit to the data currently displayed.

remove_from_sprite_lists()

Remove the sprite from all lists and cancel the update event.

Returns
update_graph(delta_time: float)

Update the graph by redrawing the internal texture data.

Warning: You do not need to call this method! It will be called automatically!

Parameters
delta_time – Elapsed time in seconds. Passed by the pyglet scheduler.

axis_color

background_color

boundary_bottom: float | None

boundary_left: float | None

boundary_right: float | None

boundary_top: float | None

change_angle: float

cur_texture_index: int

font_color

font_size

force

grid_color

guid: str | None

physics_engines: List[Any]

textures: List[Texture]

arcade.clear_timings()→ None
Reset the count & average time for each event type to zero.

Performance tracking must be enabled with arcade.enable_timings() before calling this function.

See performance_statistics_example for an example of how to use function.

470 Chapter 33. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

Python Arcade Library, Release 3.0.0.dev26

arcade.disable_timings()→ None
Disable collection of timing information.

Performance tracking must be enabled with arcade.enable_timings() before calling this function.

arcade.enable_timings(max_history: int = 100)→ None
Enable recording of performance information.

This function must be called before using any other performance features, except for arcade.
timings_enabled(), which can be called at any time.

See performance_statistics_example for an example of how to use function.

Parameters
max_history – How many frames to keep performance info for.

arcade.get_fps(frame_count: int = 60)→ float
Get the FPS over the last frame_count frames.

Performance tracking must be enabled with arcade.enable_timings() before calling this function.

To get the FPS over the last 30 frames, you would pass 30 instead of the default 60.

See performance_statistics_example for an example of how to use function.

Parameters
frame_count – How many frames to calculate the FPS over.

arcade.get_timings()→ Dict
Get a dict of the current dispatch event timings.

Performance tracking must be enabled with arcade.enable_timings() before calling this function.

Returns
A dict of event timing data, consisting of counts and average handler duration.

arcade.print_timings()

Print event handler statistics to stdout as a table.

Performance tracking must be enabled with arcade.enable_timings() before calling this function.

See performance_statistics_example for an example of how to use function.

The statistics consist of:

• how many times each registered event was called

• the average time for handling each type of event in seconds

The table looks something like:

Event Count Average Time
-------------- ----- ------------
on_update 60 0.0000
on_mouse_enter 1 0.0000
on_mouse_motion 39 0.0000
on_expose 1 0.0000
on_draw 60 0.0020

arcade.timings_enabled()→ bool
Return true if timings are enabled, false otherwise.

This function can be used at any time to check if timings are enabled. See arcade.enable_timings() for
more information.

33.14. Performance Information 471

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#bool

Python Arcade Library, Release 3.0.0.dev26

Returns
Whether timings are currently enabled.

33.15 Physics Engines

class arcade.PymunkException

Bases: Exception

Exception raised for errors in the PymunkPhysicsEngine.

class arcade.PymunkPhysicsEngine(gravity=(0, 0), damping: float = 1.0, maximum_incline_on_ground: float
= 0.708)

Bases:

Pymunk Physics Engine

Parameters
• gravity – The direction where gravity is pointing

• damping – The amount of speed which is kept to the next tick. A value of 1.0 means no
speed loss, while 0.9 has 10% loss of speed etc.

• maximum_incline_on_ground – The maximum incline the ground can have, before
is_on_ground() becomes False default = 0.708 or a little bit over 45° angle

add_collision_handler(first_type: str, second_type: str, begin_handler: Callable | None = None,
pre_handler: Callable | None = None, post_handler: Callable | None = None,
separate_handler: Callable | None = None)

Add code to handle collisions between objects.

add_sprite(sprite: Sprite, mass: float = 1, friction: float = 0.2, elasticity: float | None = None,
moment_of_inertia: float | None = None, body_type: int = 0, damping: float | None = None,
gravity: Vec2d | Tuple[float, float] | Vec2 | None = None, max_velocity: int | None = None,
max_horizontal_velocity: int | None = None, max_vertical_velocity: int | None = None, radius:
float = 0, collision_type: str | None = 'default')

Add a sprite to the physics engine.

Parameters
• sprite – The sprite to add.

• mass – The mass of the object. Defaults to 1.

• friction – The friction the object has. Defaults to 0.2.

• elasticity – How bouncy this object is. 0 is no bounce. Values of 1.0 and higher may
behave badly.

• moment_of_inertia – The moment of inertia, or force needed to change angular momen-
tum. Providing infinite makes this object stuck in its rotation.

• body_type – The type of the body. Defaults to Dynamic, meaning, the body can move,
rotate etc. Providing STATIC makes it fixed to the world.

• damping – See class docs.

• gravity – See class docs.

• max_velocity – The maximum velocity of the object.

472 Chapter 33. API Reference

https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://pyglet.readthedocs.io/en/latest/modules/math.html#pyglet.math.Vec2
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

Python Arcade Library, Release 3.0.0.dev26

• max_horizontal_velocity – Maximum velocity on the x axis in pixels.

• max_vertical_velocity – Maximum velocity on the y axis in pixels.

• radius – Radius for the shape created for the sprite in pixels.

• collision_type – Assign a name to the sprite, use this name when adding collision
handler.

add_sprite_list(sprite_list, mass: float = 1, friction: float = 0.2, elasticity: float | None = None,
moment_of_inertia: float | None = None, body_type: int = 0, damping: float | None =
None, collision_type: str | None = None)

Add all sprites in a sprite list to the physics engine.

apply_force(sprite: Sprite, force: Tuple[float, float])
Apply force to a Sprite.

apply_impulse(sprite: Sprite, impulse: Tuple[float, float])
Apply an impulse force on a sprite

apply_opposite_running_force(sprite: Sprite)
If a sprite goes left while on top of a dynamic sprite, that sprite should get pushed to the right.

check_grounding(sprite: Sprite)
See if the player is on the ground. Used to see if we can jump.

get_physics_object(sprite: Sprite)→ PymunkPhysicsObject
Get the shape/body for a sprite.

get_sprite_for_shape(shape: Shape | None)→ Sprite | None
Given a shape, what sprite is associated with it?

get_sprites_from_arbiter(arbiter: Arbiter)→ Tuple[Sprite | None, Sprite | None]
Given a collision arbiter, return the sprites associated with the collision.

is_on_ground(sprite: Sprite)→ bool
Return true of sprite is on top of something.

remove_sprite(sprite: Sprite)
Remove a sprite from the physics engine.

resync_sprites()

Set visual sprites to be the same location as physics engine sprites. Call this after stepping the pymunk
physics engine

set_friction(sprite: Sprite, friction: float)
Apply force to a Sprite.

set_horizontal_velocity(sprite: Sprite, velocity: float)
Set a sprite’s velocity

set_position(sprite: Sprite, position: Vec2d | Tuple[float, float])
Apply an impulse force on a sprite

set_rotation(sprite: Sprite, rotation: float)

set_velocity(sprite: Sprite, velocity: Tuple[float, float])
Apply an impulse force on a sprite

33.15. Physics Engines 473

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Python Arcade Library, Release 3.0.0.dev26

step(delta_time: float = 0.016666666666666666, resync_sprites: bool = True)
Tell the physics engine to perform calculations.

Parameters
• delta_time – Time to move the simulation forward. Keep this value constant, do not use

varying values for each step.

• resync_sprites – Resynchronize Arcade graphical sprites to be at the same location as
their Pymunk counterparts. If running multiple steps per frame, set this to false for the first
steps, and true for the last step that’s part of the update.

DYNAMIC = 0

KINEMATIC = 1

MOMENT_INF = inf

STATIC = 2

class arcade.PymunkPhysicsObject(body: Body | None = None, shape: Shape | None = None)
Bases:

Object that holds pymunk body/shape for a sprite.

class arcade.PhysicsEnginePlatformer(player_sprite: Sprite, platforms: SpriteList | Iterable[SpriteList] |
None = None, gravity_constant: float = 0.5, ladders: SpriteList |
Iterable[SpriteList] | None = None, walls: SpriteList |
Iterable[SpriteList] | None = None)

Bases:

Simplistic physics engine for use in a platformer. It is easier to get started with this engine than more sophisticated
engines like PyMunk.

Note: Sending static sprites to the walls parameter and moving sprites to the platforms parameter will have
very extreme benefits to performance.

Note: This engine will automatically move any Sprites sent to the platforms parameter between a
boundary_top and boundary_bottom or a boundary_left and boundary_right attribute of the Sprite.
You need only set an initial change_x or change_y on it.

Parameters
• player_sprite – The moving sprite

• platforms (Optional[Union[SpriteList, Iterable[SpriteList]]]) – Sprites
the player can’t move through. This value should only be used for moving Sprites. Static
sprites should be sent to the walls parameter.

• gravity_constant – Downward acceleration per frame

• ladders (Optional[Union[SpriteList, Iterable[SpriteList]]]) – Ladders the
user can climb on

• walls (Optional[Union[SpriteList, Iterable[SpriteList]]]) – Sprites the
player can’t move through. This value should only be used for static Sprites. Moving sprites
should be sent to the platforms parameter.

can_jump(y_distance: float = 5)→ bool
Method that looks to see if there is a floor under the player_sprite. If there is a floor, the player can jump
and we return a True.

474 Chapter 33. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

Python Arcade Library, Release 3.0.0.dev26

Returns
True if there is a platform below us

disable_multi_jump()

Disables multi-jump.

Calling this function also removes the requirement to call increment_jump_counter() every time the player
jumps.

enable_multi_jump(allowed_jumps: int)
Enables multi-jump. allowed_jumps should include the initial jump. (1 allows only a single jump, 2 enables
double-jump, etc)

If you enable multi-jump, you MUST call increment_jump_counter() every time the player jumps. Other-
wise they can jump infinitely.

Parameters
allowed_jumps –

increment_jump_counter()

Updates the jump counter for multi-jump tracking

is_on_ladder()

Return ‘true’ if the player is in contact with a sprite in the ladder list.

jump(velocity: int)
Have the character jump.

update()

Move everything and resolve collisions.

Returns
SpriteList with all sprites contacted. Empty list if no sprites.

class arcade.PhysicsEngineSimple(player_sprite: Sprite, walls: SpriteList[BasicSprite] |
Iterable[SpriteList[BasicSprite]])

Bases:

Simplistic physics engine for use in games without gravity, such as top-down games. It is easier to get started
with this engine than more sophisticated engines like PyMunk.

Parameters
• player_sprite – The moving sprite

• walls (Union[SpriteList, Iterable[SpriteList]) – The sprites it can’t move
through. This can be one or multiple spritelists.

update()

Move everything and resolve collisions.

Returns
SpriteList with all sprites contacted. Empty list if no sprites.

33.15. Physics Engines 475

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Iterable

Python Arcade Library, Release 3.0.0.dev26

33.16 Misc Utility Functions

class arcade.utils.ByteRangeError(var_name: str, value: int)
Bases: IntOutsideRangeError

An int was outside the range of 0 to 255 inclusive

Parameters
• var_name – the name of the variable or argument

• value – the value to fall outside the expected range

class arcade.utils.FloatOutsideRangeError(var_name: str, value: float, lower: float, upper: float)
Bases: OutsideRangeError

A float value was outside an expected range

Parameters
• var_name – the name of the variable or argument

• value – the value to fall outside the expected range

• lower – the lower bound, inclusive, of the range

• upper – the upper bound, inclusive, of the range

class arcade.utils.IntOutsideRangeError(var_name: str, value: int, lower: int, upper: int)
Bases: OutsideRangeError

An integer was outside an expected range

This class was originally intended to assist deserialization from data packed into ints, such as Color.

Parameters
• var_name – the name of the variable or argument

• value – the value to fall outside the expected range

• lower – the lower bound, inclusive, of the range

• upper – the upper bound, inclusive, of the range

class arcade.utils.NormalizedRangeError(var_name: str, value: float)
Bases: FloatOutsideRangeError

A float was not between 0.0 and 1.0, inclusive

Note that normalized floats should not normally be bound-checked as before drawing as this is taken care of on
the GPU side.

The exceptions to this are when processing data on the Python side, especially when it is cheaper to bound check
two floats than call clamping functions.

Parameters
• var_name – the name of the variable or argument

• value – the value to fall outside the expected range

476 Chapter 33. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

Python Arcade Library, Release 3.0.0.dev26

class arcade.utils.OutsideRangeError(var_name: str, value: _CT , lower: _CT , upper: _CT)
Bases: ValueError

Raised when a value is outside and expected range

This class and its subclasses are intended to be arcade-internal helpers to clearly signal exactly what went wrong.
Each helps type annotate and template a string describing exactly what went wrong.

Parameters
• var_name – the name of the variable or argument

• value – the value to fall outside the expected range

• lower – the lower bound, inclusive, of the range

• upper – the upper bound, inclusive, of the range

class arcade.utils.PerformanceWarning

Bases: Warning

Use this for issuing performance warnings.

class arcade.utils.ReplacementWarning

Bases: Warning

Use this for issuing warnings about naming and functionality changes.

arcade.utils.generate_uuid_from_kwargs(**kwargs)→ str
Given key/pair combos, returns a string in uuid format. Such as text=’hi’, size=32 it will return “text-hi-size-32”.
Called with no parameters, id does NOT return a random unique id.

arcade.utils.get_raspberry_pi_info()→ Tuple[bool, str, str]
Determine if the host is a raspberry pi with additional info.

Returns
3 component tuple. bool (is host a raspi) str (architecture) str (model name)

arcade.utils.is_raspberry_pi()→ bool
Determine if the host is a raspberry pi.

Returns
bool

arcade.utils.warning(warning_type: Type[Warning], message: str = '', **kwargs)

arcade.configure_logging(level: int | None = None)
Set up basic logging. :param level: The log level. Defaults to DEBUG.

33.17 Geometry Support

arcade.geometry.are_lines_intersecting(p1: Tuple[float, float], q1: Tuple[float, float], p2: Tuple[float,
float], q2: Tuple[float, float])→ bool

Given two lines defined by points p1, q1 and p2, q2, the function returns true if the two lines intersect.

Parameters
• p1 – Point 1

• q1 – Point 2

33.17. Geometry Support 477

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#Warning
https://docs.python.org/3/library/exceptions.html#Warning
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/exceptions.html#Warning
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

Python Arcade Library, Release 3.0.0.dev26

• p2 – Point 3

• q2 – Point 4

Returns
True or false depending if lines intersect

arcade.geometry.are_polygons_intersecting(poly_a: Sequence[Tuple[float, float]], poly_b:
Sequence[Tuple[float, float]])→ bool

Return True if two polygons intersect.

Parameters
• poly_a – List of points that define the first polygon.

• poly_b – List of points that define the second polygon.

Returns
True or false depending if polygons intersect

arcade.geometry.get_triangle_orientation(p: Tuple[float, float], q: Tuple[float, float], r: Tuple[float,
float])→ int

Find the orientation of a triangle defined by (p, q, r)

The function returns following integer values
• 0 –> p, q and r are collinear

• 1 –> Clockwise

• 2 –> Counterclockwise

Parameters
• p – Point 1

• q – Point 2

• r – Point 3

Returns
0, 1, or 2 depending on orientation

arcade.geometry.is_point_in_box(p: Tuple[float, float], q: Tuple[float, float], r: Tuple[float, float])→ bool
Return True if point q is inside the box defined by p and r.

Parameters
• p – Point 1

• q – Point 2

• r – Point 3

Returns
True or false depending if points are collinear

arcade.geometry.is_point_in_polygon(x: float, y: float, polygon: Sequence[Tuple[float, float]])→ bool
Checks if a point is inside a polygon of three or more points.

Parameters
• x – X coordinate of point

• y – Y coordinate of point

478 Chapter 33. API Reference

https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

Python Arcade Library, Release 3.0.0.dev26

• polygon_point_list – List of points that define the polygon.

Returns
True or false depending if point is inside polygon

33.18 Game Controller Support

class arcade.ControllerManager

Bases: ControllerManager

A ControllerManager provides an interface for handling connect/disconnect events.

Please see Pyglet docs: https://pyglet.readthedocs.io/en/latest/programming_guide/input.html#
controllermanager

arcade.get_controllers()

This returns a list of controllers, it is synonymous with calling pyglet.input.get_controllers()

33.19 Joystick Support

arcade.get_game_controllers()→ List[Joystick]
Get a list of all the game controllers

Returns
List of game controllers

arcade.get_joysticks()→ List[Joystick]
Get a list of all the game controllers

This is an alias of get_game_controllers, which is better worded.

Returns
List of game controllers

33.20 Window and View

class arcade.NoOpenGLException

Bases: Exception

Exception when we can’t get an OpenGL 3.3+ context

class arcade.View(window: Window | None = None)
Bases:

Support different views/screens in a window.

add_section(section, at_index: int | None = None, at_draw_order: int | None = None)→ None
Adds a section to the view Section Manager.

Parameters
• section – the section to add to this section manager

• at_index – inserts the section at that index for event capture and update events. If None
at the end

33.18. Game Controller Support 479

https://pyglet.readthedocs.io/en/latest/modules/input.html#pyglet.input.ControllerManager
https://pyglet.readthedocs.io/en/latest/programming_guide/input.html#controllermanager
https://pyglet.readthedocs.io/en/latest/programming_guide/input.html#controllermanager
https://docs.python.org/3/library/typing.html#typing.List
https://pyglet.readthedocs.io/en/latest/modules/input.html#pyglet.input.Joystick
https://docs.python.org/3/library/typing.html#typing.List
https://pyglet.readthedocs.io/en/latest/modules/input.html#pyglet.input.Joystick
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

Python Arcade Library, Release 3.0.0.dev26

• at_draw_order – inserts the section in a specific draw order. Overwrites sec-
tion.draw_order

clear(color: Tuple[int, int, int, int] | Tuple[float, float, float, float] | None = None, normalized: bool = False,
viewport: Tuple[int, int, int, int] | None = None)

Clears the View’s Window with the configured background color set through arcade.Window.
background_color.

Parameters
• color – (Optional) override the current background color with one of the following:

1. A Color instance

2. A 4-length RGBA tuple of byte values (0 to 255)

3. A 4-length RGBA tuple of normalized floats (0.0 to 1.0)

• normalized – If the color format is normalized (0.0 -> 1.0) or byte values

• viewport (Tuple[int, int, int, int]) – The viewport range to clear

on_draw()

Called when this view should draw

on_hide_view()

Called once when this view is hidden.

on_key_press(symbol: int, modifiers: int)
Override this function to add key press functionality.

Parameters
• symbol – Key that was hit

• modifiers – Bitwise ‘and’ of all modifiers (shift, ctrl, num lock) active during this event.
See Modifiers.

on_key_release(_symbol: int, _modifiers: int)
Override this function to add key release functionality.

Parameters
• _symbol – Key that was hit

• _modifiers – Bitwise ‘and’ of all modifiers (shift, ctrl, num lock) active during this event.
See Modifiers.

on_mouse_drag(x: int, y: int, dx: int, dy: int, _buttons: int, _modifiers: int)
Override this function to add mouse button functionality.

Parameters
• x – x position of mouse

• y – y position of mouse

• dx – Change in x since the last time this method was called

• dy – Change in y since the last time this method was called

• _buttons – Which button is pressed

• _modifiers – Bitwise ‘and’ of all modifiers (shift, ctrl, num lock) active during this event.
See Modifiers.

480 Chapter 33. API Reference

https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Python Arcade Library, Release 3.0.0.dev26

on_mouse_enter(x: int, y: int)
Called when the mouse was moved into the window. This event will not be triggered if the mouse is
currently being dragged.

Parameters
• x – x position of mouse

• y – y position of mouse

on_mouse_leave(x: int, y: int)
Called when the mouse was moved outside of the window. This event will not be triggered if the mouse
is currently being dragged. Note that the coordinates of the mouse pointer will be outside of the window
rectangle.

Parameters
• x – x position of mouse

• y – y position of mouse

on_mouse_motion(x: int, y: int, dx: int, dy: int)
Override this function to add mouse functionality.

Parameters
• x – x position of mouse

• y – y position of mouse

• dx – Change in x since the last time this method was called

• dy – Change in y since the last time this method was called

on_mouse_press(x: int, y: int, button: int, modifiers: int)
Override this function to add mouse button functionality.

Parameters
• x – x position of the mouse

• y – y position of the mouse

• button – What button was hit. One of: arcade.MOUSE_BUTTON_LEFT, ar-
cade.MOUSE_BUTTON_RIGHT, arcade.MOUSE_BUTTON_MIDDLE

• modifiers – Bitwise ‘and’ of all modifiers (shift, ctrl, num lock) active during this event.
See Modifiers.

on_mouse_release(x: int, y: int, button: int, modifiers: int)
Override this function to add mouse button functionality.

Parameters
• x – x position of mouse

• y – y position of mouse

• button – What button was hit. One of: arcade.MOUSE_BUTTON_LEFT, ar-
cade.MOUSE_BUTTON_RIGHT, arcade.MOUSE_BUTTON_MIDDLE

• modifiers – Bitwise ‘and’ of all modifiers (shift, ctrl, num lock) active during this event.
See Modifiers.

33.20. Window and View 481

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Python Arcade Library, Release 3.0.0.dev26

on_mouse_scroll(x: int, y: int, scroll_x: int, scroll_y: int)
User moves the scroll wheel.

Parameters
• x – x position of mouse

• y – y position of mouse

• scroll_x – ammout of x pixels scrolled since last call

• scroll_y – ammout of y pixels scrolled since last call

on_resize(width: int, height: int)
Called when the window is resized while this view is active. on_resize() is also called separately. By
default this method does nothing and can be overridden to handle resize logic.

on_show()

Deprecated. Use on_show_view() instead.

on_show_view()

Called once when the view is shown.

See also:
on_hide_view()

on_update(delta_time: float)
To be overridden

has_sections

Return if the View has sections

section_manager

lazy instantiation of the section manager

class arcade.Window(width: int = 800, height: int = 600, title: str | None = 'Arcade Window', fullscreen: bool =
False, resizable: bool = False, update_rate: float = 0.016666666666666666, antialiasing:
bool = True, gl_version: Tuple[int, int] = (3, 3), screen: Screen | None = None, style: str |
None = None, visible: bool = True, vsync: bool = False, gc_mode: str = 'context_gc',
center_window: bool = False, samples: int = 4, enable_polling: bool = True, gl_api: str =
'gl', draw_rate: float = 0.016666666666666666)

Bases: BaseWindow

The Window class forms the basis of most advanced games that use Arcade. It represents a window on the screen,
and manages events.

Parameters
• width – Window width

• height – Window height

• title – Title (appears in title bar)

• fullscreen – Should this be full screen?

• resizable – Can the user resize the window?

• update_rate – How frequently to run the on_update event.

• draw_rate – How frequently to run the on_draw event. (this is the FPS limit)

• antialiasing – Should OpenGL’s anti-aliasing be enabled?

482 Chapter 33. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://pyglet.readthedocs.io/en/latest/modules/canvas.html#pyglet.canvas.Screen
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://pyglet.readthedocs.io/en/latest/modules/window.html#pyglet.window.Window

Python Arcade Library, Release 3.0.0.dev26

• gl_version – What OpenGL version to request. This is (3, 3) by default and can be
overridden when using more advanced OpenGL features.

• screen – Pass a pyglet Screen to request the window be placed on it. See pyglet’s window
size & position guide to learn more.

• style – Request a non-default window style, such as borderless. Some styles only work in
certain situations. See pyglet’s guide to window style to learn more.

• visible – Should the window be visible immediately

• vsync – Wait for vertical screen refresh before swapping buffer This can make animations
and movement look smoother.

• gc_mode – Decides how OpenGL objects should be garbage collected (“context_gc” (de-
fault) or “auto”)

• center_window – If true, will center the window.

• samples – Number of samples used in antialiasing (default 4). Usually this is 2, 4, 8 or 16.

• enable_polling – Enabled input polling capability. This makes the keyboard and mouse
attributes available for use.

activate()

Activate this window.

center_window()→ None
Center the window on the screen.

clear(color: Tuple[int, int, int, int] | Tuple[float, float, float, float] | None = None, normalized: bool = False,
viewport: Tuple[int, int, int, int] | None = None)

Clears the window with the configured background color set through arcade.Window.
background_color.

Parameters
• color – (Optional) override the current background color with one of the following:

1. A Color instance

2. A 4-length RGBA tuple of byte values (0 to 255)

3. A 4-length RGBA tuple of normalized floats (0.0 to 1.0)

• normalized – If the color format is normalized (0.0 -> 1.0) or byte values

• viewport (Tuple[int, int, int, int]) – The viewport range to clear

close()

Close the Window.

dispatch_events()

Dispatch events

flip()

Window framebuffers normally have a back and front buffer. This method makes the back buffer visible
and hides the front buffer. A frame is rendered into the back buffer, so this method displays the frame we
currently worked on.

This method also garbage collect OpenGL resources before swapping the buffers.

33.20. Window and View 483

https://pyglet.readthedocs.io/en/latest/modules/canvas.html#pyglet.canvas.Screen
https://pyglet.readthedocs.io/en/latest/programming_guide/windowing.html#size-and-position
https://pyglet.readthedocs.io/en/latest/programming_guide/windowing.html#size-and-position
https://pyglet.readthedocs.io/en/latest/programming_guide/windowing.html#window-style
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Python Arcade Library, Release 3.0.0.dev26

get_location()→ Tuple[int, int]
Return the X/Y coordinates of the window

Returns
x, y of window location

get_size()→ Tuple[int, int]
Get the size of the window.

Returns
(width, height)

get_system_mouse_cursor(name)
Get the system mouse cursor

get_viewport()→ Tuple[float, float, float, float]
Get the viewport. (What coordinates we can see.)

hide_view()

Hide the currently active view (if any) returning us back to on_draw and on_update functions in the
window.

This is not necessary to call if you are switching views. Simply call show_view again.

maximize()

Maximize the window.

minimize()

Minimize the window.

on_draw()

Override this function to add your custom drawing code.

on_key_press(symbol: int, modifiers: int)
Called once when a key gets pushed down.

Override this function to add key press functionality.

Tip: If you want the length of key presses to affect gameplay, you also need to override
on_key_release().

Parameters
• symbol – Key that was just pushed down

• modifiers – Bitwise ‘and’ of all modifiers (shift, ctrl, num lock) active during this event.
See Modifiers.

on_key_release(symbol: int, modifiers: int)
Called once when a key gets released.

Override this function to add key release functionality.

Situations that require handling key releases include:

• Rythm games where a note must be held for a certain amount of time

• ‘Charging up’ actions that change strength depending on how long a key was pressed

• Showing which keys are currently pressed down

484 Chapter 33. API Reference

https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Python Arcade Library, Release 3.0.0.dev26

Parameters
• symbol – Key that was just released

• modifiers – Bitwise ‘and’ of all modifiers (shift, ctrl, num lock) active during this event.
See Modifiers.

on_mouse_drag(x: int, y: int, dx: int, dy: int, buttons: int, modifiers: int)
Called repeatedly while the mouse moves with a button down.

Override this function to handle dragging.

Parameters
• x – x position of mouse

• y – y position of mouse

• dx – Change in x since the last time this method was called

• dy – Change in y since the last time this method was called

• buttons – Which button is pressed

• modifiers – Bitwise ‘and’ of all modifiers (shift, ctrl, num lock) active during this event.
See Modifiers.

on_mouse_enter(x: int, y: int)
Called once whenever the mouse enters the window area on screen.

This event will not be triggered if the mouse is currently being dragged.

Parameters
• x –

• y –

on_mouse_leave(x: int, y: int)
Called once whenever the mouse leaves the window area on screen.

This event will not be triggered if the mouse is currently being dragged. Note that the coordinates of the
mouse pointer will be outside of the window rectangle.

Parameters
• x –

• y –

on_mouse_motion(x: int, y: int, dx: int, dy: int)
Called repeatedly while the mouse is moving over the window.

Override this function to respond to changes in mouse position.

Parameters
• x – x position of mouse within the window in pixels

• y – y position of mouse within the window in pixels

• dx – Change in x since the last time this method was called

• dy – Change in y since the last time this method was called

33.20. Window and View 485

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Python Arcade Library, Release 3.0.0.dev26

on_mouse_press(x: int, y: int, button: int, modifiers: int)
Called once whenever a mouse button gets pressed down.

Override this function to handle mouse clicks. For an example of how to do this, see arcade’s built-in
aiming and shooting bullets demo.

See also:
on_mouse_release()

Parameters
• x – x position of the mouse

• y – y position of the mouse

• button – What button was pressed. This will always be one of the following:

– arcade.MOUSE_BUTTON_LEFT

– arcade.MOUSE_BUTTON_RIGHT

– arcade.MOUSE_BUTTON_MIDDLE

• modifiers – Bitwise ‘and’ of all modifiers (shift, ctrl, num lock) active during this event.
See Modifiers.

on_mouse_release(x: int, y: int, button: int, modifiers: int)
Called once whenever a mouse button gets released.

Override this function to respond to mouse button releases. This may be useful when you want to use the
duration of a mouse click to affect gameplay.

Parameters
• x – x position of mouse

• y – y position of mouse

• button – What button was hit. One of: arcade.MOUSE_BUTTON_LEFT, ar-
cade.MOUSE_BUTTON_RIGHT, arcade.MOUSE_BUTTON_MIDDLE

• modifiers – Bitwise ‘and’ of all modifiers (shift, ctrl, num lock) active during this event.
See Modifiers.

on_mouse_scroll(x: int, y: int, scroll_x: int, scroll_y: int)
Called repeatedly while a mouse scroll wheel moves.

Override this function to respond to scroll events. The scroll arguments may be positive or negative to
indicate direction, but the units are unstandardized. How many scroll steps you recieve may vary wildly
between computers depending a number of factors, including system settings and the input devices used
(i.e. mouse scrollwheel, touchpad, etc).

Warning: Not all users can scroll easily!

Only some input devices support horizontal scrolling. Standard vertical scrolling is common, but some
laptop touchpads are hard to use.

This means you should be careful about how you use scrolling. Consider making it optional to maximize
the number of people who can play your game!

Parameters

486 Chapter 33. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Python Arcade Library, Release 3.0.0.dev26

• x – x position of mouse

• y – y position of mouse

• scroll_x – number of steps scrolled horizontally since the last call of this function

• scroll_y – number of steps scrolled vertically since the last call of this function

on_resize(width: int, height: int)
Override this function to add custom code to be called any time the window is resized. The main respon-
sibility of this method is updating the projection and the viewport.

If you are not changing the default behavior when overriding, make sure you call the parent’s on_resize
first:

def on_resize(self, width: int, height: int):
super().on_resize(width, height)
Add extra resize logic here

Parameters
• width – New width

• height – New height

on_update(delta_time: float)
Move everything. Perform collision checks. Do all the game logic here.

Parameters
delta_time – Time interval since the last time the function was called.

run()→ None
Run the main loop. After the window has been set up, and the event hooks are in place, this is usually one
of the last commands on the main program. This is a blocking function starting pyglet’s event loop meaning
it will start to dispatch events such as on_draw and on_update.

set_caption(caption)
Set the caption for the window.

set_draw_rate(rate: float)
Set how often the on_draw function should be run. For example, set.set_draw_rate(1 / 60) will set the draw
rate to 60 frames per second.

set_exclusive_keyboard(exclusive=True)
Capture all keyboard input.

set_exclusive_mouse(exclusive=True)
Capture the mouse.

set_fullscreen(fullscreen: bool = True, screen: Window | None = None, mode: ScreenMode | None =
None, width: float | None = None, height: float | None = None)

Set if we are full screen or not.

Parameters
• fullscreen –

• screen – Which screen should we display on? See get_screens()

33.20. Window and View 487

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None

Python Arcade Library, Release 3.0.0.dev26

• mode – The screen will be switched to the given mode. The mode must have been obtained
by enumerating Screen.get_modes. If None, an appropriate mode will be selected from the
given width and height.

• width –

• height –

set_location(x, y)
Set location of the window.

set_max_size(width: int, height: int)
Wrap the Pyglet window call to set maximum size

Parameters
• width – width in pixels.

• height – height in pixels.

Raises ValueError
set_maximum_size(width, height)

Set largest window size.

set_min_size(width: int, height: int)
Wrap the Pyglet window call to set minimum size

Parameters
• width – width in pixels.

• height – height in pixels.

set_minimum_size(width: int, height: int)
Set smallest window size.

set_mouse_platform_visible(platform_visible=None)

Warning: You are probably looking for set_mouse_visible()!

This method was implemented to prevent PyCharm from displaying linter warnings. Most users will never
need to set platform-specific visibility as the defaults from pyglet will usually handle their needs automati-
cally.

For more information on what this means, see the documentation for pyglet.window.Window.
set_mouse_platform_visible().

set_mouse_visible(visible: bool = True)
Set whether to show the system’s cursor while over the window

By default, the system mouse cursor is visible whenever the mouse is over the window. To hide the cursor,
pass False to this function. Pass True to make the cursor visible again.

The window will continue receiving mouse events while the cursor is hidden, including movements and
clicks. This means that functions like on_mouse_motion() and t’on_mouse_press() will continue to
work normally.

You can use this behavior to visually replace the system mouse cursor with whatever you want. One example
is a game character that is always at the most recent mouse position in the window.

488 Chapter 33. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://pyglet.readthedocs.io/en/latest/modules/window.html#pyglet.window.Window.set_mouse_platform_visible
https://pyglet.readthedocs.io/en/latest/modules/window.html#pyglet.window.Window.set_mouse_platform_visible
https://docs.python.org/3/library/functions.html#bool

Python Arcade Library, Release 3.0.0.dev26

Note: Advanced users can try using system cursor state icons

It may be possible to use system icons representing cursor interaction states such as hourglasses or resize
arrows by using features arcade.Window inherits from the underlying pyglet window class. See the pyglet
overview on cursors for more information.

Parameters
visible – Whether to hide the system mouse cursor

set_size(width: int, height: int)
Ignore the resizable flag and set the size

Parameters
• width –

• height –

set_update_rate(rate: float)
Set how often the on_update function should be dispatched. For example, self.set_update_rate(1 / 60) will
set the update rate to 60 times per second.

Parameters
rate – Update frequency in seconds

set_viewport(left: float, right: float, bottom: float, top: float)
Set the viewport. (What coordinates we can see. Used to scale and/or scroll the screen).

See arcade.set_viewport() for more detailed information.

Parameters
• left –

• right –

• bottom –

• top –

set_visible(visible: bool = True)
Set if the window is visible or not. Normally, a program’s window is visible.

Parameters
visible –

set_vsync(vsync: bool)
Set if we sync our draws to the monitors vertical sync rate.

show_view(new_view: View)
Select the view to show in the next frame. This is not a blocking call showing the view. Your code will
continue to run after this call and the view will appear in the next dispatch of on_update/on_draw`.

Calling this function is the same as setting the arcade.Window.current_view attribute.

Parameters
new_view – View to show

switch_to()

Switch the this window.

33.20. Window and View 489

https://pyglet.readthedocs.io/en/master/programming_guide/mouse.html#changing-the-mouse-cursor
https://pyglet.readthedocs.io/en/master/programming_guide/mouse.html#changing-the-mouse-cursor
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Python Arcade Library, Release 3.0.0.dev26

test(frames: int = 10)
Used by unit test cases. Runs the event loop a few times and stops.

Parameters
frames –

use()

Bind the window’s framebuffer for rendering commands

background_color

Get or set the background color for this window. This affects what color the window will contain when
clear() is called.

Examples:

Use Arcade's built in Color values
window.background_color = arcade.color.AMAZON

Set the background color with a custom Color instance
MY_RED = arcade.types.Color(255, 0, 0)
window.background_color = MY_RED

Set the backgrund color directly from an RGBA tuple
window.background_color = 255, 0, 0, 255

(Discouraged)
Set the background color directly from an RGB tuple
RGB tuples will assume 255 as the opacity / alpha value
window.background_color = 255, 0, 0

Type
Color

ctx

The OpenGL context for this window.

Type
arcade.ArcadeContext

current_view

This property returns the current view being shown. To set a different view, call the arcade.Window.
show_view() method.

headless

If this is a headless window

Type
bool

arcade.get_screens()→ List
Return a list of screens. So for a two-monitor setup, this should return a list of two screens. Can be used with
arcade.Window to select which window we full-screen on.

Returns
List of screens, one for each monitor.

490 Chapter 33. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List

Python Arcade Library, Release 3.0.0.dev26

arcade.open_window(width: int, height: int, window_title: str | None = None, resizable: bool = False,
antialiasing: bool = True)→ Window

This function opens a window. For ease-of-use we assume there will only be one window, and the programmer
does not need to keep a handle to the window. This isn’t the best architecture, because the window handle is
stored in a global, but it makes things easier for programmers if they don’t have to track a window pointer.

Parameters
• width – Width of the window.

• height – Height of the window.

• window_title – Title of the window.

• resizable – Whether the user can resize the window.

• antialiasing – Smooth the graphics?

Returns
Handle to window

arcade.close_window()→ None
Closes the current window, and then runs garbage collection. The garbage collection is necessary to prevent
crashing when opening/closing windows rapidly (usually during unit tests).

arcade.exit()→ None
Exits the application.

arcade.finish_render()

Swap buffers and displays what has been drawn.

Warning: If you are extending the Window class, this function should not be called. The event loop will
automatically swap the window framebuffer for you after on_draw.

arcade.get_display_size(screen_id: int = 0)→ Tuple[int, int]
Return the width and height of a monitor.

The size of the primary monitor is returned by default.

Parameters
screen_id – The screen number

Returns
Tuple containing the width and height of the screen

arcade.get_window()→ Window
Return a handle to the current window.

Returns
Handle to the current window.

arcade.pause(seconds: float)→ None
Pause for the specified number of seconds. This is a convenience function that just calls time.sleep().

Warning: This is mostly used for unit tests and is not likely to be a good solution for pausing an application
or game.

33.20. Window and View 491

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None

Python Arcade Library, Release 3.0.0.dev26

Parameters
seconds – Time interval to pause in seconds.

arcade.run()

Run the main loop. After the window has been set up, and the event hooks are in place, this is usually one of
the last commands on the main program. This is a blocking function starting pyglet’s event loop meaning it will
start to dispatch events such as on_draw and on_update.

arcade.schedule(function_pointer: Callable, interval: float)
Schedule a function to be automatically called every interval seconds. The function/callable needs to take
a delta time argument similar to on_update. This is a float representing the number of seconds since it was
scheduled or called.

A function can be scheduled multiple times, but this is not recommended.

Warning: Scheduled functions should always be unscheduled using arcade.unschedule(). Having
lingering scheduled functions will lead to crashes.

Example:

def some_action(delta_time):
print(delta_time)

Call the function every second
arcade.schedule(some_action, 1)
Unschedule

Parameters
• function_pointer – Pointer to the function to be called.

• interval – Interval to call the function (float or integer)

arcade.schedule_once(function_pointer: Callable, delay: float)
Schedule a function to be automatically called once after delay seconds. The function/callable needs to take
a delta time argument similar to on_update. This is a float representing the number of seconds since it was
scheduled or called.

Example:

def some_action(delta_time):
print(delta_time)

Call the function once after 1 second
arcade.schedule_one(some_action, 1)

Parameters
• function_pointer – Pointer to the function to be called.

• delay – Delay in seconds

492 Chapter 33. API Reference

https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#float

Python Arcade Library, Release 3.0.0.dev26

arcade.set_background_color(color: Tuple[int, int, int, int])→ None
Set the color arcade.Window.clear() will use when clearing the window. This only needs to be called when
the background color changes.

Note: A shorter and faster way to set background color is using arcade.Window.background_color.

Examples:

Use Arcade's built in color values
arcade.set_background_color(arcade.color.AMAZON)

Specify RGB value directly (red)
arcade.set_background_color((255, 0, 0))

Parameters
RGBA255 – List of 3 or 4 values in RGB/RGBA format.

arcade.set_viewport(left: float, right: float, bottom: float, top: float)→ None
This sets what coordinates the window will cover.

Tip: Beginners will want to use Camera. It provides easy to use support for common tasks such as screen shake
and movement to a destination.

If you are making a game with complex control over the viewport, this function can help.

By default, the lower left coordinate will be (0, 0), the top y coordinate will be the height of the window in
pixels, and the right x coordinate will be the width of the window in pixels.

Warning: Be careful of fractional or non-multiple values!

It is recommended to only set the viewport to integer values that line up with the pixels on the screen. Oth-
erwise, tiled pixel art may not line up well during render, creating rectangle artifacts.

Note: Window.on_resize calls set_viewport by default. If you want to set your own custom viewport
during the game, you may need to override the Window.on_resize method.

Note: For more advanced users

This functions sets the orthogonal projection used by shapes and sprites. It also updates the viewport to match the
current screen resolution. window.ctx.projection_2d (projection_2d()) and window.ctx.viewport
(viewport()) can be used to set viewport and projection separately.

Parameters
• left – Left-most (smallest) x value.

• right – Right-most (largest) x value.

• bottom – Bottom (smallest) y value.

33.20. Window and View 493

https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None

Python Arcade Library, Release 3.0.0.dev26

• top – Top (largest) y value.

arcade.set_window(window: 'Window' | None)→ None
Set a handle to the current window.

Parameters
window – Handle to the current window.

arcade.start_render()→ None
Clears the window.

More practical alternatives to this function is arcade.Window.clear() or arcade.View.clear().

arcade.unschedule(function_pointer: Callable)
Unschedule a function being automatically called.

Example:

def some_action(delta_time):
print(delta_time)

arcade.schedule(some_action, 1)
arcade.unschedule(some_action)

Parameters
function_pointer – Pointer to the function to be unscheduled.

class arcade.Section(left: int, bottom: int, width: int, height: int, *, name: str | None = None,
accept_keyboard_keys: bool | Iterable = True, accept_mouse_events: bool | Iterable =
True, prevent_dispatch: Iterable | None = None, prevent_dispatch_view: Iterable | None
= None, local_mouse_coordinates: bool = False, enabled: bool = True, modal: bool =
False, draw_order: int = 1)

Bases:

A Section represents a rectangular portion of the viewport Events are dispatched to the section based on it’s
position on the screen.

Parameters
• left – the left position of this section

• bottom – the bottom position of this section

• width – the width of this section

• height – the height of this section

• name – the name of this section

• accept_keyboard_keys (Union[bool, Iterable]) – whether or not this section cap-
tures keyboard keys through. keyboard events. If the param is an iterable means the
keyboard keys that are captured in press/release events: for example: [arcade.key.UP, ar-
cade.key.DOWN] will only capture this two keys

• accept_mouse_events (Union[bool, Iterable]) – whether or not this section cap-
tures mouse events. If the param is an iterable means the mouse events that are captured. for
example: [‘on_mouse_press’, ‘on_mouse_release’] will only capture this two events.

• prevent_dispatch – a list of event names that will not be dispatched to subsequent sec-
tions. You can pass None (default) or {True} to prevent the dispatch of all events.

494 Chapter 33. API Reference

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Python Arcade Library, Release 3.0.0.dev26

• prevent_dispatch_view – a list of event names that will not be dispatched to the view.
You can pass None (default) or {True} to prevent the dispatch of all events to the view.

• local_mouse_coordinates – if True the section mouse events will receive x, y coordinates
section related to the section dimensions and position (not related to the screen)

• enabled – if False the section will not capture any events

• modal – if True the section will be a modal section: will prevent updates and event captures
on other sections. Will also draw last (on top) but capture events first.

• draw_order – The order this section will have when on_draw is called. The lower the
number the earlier this will get draw. This can be different from the event capture order or
the on_update order which is defined by the insertion order.

get_xy_screen_relative(section_x: int, section_y: int)
Returns screen coordinates from section coordinates

get_xy_section_relative(screen_x: int, screen_y: int)
returns section coordinates from screen coordinates

mouse_is_on_top(x: int, y: int)→ bool
Check if the current mouse position is on top of this section

on_draw()

on_hide_section()

on_key_press(symbol: int, modifiers: int)

on_key_release(_symbol: int, _modifiers: int)

on_mouse_drag(x: int, y: int, dx: int, dy: int, _buttons: int, _modifiers: int)

on_mouse_enter(x: int, y: int)

on_mouse_leave(x: int, y: int)

on_mouse_motion(x: int, y: int, dx: int, dy: int)

on_mouse_press(x: int, y: int, button: int, modifiers: int)

on_mouse_release(x: int, y: int, button: int, modifiers: int)

on_mouse_scroll(x: int, y: int, scroll_x: int, scroll_y: int)

on_resize(width: int, height: int)

on_show_section()

on_update(delta_time: float)

overlaps_with(section: Section)→ bool
Checks if this section overlaps with another section

should_receive_mouse_event(x: int, y: int)→ bool
Check if the current section should receive a mouse event at a given position

bottom

The bottom edge of this section

33.20. Window and View 495

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

Python Arcade Library, Release 3.0.0.dev26

draw_order

Returns the draw order state The lower the number the earlier this section will get draw

enabled

Enables or disables this section

height

The height of this section

left

Left edge of this section

modal

Returns the modal state (Prevent the following sections from receiving input events and updating)

right

Right edge of this section

section_manager

Returns the section manager

top

Top edge of this section

view

The view this section is set on

width

The width of this section

window

The view window

class arcade.SectionManager(view: View)
Bases:

This manages the different Sections a View has. Actions such as dispatching the events to the correct Section,
draw order, etc.

add_section(section: Section, at_index: int | None = None, at_draw_order: int | None = None)→ None
Adds a section to this Section Manager Will trigger section.on_show_section if section is enabled

Parameters
• section – the section to add to this section manager

• at_index – inserts the section at that index for event capture and update events. If None
at the end

• at_draw_order – inserts the section in a specific draw order. Overwrites sec-
tion.draw_order

clear_sections()→ None
Removes all sections and calls on_hide_section for each one if enabled

disable()→ None
Disable all sections Disabling a section will trigger section.on_hide_section

disable_all_keyboard_events()→ None
Removes the keyboard event handling from all sections

496 Chapter 33. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

Python Arcade Library, Release 3.0.0.dev26

dispatch_keyboard_event(event: str, *args, **kwargs)→ bool | None
Generic method to dispatch keyboard events to the correct sections

Parameters
• event – the keyboard event name to dispatch

• args – any other position arguments that should be deliverd to the dispatched event

• kwargs – any other keyword arguments that should be delivered to the dispatched event

Returns
EVENT_HANDLED or EVENT_UNHANDLED, or whatever the dispatched method returns

dispatch_mouse_enter_leave_events(event_origin: str, x: int, y: int, *args, **kwargs)→ bool | None
This helper method will dispatch mouse enter / leave events to sections based on ‘on_mouse_motion’ and
‘on_mouse_drag’ events. Will also dispatch the event (event_origin) that called this method

Parameters
• event_origin – the mouse event name that called this method. This event will be called

here.

• x – the x axis coordinate

• y – the y axis coordinate

• args – any other position arguments that should be deliverd to the dispatched event

• kwargs – any other keyword arguments that should be delivered to the dispatched event

Returns
EVENT_HANDLED or EVENT_UNHANDLED, or whatever the dispatched method returns

dispatch_mouse_event(event: str, x: int, y: int, *args, current_section: Section | None = None, **kwargs)
→ bool | None

Generic method to dispatch mouse events to the correct Sections

Parameters
• event – the mouse event name to dispatch

• x – the x axis coordinate

• y – the y axis coordinate

• args – any other position arguments that should be deliverd to the dispatched event

• current_section – the section this mouse event should be delivered to. If None, will
retrive all sections that should recieve this event based on x, y coordinates

• kwargs – any other keyword arguments that should be delivered to the dispatched event

Returns
EVENT_HANDLED or EVENT_UNHANDLED, or whatever the dispatched method returns

enable()→ None
Enables all sections Enabling a section will trigger section.on_show_section

get_first_section(x: int, y: int, *, event_capture: bool = True)→ Section | None
Returns the first section based on x,y position

Parameters
• x – the x axis coordinate

33.20. Window and View 497

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None

Python Arcade Library, Release 3.0.0.dev26

• y – the y axis coordinate

• event_capture – True will use event capture dimensions, False will use section draw size

Returns
a section if match the params otherwise None

get_section_by_name(name: str)→ Section | None
Returns the first section with the given name :param name: the name of the section you want :return: the
first section with the provided name. None otherwise

get_sections(x: int, y: int, *, event_capture: bool = True)→ Generator[Section, None, None]
Returns a list of sections based on x,y position

Parameters
• x – the x axis coordinate

• y – the y axis coordinate

• event_capture – True will use event capture dimensions, False will use section draw size

Returns
a generator with the sections that match the params

on_draw()→ None
Called on each event loop to draw It automatically calls camera.use() for each section that has a camera
and resets the camera effects by calling the default SectionManager camera afterwards if needed. The
SectionManager camera defaults to a camera that has the viewport and projection for the whole screen

on_hide_view()→ None
Called when the view is hide The View.on_hide_view is called before this by the Window.hide_view method

on_key_press(*args, **kwargs)→ bool | None
Triggers the on_key_press event on the appropiate sections or view

Parameters
• args – any other position arguments that should be deliverd to the dispatched event

• kwargs – any other keyword arguments that should be delivered to the dispatched event

Returns
EVENT_HANDLED or EVENT_UNHANDLED, or whatever the dispatched method returns

on_key_release(*args, **kwargs)→ bool | None
Triggers the on_key_release event on the appropiate sections or view

Parameters
• args – any other position arguments that should be deliverd to the dispatched event

• kwargs – any other keyword arguments that should be delivered to the dispatched event

Returns
EVENT_HANDLED or EVENT_UNHANDLED, or whatever the dispatched method returns

on_mouse_drag(x: int, y: int, *args, **kwargs)→ bool | None
This method dispatches the on_mouse_drag and also calculates if on_mouse_enter/leave should be fired

Parameters
• x – the x axis coordinate

• y – the y axis coordinate

498 Chapter 33. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Generator
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None

Python Arcade Library, Release 3.0.0.dev26

• args – any other position arguments that should be deliverd to the dispatched event

• kwargs – any other keyword arguments that should be delivered to the dispatched event

Returns
EVENT_HANDLED or EVENT_UNHANDLED, or whatever the dispatched method returns

on_mouse_enter(x: int, y: int, *args, **kwargs)→ bool | None
Triggered when the mouse enters the window space Will trigger on_mouse_enter on the appropiate sections
or view

Parameters
• x – the x axis coordinate

• y – the y axis coordinate

• args – any other position arguments that should be deliverd to the dispatched event

• kwargs – any other keyword arguments that should be delivered to the dispatched event

Returns
EVENT_HANDLED or EVENT_UNHANDLED, or whatever the dispatched method returns

on_mouse_leave(x: int, y: int, *args, **kwargs)→ bool | None
Triggered when the mouse leaves the window space Will trigger on_mouse_leave on the appropiate sections
or view

Parameters
• x – the x axis coordinate

• y – the y axis coordinate

• args – any other position arguments that should be deliverd to the dispatched event

• kwargs – any other keyword arguments that should be delivered to the dispatched event

Returns
EVENT_HANDLED or EVENT_UNHANDLED, or whatever the dispatched method returns

on_mouse_motion(x: int, y: int, *args, **kwargs)→ bool | None
This method dispatches the on_mouse_motion and also calculates if on_mouse_enter/leave should be fired

Parameters
• x – the x axis coordinate

• y – the y axis coordinate

• args – any other position arguments that should be deliverd to the dispatched event

• kwargs – any other keyword arguments that should be delivered to the dispatched event

Returns
EVENT_HANDLED or EVENT_UNHANDLED, or whatever the dispatched method returns

on_mouse_press(x: int, y: int, *args, **kwargs)→ bool | None
Triggers the on_mouse_press event on the appropiate sections or view

Parameters
• x – the x axis coordinate

• y – the y axis coordinate

• args – any other position arguments that should be deliverd to the dispatched event

33.20. Window and View 499

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None

Python Arcade Library, Release 3.0.0.dev26

• kwargs – any other keyword arguments that should be delivered to the dispatched event

Returns
EVENT_HANDLED or EVENT_UNHANDLED, or whatever the dispatched method returns

on_mouse_release(x: int, y: int, *args, **kwargs)→ bool | None
Triggers the on_mouse_release event on the appropiate sections or view

Parameters
• x – the x axis coordinate

• y – the y axis coordinate

• args – any other position arguments that should be deliverd to the dispatched event

• kwargs – any other keyword arguments that should be delivered to the dispatched event

Returns
EVENT_HANDLED or EVENT_UNHANDLED, or whatever the dispatched method returns

on_mouse_scroll(x: int, y: int, *args, **kwargs)→ bool | None
Triggers the on_mouse_scroll event on the appropiate sections or view

Parameters
• x – the x axis coordinate

• y – the y axis coordinate

• args – any other position arguments that should be deliverd to the dispatched event

• kwargs – any other keyword arguments that should be delivered to the dispatched event

Returns
EVENT_HANDLED or EVENT_UNHANDLED, or whatever the dispatched method returns

on_resize(width: int, height: int)→ None
Called when the window is resized.

Parameters
• width – the new width of the screen

• height – the new height of the screen

on_show_view()→ None
Called when the view is shown The View.on_show_view is called before this by the Window.show_view
method

on_update(delta_time: float)→ None
Called on each event loop.

Parameters
delta_time – the delta time since this method was called last time

remove_section(section: Section)→ None
Removes a section from this section manager

Parameters
section – the section to remove

sort_section_event_order()→ None
This will sort sections on event capture order (and update) based on insertion order and section.modal

500 Chapter 33. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

Python Arcade Library, Release 3.0.0.dev26

sort_sections_draw_order()→ None
This will sort sections on draw order based on section.draw_order and section.modal

has_sections

Returns true if this section manager has sections

is_current_view

Returns if this section manager view is the current on the view window a.k.a.: is the view that is currently
being shown

sections

Property that returns the list of sections

33.21 Sound

class arcade.Sound(file_name: str | Path, streaming: bool = False)
Bases:

This class represents a sound you can play.

get_length()→ float
Get length of audio in seconds

get_stream_position(player: Player)→ float
Return where we are in the stream. This will reset back to zero when it is done playing.

Parameters
player – Player returned from play_sound().

get_volume(player: Player)→ float
Get the current volume.

Parameters
player – Player returned from play_sound().

Returns
A float, 0 for volume off, 1 for full volume.

is_complete(player: Player)→ bool
Return true if the sound is done playing.

is_playing(player: Player)→ bool
Return if the sound is currently playing or not

Parameters
player – Player returned from play_sound().

Returns
A boolean, True if the sound is playing.

play(volume: float = 1.0, pan: float = 0.0, loop: bool = False, speed: float = 1.0)→ Player
Play the sound.

Parameters
• volume – Volume, from 0=quiet to 1=loud

• pan – Pan, from -1=left to 0=centered to 1=right

33.21. Sound 501

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://pyglet.readthedocs.io/en/latest/modules/media.html#pyglet.media.player.Player
https://docs.python.org/3/library/functions.html#float
https://pyglet.readthedocs.io/en/latest/modules/media.html#pyglet.media.player.Player
https://docs.python.org/3/library/functions.html#float
https://pyglet.readthedocs.io/en/latest/modules/media.html#pyglet.media.player.Player
https://docs.python.org/3/library/functions.html#bool
https://pyglet.readthedocs.io/en/latest/modules/media.html#pyglet.media.player.Player
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://pyglet.readthedocs.io/en/latest/modules/media.html#pyglet.media.player.Player

Python Arcade Library, Release 3.0.0.dev26

• loop – Loop, false to play once, true to loop continuously

• speed – Change the speed of the sound which also changes pitch, default 1.0

set_volume(volume, player: Player)→ None
Set the volume of a sound as it is playing.

Parameters
• volume – Floating point volume. 0 is silent, 1 is full.

• player – Player returned from play_sound().

stop(player: Player)→ None
Stop a currently playing sound.

arcade.load_sound(path: str | Path, streaming: bool = False)→ Sound | None
Load a sound.

Parameters
• path – Name of the sound file to load.

• streaming – Boolean for determining if we stream the sound or load it all into memory. Set
to True for long sounds to save memory, False for short sounds to speed playback.

Returns
Sound object which can be used by the play_sound() function.

arcade.play_sound(sound: Sound, volume: float = 1.0, pan: float = 0.0, loop: bool = False, speed: float = 1.0)
→ Player | None

Play a sound.

Parameters
• sound – Sound loaded by load_sound(). Do NOT use a string here for the filename.

• volume – Volume, from 0=quiet to 1=loud

• pan – Pan, from -1=left to 0=centered to 1=right

• loop – Should we loop the sound over and over?

• speed – Change the speed of the sound which also changes pitch, default 1.0

arcade.stop_sound(player: Player)
Stop a sound that is currently playing.

Parameters
player – Player returned from play_sound().

33.22 Pathfinding

class arcade.AStarBarrierList(moving_sprite: Sprite, blocking_sprites: SpriteList, grid_size: int, left: int,
right: int, bottom: int, top: int)

Bases:

Class that manages a list of barriers that can be encountered during A* path finding.

Parameters
• moving_sprite – Sprite that will be moving

502 Chapter 33. API Reference

https://pyglet.readthedocs.io/en/latest/modules/media.html#pyglet.media.player.Player
https://docs.python.org/3/library/constants.html#None
https://pyglet.readthedocs.io/en/latest/modules/media.html#pyglet.media.player.Player
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://pyglet.readthedocs.io/en/latest/modules/media.html#pyglet.media.player.Player
https://docs.python.org/3/library/constants.html#None
https://pyglet.readthedocs.io/en/latest/modules/media.html#pyglet.media.player.Player
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Python Arcade Library, Release 3.0.0.dev26

• blocking_sprites – Sprites that can block movement

• grid_size – Size of the grid, in pixels

• left – Left border of playing field

• right – Right border of playing field

• bottom – Bottom of playing field

• top – Top of playing field

• barrier_list – SpriteList of barriers to use in _AStarSearch, None if not recalculated

recalculate()

Recalculate blocking sprites.

arcade.astar_calculate_path(start_point: Tuple[float, float], end_point: Tuple[float, float], astar_barrier_list:
AStarBarrierList, diagonal_movement: bool = True)→ List[Tuple[float, float]] |
None

Calculates the path using AStarSearch Algorithm and returns the path

Parameters
• start_point – Where it starts

• end_point – Where it ends

• astar_barrier_list – AStarBarrierList with the boundries to use in the AStarSearch
Algorithm

• diagonal_movement – Whether of not to use diagonals in the AStarSearch Algorithm

Returns
List of points(the path), or None if no path is found

arcade.has_line_of_sight(observer: Tuple[float, float], target: Tuple[float, float], walls: SpriteList,
max_distance: float = inf , check_resolution: int = 2)→ bool

Determine if we have line of sight between two points.

Parameters
• observer – Start position

• target – End position position

• walls – List of all blocking sprites

• max_distance – Max distance point 1 can see

• check_resolution – Check every x pixels for a sprite. Trade-off between accuracy and
speed.

Warning: Try to make sure spatial hashing is enabled on walls!

If spatial hashing is not enabled, this function may run very slowly!

Returns
Whether or not oberver to target is blocked by any wall in walls

33.22. Pathfinding 503

https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

Python Arcade Library, Release 3.0.0.dev26

33.23 Isometric Map Support (incomplete)

arcade.isometric.create_isometric_grid_lines(width: int, height: int, tile_width: int, tile_height: int,
color: Tuple[int, int, int, int], line_width: int)→
ShapeElementList

arcade.isometric.isometric_grid_to_screen(tile_x: int, tile_y: int, width: int, height: int, tile_width: int,
tile_height: int)→ Tuple[int, int]

arcade.isometric.screen_to_isometric_grid(screen_x: int, screen_y: int, width: int, height: int, tile_width:
int, tile_height: int)→ Tuple[int, int]

33.24 Earclip

arcade.earclip.earclip(polygon: Sequence[Tuple[float, float]])→ List[Tuple[Tuple[float, float], Tuple[float,
float], Tuple[float, float]]]

Simple earclipping algorithm for a given polygon p. polygon is expected to be an array of 2-tuples of the cartesian
points of the polygon For a polygon with n points it will return n-2 triangles. The triangles are returned as an
array of 3-tuples where each item in the tuple is a 2-tuple of the cartesian point.

Implementation Reference:
• https://www.geometrictools.com/Documentation/TriangulationByEarClipping.pdf

33.25 Easing

class arcade.easing.EasingData(start_period: float, cur_period: float, end_period: float, start_value: float,
end_value: float, ease_function: Callable)

Bases:

Data class for holding information about easing.

reset()

cur_period: float

ease_function: Callable

end_period: float

end_value: float

start_period: float

start_value: float

arcade.easing.ease_angle(start_angle: float, end_angle: float, *, time=None, rate=None, ease_function:
~typing.Callable = <function linear>)

Set up easing for angles.

arcade.easing.ease_angle_update(easing_data: EasingData, delta_time: float)→ Tuple
Update angle easing.

504 Chapter 33. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://www.geometrictools.com/Documentation/TriangulationByEarClipping.pdf
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple

Python Arcade Library, Release 3.0.0.dev26

arcade.easing.ease_in(percent: float)→ float
Function for quadratic ease-in easing.

arcade.easing.ease_in_back(percent: float)→ float
Function for ease_in easing which moves back before moving forward.

arcade.easing.ease_in_out(percent: float)→ float
Function for quadratic easing in and out.

arcade.easing.ease_in_out_sin(percent: float)→ float
Function for easing in and out using a sin wave

arcade.easing.ease_in_sin(percent: float)→ float
Function for ease_in easing using a sin wave

arcade.easing.ease_out(percent: float)→ float
Function for quadratic ease-out easing.

arcade.easing.ease_out_back(percent: float)→ float
Function for ease_out easing which moves back before moving forward.

arcade.easing.ease_out_bounce(percent: float)→ float
Function for a bouncy ease-out easing.

arcade.easing.ease_out_elastic(percent: float)→ float
Function for elastic ease-out easing.

arcade.easing.ease_out_sin(percent: float)→ float
Function for ease_out easing using a sin wave

arcade.easing.ease_position(start_position, end_position, *, time=None, rate=None,
ease_function=<function linear>)

Get an easing position

arcade.easing.ease_update(easing_data: EasingData, delta_time: float)→ Tuple
Update easing between two values/

arcade.easing.ease_value(start_value: float, end_value: float, *, time=None, rate=None,
ease_function=<function linear>)

Get an easing value

arcade.easing.easing(percent: float, easing_data: EasingData)→ float
Function for calculating return value for easing, given percent and easing data.

arcade.easing.linear(percent: float)→ float
Function for linear easing.

arcade.easing.smoothstep(percent: float)→ float
Function for smoothstep easing.

33.25. Easing 505

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Python Arcade Library, Release 3.0.0.dev26

33.26 OpenGL Context

class arcade.ArcadeContext(window: BaseWindow, gc_mode: str = 'context_gc', gl_api: str = 'gl')
Bases: Context

An OpenGL context implementation for Arcade with added custom features. This context is normally accessed
through arcade.Window.ctx.

Pyglet users can use the base Context class and extend that as they please.

This is part of the low level rendering API in arcade and is mainly for more advanced usage
Parameters

• window – The pyglet window

• gc_mode – The garbage collection mode for opengl objects. auto is just what we would
expect in python while context_gc (default) requires you to call Context.gc(). The latter
can be useful when using multiple threads when it’s not clear what thread will gc the object.

delattr(selfname, /)
Implement delattr(self, name).

dir(self)
Default dir() implementation.

self == value
Return self==value.

format(selfformat_spec, /)
Default object formatter.

self >= value
Return self>=value.

self > value
Return self>value.

hash(self)
Return hash(self).

self <= value
Return self<=value.

self < value
Return self<value.

self != value
Return self!=value.

repr(self)
Return repr(self).

setattr(selfname, value, /)
Implement setattr(self, name, value).

sys.getsizeof(self)
Size of object in memory, in bytes.

506 Chapter 33. API Reference

https://pyglet.readthedocs.io/en/latest/modules/window.html#pyglet.window.Window
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Python Arcade Library, Release 3.0.0.dev26

str(self)
Return str(self).

classmethod activate(ctx: Context)
Mark a context as the currently active one.

Warning: Never call this unless you know exactly what you are doing.

bind_window_block()→ None
Binds the projection and view uniform buffer object. This should always be bound to index 0 so all shaders
have access to them.

buffer(*, data: ByteString | memoryview | array | Array | None = None, reserve: int = 0, usage: str =
'static')→ Buffer

Create an OpenGL Buffer object. The buffer will contain all zero-bytes if no data is supplied.

Examples:

Create 1024 byte buffer
ctx.buffer(reserve=1024)
Create a buffer with 1000 float values using python's array.array
from array import array
ctx.buffer(data=array('f', [i for in in range(1000)])
Create a buffer with 1000 random 32 bit floats using numpy
self.ctx.buffer(data=np.random.random(1000).astype("f4"))

The data parameter can be anything that implements the Buffer Protocol.

This includes bytes, bytearray, array.array, and more. You may need to use typing workarounds for
non-builtin types. See Writing Raw Bytes to GL Buffers & Textures for more information.

The usage parameter enables the GL implementation to make more intelligent decisions that may impact
buffer object performance. It does not add any restrictions. If in doubt, skip this parameter and revisit when
optimizing. The result are likely to be different between vendors/drivers or may not have any effect.

The available values mean the following:

stream
The data contents will be modified once and used at most a few times.

static
The data contents will be modified once and used many times.

dynamic
The data contents will be modified repeatedly and used many times.

Parameters
• data – The buffer data. This can be a bytes instance or any any other object supporting

the buffer protocol.

• reserve – The number of bytes to reserve

• usage – Buffer usage. ‘static’, ‘dynamic’ or ‘stream’

compute_shader(*, source: str, common: Iterable[str] = ())→ ComputeShader
Create a compute shader.

33.26. OpenGL Context 507

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/collections.abc.html#collections.abc.ByteString
https://docs.python.org/3/library/stdtypes.html#memoryview
https://docs.python.org/3/library/array.html#array.array
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/c-api/buffer.html
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str

Python Arcade Library, Release 3.0.0.dev26

Parameters
• source – The glsl source

• common – Common / library source injected into compute shader

copy_framebuffer(src: Framebuffer, dst: Framebuffer)
Copies/blits a framebuffer to another one.

This operation has many restrictions to ensure it works across different platforms and drivers:

• The source and destination framebuffer must be the same size

• The formats of the attachments must be the same

• Only the source framebuffer can be multisampled

• Framebuffers cannot have integer attachments

Parameters
• src – The framebuffer to copy from

• dst – The framebuffer we copy to

depth_texture(size: Tuple[int, int], *, data: ByteString | memoryview | array | Array | None = None)→
Texture2D

Create a 2D depth texture. Can be used as a depth attachment in a Framebuffer.

Parameters
• size (Tuple[int, int]) – The size of the texture

• data – The texture data (optional). Can be bytes or any object supporting the buffer
protocol.

disable(*args)
Disable one or more context flags:

Single flag
ctx.disable(ctx.BLEND)
Multiple flags
ctx.disable(ctx.DEPTH_TEST, ctx.CULL_FACE)

enable(*flags)
Enables one or more context flags:

Single flag
ctx.enable(ctx.BLEND)
Multiple flags
ctx.enable(ctx.DEPTH_TEST, ctx.CULL_FACE)

enable_only(*args)
Enable only some flags. This will disable all other flags. This is a simple way to ensure that context flag
states are not lingering from other sections of your code base:

Ensure all flags are disabled (enable no flags)
ctx.enable_only()
Make sure only blending is enabled

(continues on next page)

508 Chapter 33. API Reference

https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/collections.abc.html#collections.abc.ByteString
https://docs.python.org/3/library/stdtypes.html#memoryview
https://docs.python.org/3/library/array.html#array.array
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

ctx.enable_only(ctx.BLEND)
Make sure only depth test and culling is enabled
ctx.enable_only(ctx.DEPTH_TEST, ctx.CULL_FACE)

enabled(*flags)
Temporarily change enabled flags.

Flags that was enabled initially will stay enabled. Only new enabled flags will be reversed when exiting the
context.

Example:

with ctx.enabled(ctx.BLEND, ctx.CULL_FACE):
Render something

enabled_only(*flags)
Temporarily change enabled flags.

Only the supplied flags with be enabled in in the context. When exiting the context the old flags will be
restored.

Example:

with ctx.enabled_only(ctx.BLEND, ctx.CULL_FACE):
Render something

finish()→ None
Wait until all OpenGL rendering commands are completed.

This function will actually stall until all work is done and may have severe performance implications.

flush()→ None
A suggestion to the driver to execute all the queued drawing calls even if the queue is not full yet. This is
not a blocking call and only a suggestion. This can potentially be used for speedups when we don’t have
anything else to render.

framebuffer(*, color_attachments: Texture2D | List[Texture2D] | None = None, depth_attachment:
Texture2D | None = None)→ Framebuffer

Create a Framebuffer.

Parameters
• color_attachments – List of textures we want to render into

• depth_attachment – Depth texture

gc()→ int
Run garbage collection of OpenGL objects for this context. This is only needed when gc_mode is
context_gc.

Returns
The number of resources destroyed

geometry(content: Sequence[BufferDescription] | None = None, index_buffer: Buffer | None = None, mode:
int | None = None, index_element_size: int = 4)

Create a Geometry instance. This is Arcade’s version of a vertex array adding a lot of convenience for the
user. Geometry objects are fairly light. They are mainly responsible for automatically map buffer inputs to
your shader(s) and provide various methods for rendering or processing this geometry,

33.26. OpenGL Context 509

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int

Python Arcade Library, Release 3.0.0.dev26

The same geometry can be rendered with different programs as long as your shader is using one or more
of the input attribute. This means geometry with positions and colors can be rendered with a program only
using the positions. We will automatically map what is necessary and cache these mappings internally for
performace.

In short, the geometry object is a light object that describes what buffers contains and automatically ne-
gotiate with shaders/programs. This is a very complex field in OpenGL so the Geometry object provides
substantial time savings and greatly reduces the complexity of your code.

Geometry also provide rendering methods supporting the following:

• Rendering geometry with and without index buffer

• Rendering your geometry using instancing. Per instance buffers can be provided or the current instance
can be looked up using gl_InstanceID in shaders.

• Running transform feedback shaders that writes to buffers instead the screen. This can write to one or
multiple buffer.

• Render your geometry with indirect rendering. This means packing multiple meshes into the same
buffer(s) and batch drawing them.

Examples:

Single buffer geometry with a vec2 vertex position attribute
ctx.geometry([BufferDescription(buffer, '2f', ["in_vert"])], mode=ctx.TRIANGLES)

Single interlaved buffer with two attributes. A vec2 position and vec2␣
→˓velocity
ctx.geometry([

BufferDescription(buffer, '2f 2f', ["in_vert", "in_velocity"])
],
mode=ctx.POINTS,

)

Geometry with index buffer
ctx.geometry(

[BufferDescription(buffer, '2f', ["in_vert"])],
index_buffer=ibo,
mode=ctx.TRIANGLES,

)

Separate buffers
ctx.geometry([

BufferDescription(buffer_pos, '2f', ["in_vert"])
BufferDescription(buffer_vel, '2f', ["in_velocity"])

],
mode=ctx.POINTS,

)

Providing per-instance data for instancing
ctx.geometry([

BufferDescription(buffer_pos, '2f', ["in_vert"])
BufferDescription(buffer_instance_pos, '2f', ["in_offset"],␣

→˓instanced=True)
],

(continues on next page)

510 Chapter 33. API Reference

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

mode=ctx.POINTS,
)

Parameters
• content – List of BufferDescription (optional)

• index_buffer – Index/element buffer (optional)

• mode – The default draw mode (optional)

• mode – The default draw mode (optional)

• index_element_size – Byte size of a single index/element in the index buffer. In other
words, the index buffer can be 8, 16 or 32 bit integers. Can be 1, 2 or 4 (8, 16 or 32 bit
unsigned integer)

get_framebuffer_image(fbo: Framebuffer, components: int = 4, flip: bool = True)→ Image
Shortcut method for reading data from a framebuffer and converting it to a PIL image.

Parameters
• fbo – Framebuffer to get image from

• components – Number of components to read

• flip – Flip the image upside down

is_enabled(flag)→ bool
Check if a context flag is enabled

Type
bool

load_compute_shader(path: str | Path, common: Iterable[str | Path] = ())→ ComputeShader
Loads a compute shader from file. This methods supports resource handles.

Example:

ctx.load_compute_shader(":shader:compute/do_work.glsl")

Parameters
• path – Path to texture

• common – Common source injected into compute shader

load_program(*, vertex_shader: str | Path, fragment_shader: str | Path | None = None, geometry_shader: str
| Path | None = None, tess_control_shader: str | Path | None = None, tess_evaluation_shader:
str | Path | None = None, common: Iterable[str | Path] = (), defines: Dict[str, Any] | None =
None, varyings: Sequence[str] | None = None, varyings_capture_mode: str = 'interleaved')
→ Program

Create a new program given a file names that contain the vertex shader and fragment shader. Note that
fragment and geometry shader are optional for when transform shaders are loaded.

This method also supports the resource handles.

Example:

33.26. OpenGL Context 511

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://pillow.readthedocs.io/en/stable/reference/Image.html#PIL.Image.Image
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

Python Arcade Library, Release 3.0.0.dev26

The most common use case if having a vertex and fragment shader
program = window.ctx.load_program(

vertex_shader="vert.glsl",
fragment_shader="frag.glsl",

)

Parameters
• vertex_shader – path to vertex shader

• fragment_shader – path to fragment shader (optional)

• geometry_shader – path to geometry shader (optional)

• tess_control_shader – Tessellation Control Shader

• tess_evaluation_shader – Tessellation Evaluation Shader

• common – Common files to be included in all shaders

• defines – Substitute #define values in the source

• varyings – The name of the out attributes in a transform shader. This is normally not
necessary since we auto detect them, but some more complex out structures we can’t detect.

• varyings_capture_mode – The capture mode for transforms. "interleaved" means
all out attribute will be written to a single buffer. "separate" means each out attribute
will be written separate buffers. Based on these settings the transform() method will accept
a single buffer or a list of buffer.

load_texture(path: str | Path, *, flip: bool = True, build_mipmaps: bool = False)→ Texture2D
Loads and creates an OpenGL 2D texture. Currently, all textures are converted to RGBA for simplicity.

Example:

Load a texture in current working directory
texture = window.ctx.load_texture("background.png")
Load a texture using Arcade resource handle
texture = window.ctx.load_texture(":textures:background.png")

Parameters
• path – Path to texture

• flip – Flips the image upside down

• build_mipmaps – Build mipmaps for the texture

program(*, vertex_shader: str, fragment_shader: str | None = None, geometry_shader: str | None = None,
tess_control_shader: str | None = None, tess_evaluation_shader: str | None = None, common:
List[str] | None = None, defines: Dict[str, str] | None = None, varyings: Sequence[str] | None =
None, varyings_capture_mode: str = 'interleaved')→ Program

Create a Program given the vertex, fragment and geometry shader.

Parameters
• vertex_shader – vertex shader source

• fragment_shader – fragment shader source (optional)

512 Chapter 33. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

Python Arcade Library, Release 3.0.0.dev26

• geometry_shader – geometry shader source (optional)

• tess_control_shader – tessellation control shader source (optional)

• tess_evaluation_shader – tessellation evaluation shader source (optional)

• common – Common shader sources injected into all shaders

• defines – Substitute #defines values in the source (optional)

• varyings – The name of the out attributes in a transform shader. This is normally not
necessary since we auto detect them, but some more complex out structures we can’t detect.

• varyings_capture_mode – The capture mode for transforms. "interleaved" means
all out attribute will be written to a single buffer. "separate" means each out attribute
will be written separate buffers. Based on these settings the transform() method will accept
a single buffer or a list of buffer.

pyglet_rendering()

Context manager for doing rendering with pyglet ensuring context states are reverted. This affects things
like blending.

query(*, samples=True, time=True, primitives=True)→ Query
Create a query object for measuring rendering calls in opengl.

Parameters
• samples – Collect written samples

• time – Measure rendering duration

• primitives – Collect the number of primitives emitted

reset()→ None
Reset context flags and other states. This is mostly used in unit testing.

shader_inc(source: str)→ str
Parse a shader source looking for #include directives and replace them with the contents of the included
file.

The #include directive must be on its own line and the file and the path should use a resource handle.

Example:

#include :my_shader:lib/common.glsl

Parameters
source – Shader

texture(size: Tuple[int, int], *, components: int = 4, dtype: str = 'f1', data: ByteString | memoryview | array
| Array | None = None, wrap_x: int | None = None, wrap_y: int | None = None, filter: Tuple[int, int]
| None = None, samples: int = 0, immutable: bool = False)→ Texture2D

Create a 2D Texture.

Wrap modes: GL_REPEAT, GL_MIRRORED_REPEAT, GL_CLAMP_TO_EDGE, GL_CLAMP_TO_BORDER

Minifying filters: GL_NEAREST, GL_LINEAR, GL_NEAREST_MIPMAP_NEAREST,
GL_LINEAR_MIPMAP_NEAREST GL_NEAREST_MIPMAP_LINEAR, GL_LINEAR_MIPMAP_LINEAR

Magnifying filters: GL_NEAREST, GL_LINEAR

Parameters

33.26. OpenGL Context 513

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/collections.abc.html#collections.abc.ByteString
https://docs.python.org/3/library/stdtypes.html#memoryview
https://docs.python.org/3/library/array.html#array.array
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

Python Arcade Library, Release 3.0.0.dev26

• size (Tuple[int, int]) – The size of the texture

• components – Number of components (1: R, 2: RG, 3: RGB, 4: RGBA)

• dtype – The data type of each component: f1, f2, f4 / i1, i2, i4 / u1, u2, u4

• data – The texture data (optional). Can be bytes or any object supporting the buffer
protocol.

• wrap_x – How the texture wraps in x direction

• wrap_y – How the texture wraps in y direction

• filter – Minification and magnification filter

• samples – Creates a multisampled texture for values > 0

• immutable – Make the storage (not the contents) immutable. This can sometimes be re-
quired when using textures with compute shaders.

BLEND = 3042

Blending

Type
Context flag

BLEND_ADDITIVE = (1, 1)

ONE, ONE

Type
Blend mode shortcut for additive blending

BLEND_DEFAULT = (770, 771)

SRC_ALPHA, ONE_MINUS_SRC_ALPHA

Type
Blend mode shortcut for default blend mode

BLEND_PREMULTIPLIED_ALPHA = (770, 1)

SRC_ALPHA, ONE

Type
Blend mode shortcut for pre-multiplied alpha

CLAMP_TO_BORDER = 33069

CLAMP_TO_EDGE = 33071

CULL_FACE = 2884

Face culling

Type
Context flag

DEPTH_TEST = 2929

Depth testing

Type
Context flag

DST_ALPHA = 772

Blend function

514 Chapter 33. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Python Arcade Library, Release 3.0.0.dev26

DST_COLOR = 774

Blend function

FUNC_ADD = 32774

source + destination

FUNC_REVERSE_SUBTRACT = 32779

destination - source

Type
Blend equations

FUNC_SUBTRACT = 32778

source - destination

Type
Blend equations

LINEAR = 9729

Linear interpolate

Type
Texture interpolation

LINEAR_MIPMAP_LINEAR = 9987

Minification filter for mipmaps

Type
Texture interpolation

LINEAR_MIPMAP_NEAREST = 9985

Minification filter for mipmaps

Type
Texture interpolation

LINES = 1

Primitive mode

LINES_ADJACENCY = 10

Primitive mode

LINE_LOOP = 2

Primitive mode

LINE_STRIP = 3

Primitive mode

LINE_STRIP_ADJACENCY = 11

Primitive mode

MAX = 32776

Maximum of source and destination

Type
Blend equations

MIN = 32775

Minimum of source and destination

33.26. OpenGL Context 515

Python Arcade Library, Release 3.0.0.dev26

Type
Blend equations

MIRRORED_REPEAT = 33648

NEAREST = 9728

Nearest pixel

Type
Texture interpolation

NEAREST_MIPMAP_LINEAR = 9986

Minification filter for mipmaps

Type
Texture interpolation

NEAREST_MIPMAP_NEAREST = 9984

Minification filter for mipmaps

Type
Texture interpolation

ONE = 1

Blend function

ONE_MINUS_DST_ALPHA = 773

Blend function

ONE_MINUS_DST_COLOR = 775

Blend function

ONE_MINUS_SRC_ALPHA = 771

Blend function

ONE_MINUS_SRC_COLOR = 769

Blend function

PATCHES = 14

Patch mode (tessellation)

POINTS = 0

Primitive mode

PROGRAM_POINT_SIZE = 34370

Enables gl_PointSize in vertex or geometry shaders.

When enabled we can write to gl_PointSize in the vertex shader to specify the point size for each indi-
vidual point.

If this value is not set in the shader the behavior is undefined. This means the points may or may not appear
depending if the drivers enforce some default value for gl_PointSize.

When disabled Context.point_size is used.

Type
Context flag

516 Chapter 33. API Reference

Python Arcade Library, Release 3.0.0.dev26

REPEAT = 10497

Repeat

Type
Texture wrap mode

SRC_ALPHA = 770

Blend function

SRC_COLOR = 768

Blend function

TRIANGLES = 4

Primitive mode

TRIANGLES_ADJACENCY = 12

Primitive mode

TRIANGLE_FAN = 6

Primitive mode

TRIANGLE_STRIP = 5

Primitive mode

TRIANGLE_STRIP_ADJACENCY = 13

Primitive mode

ZERO = 0

Blend function

active: 'Context' | None = None

The active context

atlas_size = (512, 512)

blend_func

Get or set the blend function. This is tuple specifying how the color and alpha blending factors are computed
for the source and destination pixel.

When using a two component tuple you specify the blend function for the source and the destination.

When using a four component tuple you specify the blend function for the source color, source alpha des-
tination color and destination alpha. (separate blend functions for color and alpha)

Supported blend functions are:

ZERO
ONE
SRC_COLOR
ONE_MINUS_SRC_COLOR
DST_COLOR
ONE_MINUS_DST_COLOR
SRC_ALPHA
ONE_MINUS_SRC_ALPHA
DST_ALPHA
ONE_MINUS_DST_ALPHA

Shortcuts
(continues on next page)

33.26. OpenGL Context 517

https://docs.python.org/3/library/constants.html#None

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

DEFAULT_BLENDING # (SRC_ALPHA, ONE_MINUS_SRC_ALPHA)
ADDITIVE_BLENDING # (ONE, ONE)
PREMULTIPLIED_ALPHA # (SRC_ALPHA, ONE)

These enums can be accessed in the arcade.gl module or simply as attributes of the context object. The
raw enums from pyglet.gl can also be used.

Example:

Using constants from the context object
ctx.blend_func = ctx.ONE, ctx.ONE
from the gl module
from arcade import gl
ctx.blend_func = gl.ONE, gl.ONE

Type
tuple (src, dst)

cull_face

The face side to cull when face culling is enabled.

By default the back face is culled. This can be set to front, back or front_and_back:

ctx.cull_face = "front"
ctx.cull_face = "back"
ctx.cull_face = "front_and_back"

default_atlas

The default texture atlas. This is created when arcade is initialized. All sprite lists will use use this atlas
unless a different atlas is passed in the arcade.SpriteList constructor.

Type
TextureAtlas

error

Check OpenGL error

Returns a string representation of the occurring error or None of no errors has occurred.

Example:

err = ctx.error
if err:

raise RuntimeError("OpenGL error: {err}")

Type
str

fbo

Get the currently active framebuffer. This property is read-only

Type
arcade.gl.Framebuffer

518 Chapter 33. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str

Python Arcade Library, Release 3.0.0.dev26

front_face

Configure front face winding order of triangles.

By default the counter-clockwise winding side is the front face. This can be set set to clockwise or counter-
clockwise:

ctx.front_face = "cw"
ctx.front_face = "ccw"

gc_mode

Set the garbage collection mode for OpenGL resources. Supported modes are:

Default:
Defer garbage collection until ctx.gc() is called
This can be useful to enforce the main thread to
run garbage collection of opengl resources
ctx.gc_mode = "context_gc"

Auto collect is similar to python garbage collection.
This is a risky mode. Know what you are doing before using this.
ctx.gc_mode = "auto"

gl_api: str = 'gl'

The OpenGL api. Usually “gl” or “gles”.

gl_version

The OpenGL version as a 2 component tuple. This is the reported OpenGL version from drivers and might
be a higher version than you requested.

Type
tuple (major, minor) version

info

Get the Limits object for this context containing information about hardware/driver limits and other context
information.

Example:

>> ctx.info.MAX_TEXTURE_SIZE
(16384, 16384)
>> ctx.info.VENDOR
NVIDIA Corporation
>> ctx.info.RENDERER
NVIDIA GeForce RTX 2080 SUPER/PCIe/SSE2

limits

Get the Limits object for this context containing information about hardware/driver limits and other context
information.

Warning: This an old alias for info and is only around for backwards compatibility.

Example:

33.26. OpenGL Context 519

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple

Python Arcade Library, Release 3.0.0.dev26

>> ctx.limits.MAX_TEXTURE_SIZE
(16384, 16384)
>> ctx.limits.VENDOR
NVIDIA Corporation
>> ctx.limits.RENDERER
NVIDIA GeForce RTX 2080 SUPER/PCIe/SSE2

objects: Deque[Any]

Collected objects to gc when gc_mode is “context_gc”. This can be used during debugging.

patch_vertices

Get or set number of vertices that will be used to make up a single patch primitive. Patch primitives are
consumed by the tessellation control shader (if present) and subsequently used for tessellation.

Type
int

point_size

Set or get the point size. Default is 1.0.

Point size changes the pixel size of rendered points. The min and max values are limited by
POINT_SIZE_RANGE. This value usually at least (1, 100), but this depends on the drivers/vendors.

If variable point size is needed you can enable PROGRAM_POINT_SIZE and write to gl_PointSize in the
vertex or geometry shader.

Note: Using a geometry shader to create triangle strips from points is often a safer way to render large
points since you don’t have have any size restrictions.

primitive_restart_index

Get or set the primitive restart index. Default is -1. The primitive restart index can be used in index buffers
to restart a primitive. This is for example useful when you use triangle strips or line strips and want to start
on a new strip in the same buffer / draw call.

projection_2d

Get or set the global orthogonal projection for arcade.

This projection is used by sprites and shapes and is represented by four floats: (left, right, bottom,
top)

When reading this property we reconstruct the projection parameters from pyglet’s projection matrix. When
setting this property we construct an orthogonal projection matrix and set it in pyglet.

Type
Tuple[float, float, float, float]

projection_2d_matrix

Get the current projection matrix. This 4x4 float32 matrix is calculated when setting projection_2d .

This property simply gets and sets pyglet’s projection matrix.

Type
pyglet.math.Mat4

scissor

Get or set the scissor box for the active framebuffer. This is a shortcut for scissor().

520 Chapter 33. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://pyglet.readthedocs.io/en/latest/modules/math.html#pyglet.math.Mat4

Python Arcade Library, Release 3.0.0.dev26

By default the scissor box is disabled and has no effect and will have an initial value of None. The scissor
box is enabled when setting a value and disabled when set to None.

Example:

Set and enable scissor box only drawing
in a 100 x 100 pixel lower left area
ctx.scissor = 0, 0, 100, 100
Disable scissoring
ctx.scissor = None

Type
tuple (x, y, width, height)

screen

The framebuffer for the window.

Type
Framebuffer

stats

Get the stats instance containing runtime information about creation and destruction of OpenGL objects.

Example:

>> ctx.limits.MAX_TEXTURE_SIZE
(16384, 16384)
>> ctx.limits.VENDOR
NVIDIA Corporation
>> ctx.limits.RENDERER
NVIDIA GeForce RTX 2080 SUPER/PCIe/SSE2

view_matrix_2d

Get the current view matrix. This 4x4 float32 matrix is calculated when setting view_matrix_2d .

This property simply gets and sets pyglet’s view matrix.

Type
pyglet.math.Mat4

viewport

Get or set the viewport for the currently active framebuffer. The viewport simply describes what pixels of
the screen OpenGL should render to. Normally it would be the size of the window’s framebuffer:

4:3 screen
ctx.viewport = 0, 0, 800, 600
1080p
ctx.viewport = 0, 0, 1920, 1080
Using the current framebuffer size
ctx.viewport = 0, 0, *ctx.screen.size

Type
tuple (x, y, width, height)

33.26. OpenGL Context 521

https://docs.python.org/3/library/stdtypes.html#tuple
https://pyglet.readthedocs.io/en/latest/modules/math.html#pyglet.math.Mat4
https://docs.python.org/3/library/stdtypes.html#tuple

Python Arcade Library, Release 3.0.0.dev26

window

The window this context belongs to.

Type
pyglet.Window

wireframe

Get or set the wireframe mode. When enabled all primitives will be rendered as lines.

Type
bool

33.27 Math

arcade.math.clamp(a, low: float, high: float)→ float
Clamp a number between a range.

arcade.math.get_angle_degrees(x1: float, y1: float, x2: float, y2: float)→ float
Get the angle in degrees between two points.

Parameters
• x1 – x coordinate of the first point

• y1 – y coordinate of the first point

• x2 – x coordinate of the second point

• y2 – y coordinate of the second point

arcade.math.get_angle_radians(x1: float, y1: float, x2: float, y2: float)→ float
Get the angle in radians between two points.

Parameters
• x1 – x coordinate of the first point

• y1 – y coordinate of the first point

• x2 – x coordinate of the second point

• y2 – y coordinate of the second point

arcade.math.get_distance(x1: float, y1: float, x2: float, y2: float)→ float
Get the distance between two points.

Parameters
• x1 – x coordinate of the first point

• y1 – y coordinate of the first point

• x2 – x coordinate of the second point

• y2 – y coordinate of the second point

Returns
Distance between the two points

arcade.math.lerp(v1: float, v2: float, u: float)→ float
linearly interpolate between two values

522 Chapter 33. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Python Arcade Library, Release 3.0.0.dev26

arcade.math.lerp_angle(start_angle: float, end_angle: float, u: float)→ float
Linearly interpolate between two angles in degrees, following the shortest path.

Parameters
• start_angle – The starting angle

• end_angle – The ending angle

• u – The interpolation value

Returns
The interpolated angle

arcade.math.lerp_vec(v1: Tuple[float, float], v2: Tuple[float, float], u: float)→ Tuple[float, float]

arcade.math.rand_angle_360_deg()→ float
Returns a random angle in degrees.

arcade.math.rand_angle_spread_deg(angle: float, half_angle_spread: float)→ float
Returns a random angle in degrees, within a spread of the given angle.

Parameters
• angle – The angle to spread from

• half_angle_spread – The half angle spread

Returns
A random angle in degrees

arcade.math.rand_in_circle(center: Tuple[float, float], radius: float)→ Tuple[float, float]
Generate a point in a circle, or can think of it as a vector pointing a random direction with a random magnitude
<= radius.

Reference: https://stackoverflow.com/a/30564123

Note: This algorithm returns a higher concentration of points around the center of the circle

Parameters
• center – The center of the circle

• radius – The radius of the circle

Returns
A random point in the circle

arcade.math.rand_in_rect(bottom_left: Tuple[float, float], width: float, height: float)→ Tuple[float, float]
Calculate a random point in a rectangle.

Parameters
• bottom_left – The bottom left corner of the rectangle

• width – The width of the rectangle

• height – The height of the rectangle

Returns
A random point in the rectangle

33.27. Math 523

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://stackoverflow.com/a/30564123
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Python Arcade Library, Release 3.0.0.dev26

arcade.math.rand_on_circle(center: Tuple[float, float], radius: float)→ Tuple[float, float]
Generate a point on a circle.

Parameters
• center – The center of the circle

• radius – The radius of the circle

Returns
A random point on the circle

arcade.math.rand_on_line(pos1: Tuple[float, float], pos2: Tuple[float, float])→ Tuple[float, float]
Given two points defining a line, return a random point on that line.

Parameters
• pos1 – The first point

• pos2 – The second point

Returns
A random point on the line

arcade.math.rand_vec_magnitude(angle: float, lo_magnitude: float, hi_magnitude: float)→ Tuple[float, float]
Returns a random vector, within a spread of the given angle.

Parameters
• angle – The angle to spread from

• lo_magnitude – The lower magnitude

• hi_magnitude – The higher magnitude

Returns
A random vector

arcade.math.rand_vec_spread_deg(angle: float, half_angle_spread: float, length: float)→ Tuple[float, float]
Returns a random vector, within a spread of the given angle.

Parameters
• angle – The angle to spread from

• half_angle_spread – The half angle spread

• length – The length of the vector

Returns
A random vector

arcade.math.rotate_point(x: float, y: float, cx: float, cy: float, angle_degrees: float)→ Tuple[float, float]
Rotate a point around a center.

Parameters
• x – x value of the point you want to rotate

• y – y value of the point you want to rotate

• cx – x value of the center point you want to rotate around

• cy – y value of the center point you want to rotate around

• angle_degrees – Angle, in degrees, to rotate

524 Chapter 33. API Reference

https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Python Arcade Library, Release 3.0.0.dev26

Returns
Return rotated (x, y) pair

arcade.math.round_fast(value: float, precision: int)→ float
A high performance version of python’s built-in round() function.

Note: This function is not as accurate as the built-in round() function. But is sufficient in some cases.

Example:

>>> round(3.5662457892, 1)
3.6
>>> round(3.5662457892, 2)
3.57
>>> round(3.5662457892, 3)
3.566
>>> round(3.5662457892, 4)
3.5662

Parameters
• value – The value to round

• precision – The number of decimal places to round to

Returns
The rounded value

33.28 OpenGL

This is the low level rendering API in Arcade and is used internally for all drawing/rendering. It’s a higher level
wrapper over OpenGL 3.3+ core and gives the user easy access to GPU programs (shaders), textures, framebuffers,
queries, buffers, vertex arrays/geometry and compute shaders (Note that compute shaders are not supported on MacOS).

This API is also heavily inspired by ModernGL. It’s basically a subset of ModernGL except we are using pyglet’s
OpenGL bindings. However, we don’t have the context flexibility and speed of ModernGL, but we are at the very least
on par with PyOpenGL or slightly better because pyglet’s OpenGL bindings are very light. The higher level abstraction
is the main selling point as it saves the user from an enormous amount of work.

Note that all resources are created through the arcade.gl.Context / arcade.ArcadeContext. An instance of this
type should be accessible the window (arcade.Window.ctx).

This API can also be used with pyglet by creating an instance of arcade.gl.Context after the window creation.
The arcade.ArcadeContext on the other hand extends the default Context with arcade specific helper methods and
should only be used by arcade.

Some prior knowledge of OpenGL might be needed to understand how this API works, but we do have examples in the
experimental directory (git).

33.28. OpenGL 525

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://github.com/moderngl/moderngl
https://github.com/moderngl/moderngl
https://github.com/moderngl/moderngl

Python Arcade Library, Release 3.0.0.dev26

33.28.1 Context

Context

class arcade.gl.Context(window: BaseWindow, gc_mode: str = 'context_gc', gl_api: str = 'gl')
Bases:

Represents an OpenGL context. This context belongs to a pyglet.Window normally accessed through window.
ctx.

The Context class contains methods for creating resources, global states and commonly used enums. All enums
also exist in the gl module. (ctx.BLEND or arcade.gl.BLEND).

active: Context | None = None

The active context

NEAREST = 9728

Nearest pixel

Type
Texture interpolation

LINEAR = 9729

Linear interpolate

Type
Texture interpolation

NEAREST_MIPMAP_NEAREST = 9984

Minification filter for mipmaps

Type
Texture interpolation

LINEAR_MIPMAP_NEAREST = 9985

Minification filter for mipmaps

Type
Texture interpolation

NEAREST_MIPMAP_LINEAR = 9986

Minification filter for mipmaps

Type
Texture interpolation

LINEAR_MIPMAP_LINEAR = 9987

Minification filter for mipmaps

Type
Texture interpolation

REPEAT = 10497

Repeat

Type
Texture wrap mode

CLAMP_TO_EDGE = 33071

526 Chapter 33. API Reference

https://pyglet.readthedocs.io/en/latest/modules/window.html#pyglet.window.Window
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

Python Arcade Library, Release 3.0.0.dev26

CLAMP_TO_BORDER = 33069

MIRRORED_REPEAT = 33648

BLEND = 3042

Blending

Type
Context flag

DEPTH_TEST = 2929

Depth testing

Type
Context flag

CULL_FACE = 2884

Face culling

Type
Context flag

PROGRAM_POINT_SIZE = 34370

Enables gl_PointSize in vertex or geometry shaders.

When enabled we can write to gl_PointSize in the vertex shader to specify the point size for each indi-
vidual point.

If this value is not set in the shader the behavior is undefined. This means the points may or may not appear
depending if the drivers enforce some default value for gl_PointSize.

When disabled Context.point_size is used.

Type
Context flag

ZERO = 0

Blend function

ONE = 1

Blend function

SRC_COLOR = 768

Blend function

ONE_MINUS_SRC_COLOR = 769

Blend function

SRC_ALPHA = 770

Blend function

ONE_MINUS_SRC_ALPHA = 771

Blend function

DST_ALPHA = 772

Blend function

ONE_MINUS_DST_ALPHA = 773

Blend function

33.28. OpenGL 527

Python Arcade Library, Release 3.0.0.dev26

DST_COLOR = 774

Blend function

ONE_MINUS_DST_COLOR = 775

Blend function

FUNC_ADD = 32774

source + destination

FUNC_SUBTRACT = 32778

source - destination

Type
Blend equations

FUNC_REVERSE_SUBTRACT = 32779

destination - source

Type
Blend equations

MIN = 32775

Minimum of source and destination

Type
Blend equations

MAX = 32776

Maximum of source and destination

Type
Blend equations

BLEND_DEFAULT = (770, 771)

SRC_ALPHA, ONE_MINUS_SRC_ALPHA

Type
Blend mode shortcut for default blend mode

BLEND_ADDITIVE = (1, 1)

ONE, ONE

Type
Blend mode shortcut for additive blending

BLEND_PREMULTIPLIED_ALPHA = (770, 1)

SRC_ALPHA, ONE

Type
Blend mode shortcut for pre-multiplied alpha

POINTS = 0

Primitive mode

LINES = 1

Primitive mode

LINE_LOOP = 2

Primitive mode

528 Chapter 33. API Reference

Python Arcade Library, Release 3.0.0.dev26

LINE_STRIP = 3

Primitive mode

TRIANGLES = 4

Primitive mode

TRIANGLE_STRIP = 5

Primitive mode

TRIANGLE_FAN = 6

Primitive mode

LINES_ADJACENCY = 10

Primitive mode

LINE_STRIP_ADJACENCY = 11

Primitive mode

TRIANGLES_ADJACENCY = 12

Primitive mode

TRIANGLE_STRIP_ADJACENCY = 13

Primitive mode

PATCHES = 14

Patch mode (tessellation)

gl_api: str = 'gl'

The OpenGL api. Usually “gl” or “gles”.

objects: Deque[Any]

Collected objects to gc when gc_mode is “context_gc”. This can be used during debugging.

info

Get the Limits object for this context containing information about hardware/driver limits and other context
information.

Example:

>> ctx.info.MAX_TEXTURE_SIZE
(16384, 16384)
>> ctx.info.VENDOR
NVIDIA Corporation
>> ctx.info.RENDERER
NVIDIA GeForce RTX 2080 SUPER/PCIe/SSE2

limits

Get the Limits object for this context containing information about hardware/driver limits and other context
information.

Warning: This an old alias for info and is only around for backwards compatibility.

Example:

33.28. OpenGL 529

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Deque
https://docs.python.org/3/library/typing.html#typing.Any

Python Arcade Library, Release 3.0.0.dev26

>> ctx.limits.MAX_TEXTURE_SIZE
(16384, 16384)
>> ctx.limits.VENDOR
NVIDIA Corporation
>> ctx.limits.RENDERER
NVIDIA GeForce RTX 2080 SUPER/PCIe/SSE2

stats

Get the stats instance containing runtime information about creation and destruction of OpenGL objects.

Example:

>> ctx.limits.MAX_TEXTURE_SIZE
(16384, 16384)
>> ctx.limits.VENDOR
NVIDIA Corporation
>> ctx.limits.RENDERER
NVIDIA GeForce RTX 2080 SUPER/PCIe/SSE2

window

The window this context belongs to.

Type
pyglet.Window

screen

The framebuffer for the window.

Type
Framebuffer

fbo

Get the currently active framebuffer. This property is read-only

Type
arcade.gl.Framebuffer

gl_version

The OpenGL version as a 2 component tuple. This is the reported OpenGL version from drivers and might
be a higher version than you requested.

Type
tuple (major, minor) version

gc()→ int
Run garbage collection of OpenGL objects for this context. This is only needed when gc_mode is
context_gc.

Returns
The number of resources destroyed

gc_mode

Set the garbage collection mode for OpenGL resources. Supported modes are:

Default:
Defer garbage collection until ctx.gc() is called
This can be useful to enforce the main thread to

(continues on next page)

530 Chapter 33. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

run garbage collection of opengl resources
ctx.gc_mode = "context_gc"

Auto collect is similar to python garbage collection.
This is a risky mode. Know what you are doing before using this.
ctx.gc_mode = "auto"

error

Check OpenGL error

Returns a string representation of the occurring error or None of no errors has occurred.

Example:

err = ctx.error
if err:

raise RuntimeError("OpenGL error: {err}")

Type
str

classmethod activate(ctx: Context)
Mark a context as the currently active one.

Warning: Never call this unless you know exactly what you are doing.

enable(*flags)
Enables one or more context flags:

Single flag
ctx.enable(ctx.BLEND)
Multiple flags
ctx.enable(ctx.DEPTH_TEST, ctx.CULL_FACE)

enable_only(*args)
Enable only some flags. This will disable all other flags. This is a simple way to ensure that context flag
states are not lingering from other sections of your code base:

Ensure all flags are disabled (enable no flags)
ctx.enable_only()
Make sure only blending is enabled
ctx.enable_only(ctx.BLEND)
Make sure only depth test and culling is enabled
ctx.enable_only(ctx.DEPTH_TEST, ctx.CULL_FACE)

enabled(*flags)
Temporarily change enabled flags.

Flags that was enabled initially will stay enabled. Only new enabled flags will be reversed when exiting the
context.

Example:

33.28. OpenGL 531

https://docs.python.org/3/library/stdtypes.html#str

Python Arcade Library, Release 3.0.0.dev26

with ctx.enabled(ctx.BLEND, ctx.CULL_FACE):
Render something

enabled_only(*flags)
Temporarily change enabled flags.

Only the supplied flags with be enabled in in the context. When exiting the context the old flags will be
restored.

Example:

with ctx.enabled_only(ctx.BLEND, ctx.CULL_FACE):
Render something

disable(*args)
Disable one or more context flags:

Single flag
ctx.disable(ctx.BLEND)
Multiple flags
ctx.disable(ctx.DEPTH_TEST, ctx.CULL_FACE)

is_enabled(flag)→ bool
Check if a context flag is enabled

Type
bool

viewport

Get or set the viewport for the currently active framebuffer. The viewport simply describes what pixels of
the screen OpenGL should render to. Normally it would be the size of the window’s framebuffer:

4:3 screen
ctx.viewport = 0, 0, 800, 600
1080p
ctx.viewport = 0, 0, 1920, 1080
Using the current framebuffer size
ctx.viewport = 0, 0, *ctx.screen.size

Type
tuple (x, y, width, height)

scissor

Get or set the scissor box for the active framebuffer. This is a shortcut for scissor().

By default the scissor box is disabled and has no effect and will have an initial value of None. The scissor
box is enabled when setting a value and disabled when set to None.

Example:

Set and enable scissor box only drawing
in a 100 x 100 pixel lower left area
ctx.scissor = 0, 0, 100, 100
Disable scissoring
ctx.scissor = None

532 Chapter 33. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple

Python Arcade Library, Release 3.0.0.dev26

Type
tuple (x, y, width, height)

blend_func

Get or set the blend function. This is tuple specifying how the color and alpha blending factors are computed
for the source and destination pixel.

When using a two component tuple you specify the blend function for the source and the destination.

When using a four component tuple you specify the blend function for the source color, source alpha des-
tination color and destination alpha. (separate blend functions for color and alpha)

Supported blend functions are:

ZERO
ONE
SRC_COLOR
ONE_MINUS_SRC_COLOR
DST_COLOR
ONE_MINUS_DST_COLOR
SRC_ALPHA
ONE_MINUS_SRC_ALPHA
DST_ALPHA
ONE_MINUS_DST_ALPHA

Shortcuts
DEFAULT_BLENDING # (SRC_ALPHA, ONE_MINUS_SRC_ALPHA)
ADDITIVE_BLENDING # (ONE, ONE)
PREMULTIPLIED_ALPHA # (SRC_ALPHA, ONE)

These enums can be accessed in the arcade.gl module or simply as attributes of the context object. The
raw enums from pyglet.gl can also be used.

Example:

Using constants from the context object
ctx.blend_func = ctx.ONE, ctx.ONE
from the gl module
from arcade import gl
ctx.blend_func = gl.ONE, gl.ONE

Type
tuple (src, dst)

front_face

Configure front face winding order of triangles.

By default the counter-clockwise winding side is the front face. This can be set set to clockwise or counter-
clockwise:

ctx.front_face = "cw"
ctx.front_face = "ccw"

cull_face

The face side to cull when face culling is enabled.

By default the back face is culled. This can be set to front, back or front_and_back:

33.28. OpenGL 533

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple

Python Arcade Library, Release 3.0.0.dev26

ctx.cull_face = "front"
ctx.cull_face = "back"
ctx.cull_face = "front_and_back"

wireframe

Get or set the wireframe mode. When enabled all primitives will be rendered as lines.

Type
bool

patch_vertices

Get or set number of vertices that will be used to make up a single patch primitive. Patch primitives are
consumed by the tessellation control shader (if present) and subsequently used for tessellation.

Type
int

point_size

Set or get the point size. Default is 1.0.

Point size changes the pixel size of rendered points. The min and max values are limited by
POINT_SIZE_RANGE. This value usually at least (1, 100), but this depends on the drivers/vendors.

If variable point size is needed you can enable PROGRAM_POINT_SIZE and write to gl_PointSize in the
vertex or geometry shader.

Note: Using a geometry shader to create triangle strips from points is often a safer way to render large
points since you don’t have have any size restrictions.

primitive_restart_index

Get or set the primitive restart index. Default is -1. The primitive restart index can be used in index buffers
to restart a primitive. This is for example useful when you use triangle strips or line strips and want to start
on a new strip in the same buffer / draw call.

finish()→ None
Wait until all OpenGL rendering commands are completed.

This function will actually stall until all work is done and may have severe performance implications.

flush()→ None
A suggestion to the driver to execute all the queued drawing calls even if the queue is not full yet. This is
not a blocking call and only a suggestion. This can potentially be used for speedups when we don’t have
anything else to render.

copy_framebuffer(src: Framebuffer, dst: Framebuffer)
Copies/blits a framebuffer to another one.

This operation has many restrictions to ensure it works across different platforms and drivers:

• The source and destination framebuffer must be the same size

• The formats of the attachments must be the same

• Only the source framebuffer can be multisampled

• Framebuffers cannot have integer attachments

Parameters

534 Chapter 33. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

Python Arcade Library, Release 3.0.0.dev26

• src – The framebuffer to copy from

• dst – The framebuffer we copy to

buffer(*, data: ByteString | memoryview | array | Array | None = None, reserve: int = 0, usage: str =
'static')→ Buffer

Create an OpenGL Buffer object. The buffer will contain all zero-bytes if no data is supplied.

Examples:

Create 1024 byte buffer
ctx.buffer(reserve=1024)
Create a buffer with 1000 float values using python's array.array
from array import array
ctx.buffer(data=array('f', [i for in in range(1000)])
Create a buffer with 1000 random 32 bit floats using numpy
self.ctx.buffer(data=np.random.random(1000).astype("f4"))

The data parameter can be anything that implements the Buffer Protocol.

This includes bytes, bytearray, array.array, and more. You may need to use typing workarounds for
non-builtin types. See Writing Raw Bytes to GL Buffers & Textures for more information.

The usage parameter enables the GL implementation to make more intelligent decisions that may impact
buffer object performance. It does not add any restrictions. If in doubt, skip this parameter and revisit when
optimizing. The result are likely to be different between vendors/drivers or may not have any effect.

The available values mean the following:

stream
The data contents will be modified once and used at most a few times.

static
The data contents will be modified once and used many times.

dynamic
The data contents will be modified repeatedly and used many times.

Parameters
• data – The buffer data. This can be a bytes instance or any any other object supporting

the buffer protocol.

• reserve – The number of bytes to reserve

• usage – Buffer usage. ‘static’, ‘dynamic’ or ‘stream’

framebuffer(*, color_attachments: Texture2D | List[Texture2D] | None = None, depth_attachment:
Texture2D | None = None)→ Framebuffer

Create a Framebuffer.

Parameters
• color_attachments – List of textures we want to render into

• depth_attachment – Depth texture

texture(size: Tuple[int, int], *, components: int = 4, dtype: str = 'f1', data: ByteString | memoryview | array
| Array | None = None, wrap_x: int | None = None, wrap_y: int | None = None, filter: Tuple[int, int]
| None = None, samples: int = 0, immutable: bool = False)→ Texture2D

33.28. OpenGL 535

https://docs.python.org/3/library/collections.abc.html#collections.abc.ByteString
https://docs.python.org/3/library/stdtypes.html#memoryview
https://docs.python.org/3/library/array.html#array.array
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/c-api/buffer.html
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/collections.abc.html#collections.abc.ByteString
https://docs.python.org/3/library/stdtypes.html#memoryview
https://docs.python.org/3/library/array.html#array.array
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

Python Arcade Library, Release 3.0.0.dev26

Create a 2D Texture.

Wrap modes: GL_REPEAT, GL_MIRRORED_REPEAT, GL_CLAMP_TO_EDGE, GL_CLAMP_TO_BORDER

Minifying filters: GL_NEAREST, GL_LINEAR, GL_NEAREST_MIPMAP_NEAREST,
GL_LINEAR_MIPMAP_NEAREST GL_NEAREST_MIPMAP_LINEAR, GL_LINEAR_MIPMAP_LINEAR

Magnifying filters: GL_NEAREST, GL_LINEAR

Parameters
• size (Tuple[int, int]) – The size of the texture

• components – Number of components (1: R, 2: RG, 3: RGB, 4: RGBA)

• dtype – The data type of each component: f1, f2, f4 / i1, i2, i4 / u1, u2, u4

• data – The texture data (optional). Can be bytes or any object supporting the buffer
protocol.

• wrap_x – How the texture wraps in x direction

• wrap_y – How the texture wraps in y direction

• filter – Minification and magnification filter

• samples – Creates a multisampled texture for values > 0

• immutable – Make the storage (not the contents) immutable. This can sometimes be re-
quired when using textures with compute shaders.

depth_texture(size: Tuple[int, int], *, data: ByteString | memoryview | array | Array | None = None)→
Texture2D

Create a 2D depth texture. Can be used as a depth attachment in a Framebuffer.

Parameters
• size (Tuple[int, int]) – The size of the texture

• data – The texture data (optional). Can be bytes or any object supporting the buffer
protocol.

geometry(content: Sequence[BufferDescription] | None = None, index_buffer: Buffer | None = None, mode:
int | None = None, index_element_size: int = 4)

Create a Geometry instance. This is Arcade’s version of a vertex array adding a lot of convenience for the
user. Geometry objects are fairly light. They are mainly responsible for automatically map buffer inputs to
your shader(s) and provide various methods for rendering or processing this geometry,

The same geometry can be rendered with different programs as long as your shader is using one or more
of the input attribute. This means geometry with positions and colors can be rendered with a program only
using the positions. We will automatically map what is necessary and cache these mappings internally for
performace.

In short, the geometry object is a light object that describes what buffers contains and automatically ne-
gotiate with shaders/programs. This is a very complex field in OpenGL so the Geometry object provides
substantial time savings and greatly reduces the complexity of your code.

Geometry also provide rendering methods supporting the following:

• Rendering geometry with and without index buffer

• Rendering your geometry using instancing. Per instance buffers can be provided or the current instance
can be looked up using gl_InstanceID in shaders.

536 Chapter 33. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/collections.abc.html#collections.abc.ByteString
https://docs.python.org/3/library/stdtypes.html#memoryview
https://docs.python.org/3/library/array.html#array.array
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int

Python Arcade Library, Release 3.0.0.dev26

• Running transform feedback shaders that writes to buffers instead the screen. This can write to one or
multiple buffer.

• Render your geometry with indirect rendering. This means packing multiple meshes into the same
buffer(s) and batch drawing them.

Examples:

Single buffer geometry with a vec2 vertex position attribute
ctx.geometry([BufferDescription(buffer, '2f', ["in_vert"])], mode=ctx.TRIANGLES)

Single interlaved buffer with two attributes. A vec2 position and vec2␣
→˓velocity
ctx.geometry([

BufferDescription(buffer, '2f 2f', ["in_vert", "in_velocity"])
],
mode=ctx.POINTS,

)

Geometry with index buffer
ctx.geometry(

[BufferDescription(buffer, '2f', ["in_vert"])],
index_buffer=ibo,
mode=ctx.TRIANGLES,

)

Separate buffers
ctx.geometry([

BufferDescription(buffer_pos, '2f', ["in_vert"])
BufferDescription(buffer_vel, '2f', ["in_velocity"])

],
mode=ctx.POINTS,

)

Providing per-instance data for instancing
ctx.geometry([

BufferDescription(buffer_pos, '2f', ["in_vert"])
BufferDescription(buffer_instance_pos, '2f', ["in_offset"],␣

→˓instanced=True)
],
mode=ctx.POINTS,

)

Parameters
• content – List of BufferDescription (optional)

• index_buffer – Index/element buffer (optional)

• mode – The default draw mode (optional)

• mode – The default draw mode (optional)

• index_element_size – Byte size of a single index/element in the index buffer. In other
words, the index buffer can be 8, 16 or 32 bit integers. Can be 1, 2 or 4 (8, 16 or 32 bit
unsigned integer)

33.28. OpenGL 537

Python Arcade Library, Release 3.0.0.dev26

program(*, vertex_shader: str, fragment_shader: str | None = None, geometry_shader: str | None = None,
tess_control_shader: str | None = None, tess_evaluation_shader: str | None = None, common:
List[str] | None = None, defines: Dict[str, str] | None = None, varyings: Sequence[str] | None =
None, varyings_capture_mode: str = 'interleaved')→ Program

Create a Program given the vertex, fragment and geometry shader.

Parameters
• vertex_shader – vertex shader source

• fragment_shader – fragment shader source (optional)

• geometry_shader – geometry shader source (optional)

• tess_control_shader – tessellation control shader source (optional)

• tess_evaluation_shader – tessellation evaluation shader source (optional)

• common – Common shader sources injected into all shaders

• defines – Substitute #defines values in the source (optional)

• varyings – The name of the out attributes in a transform shader. This is normally not
necessary since we auto detect them, but some more complex out structures we can’t detect.

• varyings_capture_mode – The capture mode for transforms. "interleaved" means
all out attribute will be written to a single buffer. "separate" means each out attribute
will be written separate buffers. Based on these settings the transform() method will accept
a single buffer or a list of buffer.

query(*, samples=True, time=True, primitives=True)→ Query
Create a query object for measuring rendering calls in opengl.

Parameters
• samples – Collect written samples

• time – Measure rendering duration

• primitives – Collect the number of primitives emitted

compute_shader(*, source: str, common: Iterable[str] = ())→ ComputeShader
Create a compute shader.

Parameters
• source – The glsl source

• common – Common / library source injected into compute shader

ContextStats

class arcade.gl.context.ContextStats(warn_threshold=100)
Bases:

Runtime allocation statistics of OpenGL objects.

texture

Textures (created, freed)

framebuffer

Framebuffers (created, freed)

538 Chapter 33. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str

Python Arcade Library, Release 3.0.0.dev26

buffer

Buffers (created, freed)

program

Programs (created, freed)

vertex_array

Vertex Arrays (created, freed)

geometry

Geometry (created, freed)

compute_shader

Compute Shaders (created, freed)

query

Queries (created, freed)

incr(key: str)→ None
Increments a counter.

Parameters
key – The attribute name / counter to increment.

decr(key)
Decrement a counter.

Parameters
key – The attribute name / counter to decrement.

Limits

class arcade.gl.context.Limits(ctx)
Bases:

OpenGL Limitations

MINOR_VERSION

Minor version number of the OpenGL API supported by the current context

MAJOR_VERSION

Major version number of the OpenGL API supported by the current context.

VENDOR

The vendor string. For example “NVIDIA Corporation”

RENDERER

The renderer things. For example “NVIDIA GeForce RTX 2080 SUPER/PCIe/SSE2”

SAMPLE_BUFFERS

Value indicating the number of sample buffers associated with the framebuffer

SUBPIXEL_BITS

An estimate of the number of bits of subpixel resolution that are used to position rasterized geometry in
window coordinates

UNIFORM_BUFFER_OFFSET_ALIGNMENT

Minimum required alignment for uniform buffer sizes and offset

33.28. OpenGL 539

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

Python Arcade Library, Release 3.0.0.dev26

MAX_ARRAY_TEXTURE_LAYERS

Value indicates the maximum number of layers allowed in an array texture, and must be at least 256

MAX_3D_TEXTURE_SIZE

A rough estimate of the largest 3D texture that the GL can handle. The value must be at least 64

MAX_COLOR_ATTACHMENTS

Maximum number of color attachments in a framebuffer

MAX_COLOR_TEXTURE_SAMPLES

Maximum number of samples in a color multisample texture

MAX_COMBINED_FRAGMENT_UNIFORM_COMPONENTS

the number of words for fragment shader uniform variables in all uniform blocks

MAX_COMBINED_GEOMETRY_UNIFORM_COMPONENTS

Number of words for geometry shader uniform variables in all uniform blocks

MAX_COMBINED_TEXTURE_IMAGE_UNITS

Maximum supported texture image units that can be used to access texture maps from the vertex shader

MAX_COMBINED_UNIFORM_BLOCKS

Maximum number of uniform blocks per program

MAX_COMBINED_VERTEX_UNIFORM_COMPONENTS

Number of words for vertex shader uniform variables in all uniform blocks

MAX_CUBE_MAP_TEXTURE_SIZE

A rough estimate of the largest cube-map texture that the GL can handle

MAX_DEPTH_TEXTURE_SAMPLES

Maximum number of samples in a multisample depth or depth-stencil texture

MAX_DRAW_BUFFERS

Maximum number of simultaneous outputs that may be written in a fragment shader

MAX_ELEMENTS_INDICES

Recommended maximum number of vertex array indices

MAX_ELEMENTS_VERTICES

Recommended maximum number of vertex array vertices

MAX_FRAGMENT_INPUT_COMPONENTS

Maximum number of components of the inputs read by the fragment shader

MAX_FRAGMENT_UNIFORM_COMPONENTS

Maximum number of individual floating-point, integer, or boolean values that can be held in uniform vari-
able storage for a fragment shader

MAX_FRAGMENT_UNIFORM_VECTORS

maximum number of individual 4-vectors of floating-point, integer, or boolean values that can be held in
uniform variable storage for a fragment shader

MAX_FRAGMENT_UNIFORM_BLOCKS

Maximum number of uniform blocks per fragment shader.

MAX_GEOMETRY_INPUT_COMPONENTS

Maximum number of components of inputs read by a geometry shader

540 Chapter 33. API Reference

Python Arcade Library, Release 3.0.0.dev26

MAX_GEOMETRY_OUTPUT_COMPONENTS

Maximum number of components of outputs written by a geometry shader

MAX_GEOMETRY_TEXTURE_IMAGE_UNITS

Maximum supported texture image units that can be used to access texture maps from the geometry shader

MAX_GEOMETRY_UNIFORM_BLOCKS

Maximum number of uniform blocks per geometry shader

MAX_GEOMETRY_UNIFORM_COMPONENTS

Maximum number of individual floating-point, integer, or boolean values that can be held in uniform vari-
able storage for a geometry shader

MAX_INTEGER_SAMPLES

Maximum number of samples supported in integer format multisample buffers

MAX_SAMPLES

Maximum samples for a framebuffer

MAX_RENDERBUFFER_SIZE

Maximum supported size for renderbuffers

MAX_SAMPLE_MASK_WORDS

Maximum number of sample mask words

MAX_TEXTURE_SIZE

The value gives a rough estimate of the largest texture that the GL can handle

MAX_UNIFORM_BUFFER_BINDINGS

Maximum number of uniform buffer binding points on the context

MAX_UNIFORM_BLOCK_SIZE

Maximum size in basic machine units of a uniform block

MAX_VARYING_VECTORS

The number 4-vectors for varying variables

MAX_VERTEX_ATTRIBS

Maximum number of 4-component generic vertex attributes accessible to a vertex shader.

MAX_VERTEX_TEXTURE_IMAGE_UNITS

Maximum supported texture image units that can be used to access texture maps from the vertex shader.

MAX_VERTEX_UNIFORM_COMPONENTS

Maximum number of individual floating-point, integer, or boolean values that can be held in uniform vari-
able storage for a vertex shader

MAX_VERTEX_UNIFORM_VECTORS

Maximum number of 4-vectors that may be held in uniform variable storage for the vertex shader

MAX_VERTEX_OUTPUT_COMPONENTS

Maximum number of components of output written by a vertex shader

MAX_VERTEX_UNIFORM_BLOCKS

Maximum number of uniform blocks per vertex shader.

MAX_TEXTURE_MAX_ANISOTROPY

The highest supported anisotropy value. Usually 8.0 or 16.0.

33.28. OpenGL 541

Python Arcade Library, Release 3.0.0.dev26

MAX_VIEWPORT_DIMS: Tuple[int, int]

The maximum support window or framebuffer viewport. This is usually the same as the maximum texture
size

MAX_TRANSFORM_FEEDBACK_SEPARATE_ATTRIBS

How many buffers we can have as output when doing a transform(feedback). This is usually 4

POINT_SIZE_RANGE

The minimum and maximum point size

get_int_tuple(enum: c_uint | int, length: Literal[2])→ Tuple[int, int]
get_int_tuple(enum: c_uint | int, length: int)→ Tuple[int, ...]

Get an enum as an int tuple

get(enum: c_uint | int, default=0)→ int
Get an integer limit

get_float(enum: c_uint | int, default=0.0)→ float
Get a float limit

get_str(enum: c_uint | int)→ str
Get a string limit

33.28.2 Texture

class arcade.gl.Texture2D(ctx: Context, size: Tuple[int, int], *, components: int = 4, dtype: str = 'f1', data:
BufferProtocol | None = None, filter: Tuple[PyGLuint, PyGLuint] | None = None,
wrap_x: PyGLuint | None = None, wrap_y: PyGLuint | None = None,
target=3553, depth=False, samples: int = 0, immutable: bool = False)

Bases:

An OpenGL 2D texture. We can create an empty black texture or a texture from byte data. A texture can also be
created with different datatypes such as float, integer or unsigned integer.

The best way to create a texture instance is through arcade.gl.Context.texture()

Supported dtype values are:

Float formats
'f1': UNSIGNED_BYTE
'f2': HALF_FLOAT
'f4': FLOAT
int formats
'i1': BYTE
'i2': SHORT
'i4': INT
uint formats
'u1': UNSIGNED_BYTE
'u2': UNSIGNED_SHORT
'u4': UNSIGNED_INT

Parameters
• ctx – The context the object belongs to

• size (Tuple[int, int]) – The size of the texture

542 Chapter 33. API Reference

https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/ctypes.html#ctypes.c_uint
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/ctypes.html#ctypes.c_uint
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/ctypes.html#ctypes.c_uint
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/ctypes.html#ctypes.c_uint
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/ctypes.html#ctypes.c_uint
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Python Arcade Library, Release 3.0.0.dev26

• components – The number of components (1: R, 2: RG, 3: RGB, 4: RGBA)

• dtype – The data type of each component: f1, f2, f4 / i1, i2, i4 / u1, u2, u4

• data – The texture data (optional). Can be bytes or any object supporting the buffer protocol.

• filter – The minification/magnification filter of the texture

• wrap_x – Wrap mode x

• wrap_y – Wrap mode y

• target – The texture type (Ignored. Legacy)

• depth – creates a depth texture if True

• samples – Creates a multisampled texture for values > 0. This value will be clamped be-
tween 0 and the max sample capability reported by the drivers.

• immutable – Make the storage (not the contents) immutable. This can sometimes be re-
quired when using textures with compute shaders.

resize(size: Tuple[int, int])
Resize the texture. This will re-allocate the internal memory and all pixel data will be lost.

ctx

The context this texture belongs to

Type
Context

glo

The OpenGL texture id

Type
GLuint

width

The width of the texture in pixels

Type
int

height

The height of the texture in pixels

Type
int

dtype

The data type of each component

Type
str

size

The size of the texture as a tuple

Type
tuple (width, height)

33.28. OpenGL 543

https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple

Python Arcade Library, Release 3.0.0.dev26

samples

Number of samples if multisampling is enabled (read only)

Type
int

byte_size

The byte size of the texture.

Type
int

components

Number of components in the texture

Type
int

component_size

Size in bytes of each component

Type
int

depth

If this is a depth texture.

Type
bool

immutable

Does this texture have immutable storage?

Type
bool

swizzle

The swizzle mask of the texture (Default 'RGBA').

The swizzle mask change/reorder the vec4 value returned by the texture() function in a GLSL shaders.
This is represented by a 4 character string were each character can be:

'R' GL_RED
'G' GL_GREEN
'B' GL_BLUE
'A' GL_ALPHA
'0' GL_ZERO
'1' GL_ONE

Example:

Alpha channel will always return 1.0
texture.swizzle = 'RGB1'

Only return the red component. The rest is masked to 0.0
texture.swizzle = 'R000'

Reverse the components
texture.swizzle = 'ABGR'

544 Chapter 33. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Python Arcade Library, Release 3.0.0.dev26

Type
str

filter

Get or set the (min, mag) filter for this texture. These are rules for how a texture interpolates. The filter
is specified for minification and magnification.

Default value is LINEAR, LINEAR. Can be set to NEAREST, NEAREST for pixelated graphics.

When mipmapping is used the min filter needs to be one of the MIPMAP variants.

Accepted values:

Enums can be accessed on the context or arcade.gl
NEAREST # Nearest pixel
LINEAR # Linear interpolate
NEAREST_MIPMAP_NEAREST # Minification filter for mipmaps
LINEAR_MIPMAP_NEAREST # Minification filter for mipmaps
NEAREST_MIPMAP_LINEAR # Minification filter for mipmaps
LINEAR_MIPMAP_LINEAR # Minification filter for mipmaps

Also see

• https://www.khronos.org/opengl/wiki/Texture#Mip_maps

• https://www.khronos.org/opengl/wiki/Sampler_Object#Filtering

Type
tuple (min filter, mag filter)

wrap_x

Get or set the horizontal wrapping of the texture. This decides how textures are read when texture coordi-
nates are outside the [0.0, 1.0] area. Default value is REPEAT.

Valid options are:

Note: Enums can also be accessed in arcade.gl
Repeat pixels on the y axis
texture.wrap_x = ctx.REPEAT
Repeat pixels on the y axis mirrored
texture.wrap_x = ctx.MIRRORED_REPEAT
Repeat the edge pixels when reading outside the texture
texture.wrap_x = ctx.CLAMP_TO_EDGE
Use the border color (black by default) when reading outside the texture
texture.wrap_x = ctx.CLAMP_TO_BORDER

Type
int

wrap_y

Get or set the horizontal wrapping of the texture. This decides how textures are read when texture coordi-
nates are outside the [0.0, 1.0] area. Default value is REPEAT.

Valid options are:

33.28. OpenGL 545

https://docs.python.org/3/library/stdtypes.html#str
https://www.khronos.org/opengl/wiki/Texture#Mip_maps
https://www.khronos.org/opengl/wiki/Sampler_Object#Filtering
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int

Python Arcade Library, Release 3.0.0.dev26

Note: Enums can also be accessed in arcade.gl
Repeat pixels on the x axis
texture.wrap_x = ctx.REPEAT
Repeat pixels on the x axis mirrored
texture.wrap_x = ctx.MIRRORED_REPEAT
Repeat the edge pixels when reading outside the texture
texture.wrap_x = ctx.CLAMP_TO_EDGE
Use the border color (black by default) when reading outside the texture
texture.wrap_x = ctx.CLAMP_TO_BORDER

Type
int

anisotropy

Get or set the anisotropy for this texture.

compare_func

Get or set the compare function for a depth texture:

texture.compare_func = None # Disable depth comparison completely
texture.compare_func = '<=' # GL_LEQUAL
texture.compare_func = '<' # GL_LESS
texture.compare_func = '>=' # GL_GEQUAL
texture.compare_func = '>' # GL_GREATER
texture.compare_func = '==' # GL_EQUAL
texture.compare_func = '!=' # GL_NOTEQUAL
texture.compare_func = '0' # GL_NEVER
texture.compare_func = '1' # GL_ALWAYS

Type
str

read(level: int = 0, alignment: int = 1)→ bytes
Read the contents of the texture.

Parameters
• level – The texture level to read

• alignment – Alignment of the start of each row in memory in number of bytes. Possible
values: 1,2,4

write(data: ByteString | memoryview | array | Array | Buffer, level: int = 0, viewport=None)→ None
Write byte data from the passed source to the texture.

The data value can be either an arcade.gl.Buffer or anything that implements the Buffer Protocol.

The latter category includes bytes, bytearray, array.array, and more. You may need to use typing
workarounds for non-builtin types. See Writing Raw Bytes to GL Buffers & Textures for more information.

Parameters
• data – Buffer or buffer protocol object with data to write.

• level – The texture level to write

546 Chapter 33. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/collections.abc.html#collections.abc.ByteString
https://docs.python.org/3/library/stdtypes.html#memoryview
https://docs.python.org/3/library/array.html#array.array
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/c-api/buffer.html

Python Arcade Library, Release 3.0.0.dev26

• viewport (Union[Tuple[int, int], Tuple[int, int, int, int]]) – The area
of the texture to write. 2 or 4 component tuple

build_mipmaps(base: int = 0, max_level: int = 1000)→ None
Generate mipmaps for this texture.

The default values usually work well.

Mipmaps are successively smaller versions of an original texture with special filtering applied. Using
mipmaps allows OpenGL to render scaled versions of original textures with fewer scaling artifacts.

Mipmaps can be made for textures of any size. Each mipmap version halves the width and height of the
previous one (e.g. 256 x 256, 128 x 128, 64 x 64, etc) down to a minimum of 1 x 1.

Note: Mipmaps will only be used if a texture’s filter is configured with a mipmap-type minification:

Set up linear interpolating minification filter
texture.filter = ctx.LINEAR_MIPMAP_LINEAR, ctx.LINEAR

Parameters
• base – Level the mipmaps start at (usually 0)

• max_level – The maximum number of levels to generate

Also see: https://www.khronos.org/opengl/wiki/Texture#Mip_maps

delete()

Destroy the underlying OpenGL resource. Don’t use this unless you know exactly what you are doing.

static delete_glo(ctx: Context, glo: gl.GLuint)
Destroy the texture. This is called automatically when the object is garbage collected.

Parameters
• ctx – OpenGL Context

• glo – The OpenGL texture id

use(unit: int = 0)→ None
Bind the texture to a channel,

Parameters
unit – The texture unit to bind the texture.

bind_to_image(unit: int, read: bool = True, write: bool = True, level: int = 0)
Bind textures to image units.

Note that either or both read and write needs to be True. The supported modes are: read only, write
only, read-write

Parameters
• unit – The image unit

• read – The compute shader intends to read from this image

• write – The compute shader intends to write to this image

• level –

33.28. OpenGL 547

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://www.khronos.org/opengl/wiki/Texture#Mip_maps
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

Python Arcade Library, Release 3.0.0.dev26

get_handle(resident: bool = True)→ int
Get a handle for bindless texture access.

Once a handle is created its parameters cannot be changed. Attempting to do so will have no effect. (filter,
wrap etc). There is no way to undo this immutability.

Handles cannot be used by shaders until they are resident. This method can be called multiple times to
move a texture in and out of residency:

>> texture.get_handle(resident=False)
4294969856
>> texture.get_handle(resident=True)
4294969856

Ths same handle is returned if the handle already exists.

Note: Limitations from the OpenGL wiki

The amount of storage available for resident images/textures may be less than the total storage for textures
that is available. As such, you should attempt to minimize the time a texture spends being resident. Do
not attempt to take steps like making textures resident/unresident every frame or something. But if you are
finished using a texture for some time, make it unresident.

Keyword Arguments
resident (bool) – Make the texture resident.

33.28.3 Buffer

class arcade.gl.Buffer(ctx: Context, data: BufferProtocol | None = None, reserve: int = 0, usage: str =
'static')

Bases:

OpenGL buffer object. Buffers store byte data and upload it to graphics memory so shader programs can process
the data. They are used for storage of vertex data, element data (vertex indexing), uniform block data etc.

The data parameter can be anything that implements the Buffer Protocol.

This includes bytes, bytearray, array.array, and more. You may need to use typing workarounds for non-
builtin types. See Writing Raw Bytes to GL Buffers & Textures for more information.

Warning: Buffer objects should be created using arcade.gl.Context.buffer()

Parameters
• ctx – The context this buffer belongs to

• data – The data this buffer should contain. It can be a bytes instance or any object sup-
porting the buffer protocol.

• reserve – Create a buffer of a specific byte size

• usage – A hit of this buffer is static or dynamic (can mostly be ignored)

548 Chapter 33. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/c-api/buffer.html

Python Arcade Library, Release 3.0.0.dev26

size

The byte size of the buffer.

Type
int

ctx

The context this resource belongs to.

Type
arcade.gl.Context

glo

The OpenGL resource id

Type
gl.GLuint

delete()

Destroy the underlying OpenGL resource. Don’t use this unless you know exactly what you are doing.

static delete_glo(ctx: Context, glo: gl.GLuint)
Release/delete open gl buffer. This is automatically called when the object is garbage collected.

read(size: int = -1, offset: int = 0)→ bytes
Read data from the buffer.

Parameters
• size – The bytes to read. -1 means the entire buffer (default)

• offset – Byte read offset

write(data: ByteString | memoryview | array | Array, offset: int = 0)
Write byte data to the buffer from a buffer protocol object.

The data value can be anything that implements the Buffer Protocol.

This includes bytes, bytearray, array.array, and more. You may need to use typing workarounds for
non-builtin types. See Writing Raw Bytes to GL Buffers & Textures for more information.

If the supplied data is larger than the buffer, it will be truncated to fit. If the supplied data is smaller than
the buffer, the remaining bytes will be left unchanged.

Parameters
• data – The byte data to write. This can be bytes or any object supporting the buffer pro-

tocol.

• offset – The byte offset

copy_from_buffer(source: Buffer, size=-1, offset=0, source_offset=0)
Copy data into this buffer from another buffer

Parameters
• source – The buffer to copy from

• size – The amount of bytes to copy

• offset – The byte offset to write the data in this buffer

• source_offset – The byte offset to read from the source buffer

33.28. OpenGL 549

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/collections.abc.html#collections.abc.ByteString
https://docs.python.org/3/library/stdtypes.html#memoryview
https://docs.python.org/3/library/array.html#array.array
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/c-api/buffer.html

Python Arcade Library, Release 3.0.0.dev26

orphan(size: int = -1, double: bool = False)
Re-allocate the entire buffer memory. This can be used to resize a buffer or for re-specification (orphan the
buffer to avoid blocking).

If the current buffer is busy in rendering operations it will be deallocated by OpenGL when completed.

Parameters
• size – New size of buffer. -1 will retain the current size.

• double – Is passed in with True the buffer size will be doubled

bind_to_uniform_block(binding: int = 0, offset: int = 0, size: int = -1)
Bind this buffer to a uniform block location. In most cases it will be sufficient to only provide a binding
location.

Parameters
• binding – The binding location

• offset – byte offset

• size – size of the buffer to bind.

bind_to_storage_buffer(*, binding=0, offset=0, size=-1)
Bind this buffer as a shader storage buffer.

Parameters
• binding – The binding location

• offset – Byte offset in the buffer

• size – The size in bytes. The entire buffer will be mapped by default.

33.28.4 BufferDescription

class arcade.gl.BufferDescription(buffer: Buffer, formats: str, attributes: Sequence[str], normalized:
Iterable[str] | None = None, instanced: bool = False)

Bases:

Buffer Object description used with arcade.gl.Geometry.

This class provides a Buffer object with a description of its content, allowing the a Geometry object to correctly
map shader attributes to a program/shader.

The formats is a string providing the number and type of each attribute. Currently we only support f (float), i
(integer) and B (unsigned byte).

normalized enumerates the attributes which must have their values normalized. This is useful for instance for
colors attributes given as unsigned byte and normalized to floats with values between 0.0 and 1.0.

instanced allows this buffer to be used as instanced buffer. Each value will be used once for the whole geometry.
The geometry will be repeated a number of times equal to the number of items in the Buffer.

Example:

Describe my_buffer
It contains two floating point numbers being a 2d position
and two floating point numbers being texture coordinates.
We expect the shader using this buffer to have an in_pos and in_uv attribute␣

(continues on next page)

550 Chapter 33. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

→˓(exact name)
BufferDescription(

my_buffer,
'2f 2f',
['in_pos', 'in_uv'],

)

Parameters
• buffer – The buffer to describe

• formats – The format of each attribute

• attributes – List of attributes names (strings)

• normalized – list of attribute names that should be normalized

• instanced – True if this is per instance data

buffer: Buffer

The Buffer this description object describes

attributes

List of string attributes

normalized: Set[str]

List of normalized attributes

instanced: bool

Instanced flag (bool)

formats: List[AttribFormat]

Formats of each attribute

stride: int

The byte stride of the buffer

num_vertices: int

Number of vertices in the buffer

33.28.5 Geometry

Geometry Methods

arcade.gl.geometry.quad_2d_fs()→ Geometry
Creates a screen aligned quad using normalized device coordinates

arcade.gl.geometry.quad_2d(size: Tuple[float, float] = (1.0, 1.0), pos: Tuple[float, float] = (0.0, 0.0))→
Geometry

Creates 2D quad Geometry using 2 triangle strip with texture coordinates.

Parameters
• size – width and height

• pos – Center position x and y

33.28. OpenGL 551

https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Python Arcade Library, Release 3.0.0.dev26

arcade.gl.geometry.screen_rectangle(bottom_left_x: float, bottom_left_y: float, width: float, height: float)
→ Geometry

Creates screen rectangle using 2 triangle strip with texture coordinates.

Parameters
• bottom_left_x – Bottom left x position

• bottom_left_y – Bottom left y position

• width – Width of the rectangle

• height – Height of the rectangle

arcade.gl.geometry.cube(size: Tuple[float, float, float] = (1.0, 1.0, 1.0), center: Tuple[float, float, float] = (0.0,
0.0, 0.0))→ Geometry

Creates a cube with normals and texture coordinates.

Parameters
• size – size of the cube as a 3-component tuple

• center – center of the cube as a 3-component tuple

Returns
A cube

Geometry

class arcade.gl.Geometry(ctx: Context, content: Sequence[BufferDescription] | None, index_buffer: Buffer |
None = None, mode: int | None = None, index_element_size: int = 4)

Bases:

A higher level abstraction of the VertexArray. It generates VertexArray instances on the fly internally matching
the incoming program. This means we can render the same geometry with different programs as long as the
Program and BufferDescription have compatible attributes.

Geometry objects should be created through arcade.gl.Context.geometry()

Parameters
• ctx – The context this object belongs to

• content – List of BufferDescriptions

• index_buffer – Index/element buffer

• mode – The default draw mode

ctx

The context this geometry belongs to.

Type
Geometry

index_buffer

Index/element buffer if supplied at creation.

Type
Buffer

552 Chapter 33. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int

Python Arcade Library, Release 3.0.0.dev26

num_vertices

Get or set the number of vertices. Be careful when modifying this properly and be absolutely sure what
you are doing.

Type
int

append_buffer_description(descr: BufferDescription)
Append a new BufferDescription to the existing Geometry. .. Warning:: a Geometry cannot contain two
BufferDescriptions which share an attribute name.

instance(program: Program)→ VertexArray
Get the arcade.gl.VertexArray compatible with this program

render(program: Program, *, mode: c_uint | int | None = None, first: int = 0, vertices: int | None = None,
instances: int = 1)→ None

Render the geometry with a specific program.

The geometry object will know how many vertices your buffers contains so overriding vertices is not needed
unless you have a special case or have resized the buffers after the geometry instance was created.

Parameters
• program – The Program to render with

• mode – Override what primitive mode should be used

• first – Offset start vertex

• vertices – Override the number of vertices to render

• instances – Number of instances to render

render_indirect(program: Program, buffer: Buffer, *, mode: c_uint | int | None = None, count: int = -1,
first: int = 0, stride: int = 0)

Render the VertexArray to the framebuffer using indirect rendering.

Warning: This requires OpenGL 4.3

The following structs are expected for the buffer:

// Array rendering - no index buffer (16 bytes)
typedef struct {

uint count;
uint instanceCount;
uint first;
uint baseInstance;

} DrawArraysIndirectCommand;

// Index rendering - with index buffer 20 bytes
typedef struct {

GLuint count;
GLuint instanceCount;
GLuint firstIndex;
GLuint baseVertex;
GLuint baseInstance;

} DrawElementsIndirectCommand;

33.28. OpenGL 553

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/ctypes.html#ctypes.c_uint
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/ctypes.html#ctypes.c_uint
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Python Arcade Library, Release 3.0.0.dev26

The stride is the byte stride between every redering command in the buffer. By default we assume this is
16 for array rendering (no index buffer) and 20 for indexed rendering (with index buffer)

Parameters
• program – The program to execute

• buffer – The buffer containing one or multiple draw parameters

• mode – Primitive type to render. TRIANGLES, LINES etc.

• count – The number if indirect draw calls to run. If omitted all draw commands in the
buffer will be executed.

• first – The first indirect draw call to start on

• stride – The byte stride of the draw command buffer. Keep the default (0) if the buffer is
tightly packed.

transform(program: Program, buffer: Buffer | List[Buffer], *, first: int = 0, vertices: int | None = None,
instances: int = 1, buffer_offset: int = 0)→ None

Render with transform feedback. Instead of rendering to the screen or a framebuffer the result will instead
end up in the buffer we supply.

If a geometry shader is used the output primitive mode is automatically detected.

Parameters
• program – The Program to render with

• buffer (Union[Buffer, Sequence[Buffer]]) – The buffer(s) we transform into. This
depends on the programs varyings_capture_mode. We can transform into one buffer
interlaved or transform each attribute into separate buffers.

• first – Offset start vertex

• vertices – Number of vertices to render

• instances – Number of instances to render

• buffer_offset – Byte offset for the buffer

flush()→ None
Flush all the internally generated VertexArrays.

The Geometry instance will store a VertexArray for every unique set of input attributes it stumbles over
when redering and transform calls are issued. This data is usually pretty light weight and usually don’t
need flushing.

VertexArray

class arcade.gl.VertexArray(ctx: Context, program: Program, content: Sequence[BufferDescription],
index_buffer: Buffer | None = None, index_element_size: int = 4)

Bases:

Wrapper for Vertex Array Objects (VAOs).

This objects should not be instantiated from user code. Use arcade.gl.Geometry instead. It will create VAO
instances for you automatically. There is a lot of complex interaction between programs and vertex arrays that
will be done for you automatically.

554 Chapter 33. API Reference

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int

Python Arcade Library, Release 3.0.0.dev26

ctx

The Context this object belongs to

Type
arcade.gl.Context

program

The assigned program

Type
arcade.gl.Program

ibo

Element/index buffer

Type
arcade.gl.Buffer

num_vertices

The number of vertices

Type
int

delete()

Destroy the underlying OpenGL resource. Don’t use this unless you know exactly what you are doing.

static delete_glo(ctx: Context, glo: gl.GLuint)
Delete this object. This is automatically called when this object is garbage collected.

render(mode: c_uint | int, first: int = 0, vertices: int = 0, instances: int = 1)
Render the VertexArray to the currently active framebuffer.

Parameters
• mode – Primitive type to render. TRIANGLES, LINES etc.

• first – The first vertex to render from

• vertices – Number of vertices to render

• instances – OpenGL instance, used in using vertices over and over

render_indirect(buffer: Buffer, mode: c_uint | int, count, first, stride)
Render the VertexArray to the framebuffer using indirect rendering.

Warning: This requires OpenGL 4.3

Parameters
• buffer – The buffer containing one or multiple draw parameters

• mode – Primitive type to render. TRIANGLES, LINES etc.

• count – The number if indirect draw calls to run

• first – The first indirect draw call to start on

• stride – The byte stride of the draw command buffer. Keep the default (0) if the buffer is
tightly packed.

33.28. OpenGL 555

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/ctypes.html#ctypes.c_uint
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/ctypes.html#ctypes.c_uint
https://docs.python.org/3/library/functions.html#int

Python Arcade Library, Release 3.0.0.dev26

transform_interleaved(buffer: Buffer, mode: c_uint | int, output_mode: c_uint | int, first: int = 0,
vertices: int = 0, instances: int = 1, buffer_offset=0)

Run a transform feedback.

Parameters
• buffer – The buffer to write the output

• mode – The input primitive mode

• output_mode – The output primitive mode

• first – Offset start vertex

• vertices – Number of vertices to render

• instances – Number of instances to render

• buffer_offset – Byte offset for the buffer (target)

transform_separate(buffers: List[Buffer], mode: c_uint | int, output_mode: c_uint | int, first: int = 0,
vertices: int = 0, instances: int = 1, buffer_offset=0)

Run a transform feedback writing to separate buffers.

Parameters
• buffers – The buffers to write the output

• mode – The input primitive mode

• output_mode – The output primitive mode

• first – Offset start vertex

• vertices – Number of vertices to render

• instances – Number of instances to render

• buffer_offset – Byte offset for the buffer (target)

glo

33.28.6 Framebuffer

FrameBuffer

class arcade.gl.Framebuffer(ctx: Context, *, color_attachments=None, depth_attachment: Texture2D | None
= None)

Bases:

An offscreen render target also called a Framebuffer Object in OpenGL. This implementation is using texture
attachments. When creating a Framebuffer we supply it with textures we want our scene rendered into. The
advantage of using texture attachments is the ability we get to keep working on the contents of the framebuffer.

The best way to create framebuffer is through arcade.gl.Context.framebuffer():

Create a 100 x 100 framebuffer with one attachment
ctx.framebuffer(color_attachments=[ctx.texture((100, 100), components=4)])

Create a 100 x 100 framebuffer with two attachments
Shaders can be configured writing to the different layers

(continues on next page)

556 Chapter 33. API Reference

https://docs.python.org/3/library/ctypes.html#ctypes.c_uint
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/ctypes.html#ctypes.c_uint
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/ctypes.html#ctypes.c_uint
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/ctypes.html#ctypes.c_uint
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

ctx.framebuffer(
color_attachments=[

ctx.texture((100, 100), components=4),
ctx.texture((100, 100), components=4),

]
)

Parameters
• ctx – The context this framebuffer belongs to

• color_attachments – List of color attachments.

• depth_attachment – A depth attachment (optional)

is_default = False

Is this the default framebuffer? (window buffer)

glo

The OpenGL id/name of the framebuffer

Type
GLuint

viewport

Get or set the framebuffer’s viewport. The viewport parameter are (x, y, width, height). It deter-
mines what part of the framebuffer should be rendered to. By default the viewport is (0, 0, width,
height).

The viewport value is persistent all will automatically be applies every time the framebuffer is bound.

Example:

100, x 100 lower left with size 200 x 200px
fb.viewport = 100, 100, 200, 200

scissor

Get or set the scissor box for this framebuffer.

By default the scissor box is disabled and has no effect and will have an initial value of None. The scissor
box is enabled when setting a value and disabled when set to None

Set and enable scissor box only drawing # in a 100 x 100 pixel lower left area ctx.scissor = 0, 0,
100, 100 # Disable scissoring ctx.scissor = None

Type
tuple (x, y, width, height)

ctx

The context this object belongs to.

Type
arcade.gl.Context

width

The width of the framebuffer in pixels

33.28. OpenGL 557

https://docs.python.org/3/library/stdtypes.html#tuple

Python Arcade Library, Release 3.0.0.dev26

Type
int

height

The height of the framebuffer in pixels

Type
int

size

Size as a (w, h) tuple

Type
tuple (int, int)

samples

Number of samples (MSAA)

Type
int

color_attachments

A list of color attachments

Type
list of arcade.gl.Texture

depth_attachment

Depth attachment

Type
arcade.gl.Texture

depth_mask

True). It determines if depth values should be written to the depth texture when depth testing is enabled.

The depth mask value is persistent all will automatically be applies every time the framebuffer is bound.

Type
bool

Type
Get or set the depth mask (default

activate()

Context manager for binding the framebuffer.

Unlike the default context manager in this class this support nested framebuffer binding.

use(*, force: bool = False)
Bind the framebuffer making it the target of all rendering commands

Parameters
force – Force the framebuffer binding even if the system already believes it’s already bound.

clear(color: Tuple[int, int, int] | Tuple[int, int, int, int] | Tuple[float, float, float] | Tuple[float, float, float,
float] = (0.0, 0.0, 0.0, 0.0), *, depth: float = 1.0, normalized: bool = False, viewport: Tuple[int, int,
int, int] | None = None)

Clears the framebuffer:

558 Chapter 33. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

Python Arcade Library, Release 3.0.0.dev26

Clear the framebuffer using arcade's colors (not normalized)
fb.clear(color=arcade.color.WHITE)

Clear framebuffer using the color red in normalized form
fbo.clear(color=(1.0, 0.0, 0.0, 1.0), normalized=True)

If the background color is an RGB value instead of RGBA` we assume alpha value 255.

Parameters
• color – A 3 or 4 component tuple containing the color

• depth – Value to clear the depth buffer (unused)

• normalized – If the color values are normalized or not

• viewport (Tuple[int, int, int, int]) – The viewport range to clear

read(*, viewport=None, components=3, attachment=0, dtype='f1')→ bytes
Read framebuffer pixels

Parameters
• viewport – The x, y, with, height to read

• components –

• attachment – The attachment id to read from

• dtype – The data type to read

Returns
pixel data as a bytearray

resize()

Detects size changes in attachments. This will reset the viewport to 0, 0, width, height.

delete()

Destroy the underlying OpenGL resource. Don’t use this unless you know exactly what you are doing.

static delete_glo(ctx, framebuffer_id)
Destroys the framebuffer object

Parameters
• ctx – OpenGL context

• framebuffer_id – Framebuffer to destroy (glo)

DefaultFrameBuffer

class arcade.gl.framebuffer.DefaultFrameBuffer(ctx: Context)
Bases: Framebuffer

Represents the default framebuffer. This is the framebuffer of the window itself and need some special handling.

We are not allowed to destroy this framebuffer since it’s owned by pyglet. This framebuffer can also change size
and pixel ratio at any point.

We’re doing some initial introspection to guess somewhat sane initial values. Since this is a dynamic framebuffer
we cannot trust the internal values. We can only trust what the pyglet window itself reports related to window
size and framebuffer size. This should be updated in the on_resize callback.

33.28. OpenGL 559

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes

Python Arcade Library, Release 3.0.0.dev26

is_default = True

Is this the default framebuffer? (window buffer)

viewport

Get or set the framebuffer’s viewport. The viewport parameter are (x, y, width, height). It deter-
mines what part of the framebuffer should be rendered to. By default the viewport is (0, 0, width,
height).

The viewport value is persistent all will automatically be applies every time the framebuffer is bound.

Example:

100, x 100 lower left with size 200 x 200px
fb.viewport = 100, 100, 200, 200

scissor

Get or set the scissor box for this framebuffer.

By default the scissor box is disabled and has no effect and will have an initial value of None. The scissor
box is enabled when setting a value and disabled when set to None

Set and enable scissor box only drawing # in a 100 x 100 pixel lower left area ctx.scissor = 0, 0,
100, 100 # Disable scissoring ctx.scissor = None

Type
tuple (x, y, width, height)

33.28.7 Query

class arcade.gl.Query(ctx: Context, samples=True, time=True, primitives=True)
Bases:

A query object to perform low level measurements of OpenGL rendering calls.

The best way to create a program instance is through arcade.gl.Context.query()

Example usage:

query = ctx.query()
with query:

geometry.render(..)

print('samples_passed:', query.samples_passed)
print('time_elapsed:', query.time_elapsed)
print('primitives_generated:', query.primitives_generated)

ctx

The context this query object belongs to

Type
arcade.gl.Context

samples_passed

How many samples was written. These are per component (RGBA)

Type
int

560 Chapter 33. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int

Python Arcade Library, Release 3.0.0.dev26

time_elapsed

The time elapsed in nanoseconds

Type
int

primitives_generated

How many primitives a vertex or geometry shader processed. When using a geometry shader this only
counts the primitives actually emitted.

Type
int

delete()

Destroy the underlying OpenGL resource. Don’t use this unless you know exactly what you are doing.

static delete_glo(ctx, glos)→ None
Delete this query object. This is automatically called when the object is garbage collected.

33.28.8 Program

Program

class arcade.gl.Program(ctx: Context, *, vertex_shader: str, fragment_shader: str | None = None,
geometry_shader: str | None = None, tess_control_shader: str | None = None,
tess_evaluation_shader: str | None = None, varyings: List[str] | None = None,
varyings_capture_mode: str = 'interleaved')

Bases:

Compiled and linked shader program.

Currently supports vertex, fragment and geometry shaders. Transform feedback also supported when output
attributes names are passed in the varyings parameter.

The best way to create a program instance is through arcade.gl.Context.program()

Access Uniforms via the [] operator. Example:

program['MyUniform'] = value

Parameters
• ctx – The context this program belongs to

• vertex_shader – vertex shader source

• fragment_shader – fragment shader source

• geometry_shader – geometry shader source

• tess_control_shader – tessellation control shader source

• tess_evaluation_shader – tessellation evaluation shader source

• varyings – List of out attributes used in transform feedback.

• varyings_capture_mode – The capture mode for transforms. "interleaved" means all
out attribute will be written to a single buffer. "separate" means each out attribute will be
written separate buffers. Based on these settings the transform() method will accept a single
buffer or a list of buffer.

33.28. OpenGL 561

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

Python Arcade Library, Release 3.0.0.dev26

attribute_key: str

Internal cache key used with vertex arrays

ctx

The context this program belongs to

Type
arcade.gl.Context

glo

The OpenGL resource id for this program

Type
int

attributes

List of attribute information

varyings

Out attributes names used in transform feedback

Type
list of str

out_attributes

Out attributes names used in transform feedback.

Warning: Old alias for varyings. May be removed in the future.

Type
list of str

varyings_capture_mode

Get the capture more for transform feedback (single, multiple).

This is a read only property since capture mode can only be set before the program is linked.

geometry_input

The geometry shader’s input primitive type. This an be compared with GL_TRIANGLES, GL_POINTS etc.
and is queried when the program is created.

Type
int

geometry_output

The geometry shader’s output primitive type. This an be compared with GL_TRIANGLES, GL_POINTS etc.
and is queried when the program is created.

Type
int

geometry_vertices

The maximum number of vertices that can be emitted. This is queried when the program is created.

Type
int

562 Chapter 33. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Python Arcade Library, Release 3.0.0.dev26

delete()

Destroy the underlying OpenGL resource. Don’t use this unless you know exactly what you are doing.

static delete_glo(ctx, prog_id)
Deletes a program. This is normally called automatically when the program is garbage collected.

Parameters
• ctx – The context

• prog_id – The OpenGL resource id

self[item]→ Uniform | UniformBlock
Get a uniform or uniform block

self[key] = value
Set a uniform value

set_uniform_safe(name: str, value: Any)
Safely set a uniform catching KeyError.

Parameters
• name – The uniform name

• value – The uniform value

set_uniform_array_safe(name: str, value: List[Any])
Safely set a uniform array. Arrays can be shortened by the glsl compiler not all elements are determined to
be in use. This function checks the length of the actual array and sets a subset of the values if needed. If
the uniform don’t exist no action will be done.

Parameters
• name – Name of uniform

• value – List of values

use()

Activates the shader. This is normally done for you automatically.

static compile_shader(source: str, shader_type: int)→ c_uint
Compile the shader code of the given type.

shader_type could be GL_VERTEX_SHADER, GL_FRAGMENT_SHADER, . . .

Returns the shader id as a GLuint

static link(glo)
Link a shader program

Program Members

Uniform

class arcade.gl.uniform.Uniform(ctx, program_id, location, name, data_type, array_length)
Bases:

A Program uniform

Parameters

33.28. OpenGL 563

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/ctypes.html#ctypes.c_uint

Python Arcade Library, Release 3.0.0.dev26

• ctx – The context

• program_id – The program id to which this uniform belongs

• location – The uniform location

• name – The uniform name

• data_type – The data type of the uniform

• array_length – The array length of the uniform

location

The location of the uniform in the program

name

Name of the uniform

array_length

Length of the uniform array. If not an array 1 will be returned

components

How many components for the uniform. A vec4 will for example have 4 components.

getter

setter

UniformBlock

class arcade.gl.uniform.UniformBlock(glo: int, index: int, size: int, name: str)
Bases:

Wrapper for a uniform block in shaders.

glo

The OpenGL object handle

index

The index of the uniform block

size

The size of the uniform block

name

The name of the uniform block

binding

Get or set the binding index for this uniform block

getter()

The getter function for this uniform block. Returns self.

setter(value: int)
The setter function for this uniform block.

Parameters
value – The binding index to set.

564 Chapter 33. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Python Arcade Library, Release 3.0.0.dev26

33.28.9 Compute Shader

class arcade.gl.ComputeShader(ctx: Context, glsl_source: str)
Bases:

A higher level wrapper for an OpenGL compute shader.

glo

The name/id of the OpenGL resource

use()

Use/activate the compute shader.

Note: This is not necessary to call in normal use cases since run() already does this for you.

run(group_x=1, group_y=1, group_z=1)→ None
Run the compute shader.

When running a compute shader we specify how many work groups should be executed on the x, y and z
dimension. The size of the work group is defined in the compute shader.

// Work group with one dimension. 16 work groups executed.
layout(local_size_x=16) in;
// Work group with two dimensions. 256 work groups executed.
layout(local_size_x=16, local_size_y=16) in;
// Work group with three dimensions. 4096 work groups executed.
layout(local_size_x=16, local_size_y=16, local_size_z=16) in;

Group sizes are 1 by default. If your compute shader doesn’t specify a size for a dimension or uses 1 as
size you don’t have to supply this parameter.

Parameters
• group_x – The number of work groups to be launched in the X dimension.

• group_y – The number of work groups to be launched in the y dimension.

• group_z – The number of work groups to be launched in the z dimension.

self[item]→ Uniform | UniformBlock
Get a uniform or uniform block

self[key] = value
Set a uniform value

delete()

Destroy the internal compute shader object. This is normally not necessary, but depends on the garbage
collection more configured in the context.

static delete_glo(ctx, prog_id)
Low level method for destroying a compute shader by id

33.28. OpenGL 565

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

Python Arcade Library, Release 3.0.0.dev26

33.28.10 Exceptions

class arcade.gl.ShaderException

Bases: Exception

Exception class for shader-specific problems.

33.29 GUI

class arcade.gui.UIDraggableMixin(*, x: float = 0, y: float = 0, width: float = 100, height: float = 100,
children: Iterable[UIWidget] = (), size_hint=None,
size_hint_min=None, size_hint_max=None, **kwargs)

Bases: UILayout

UIDraggableMixin can be used to make any UIWidget draggable.

Example, create a draggable Frame, with a background, useful for window like constructs:

class DraggablePane(UITexturePane, UIDraggableMixin):
. . .

This does overwrite UILayout behaviour which position themselves, like UIAnchorWidget

do_layout()

on_event(event)→ bool | None

class arcade.gui.UIMouseFilterMixin(*, x: float = 0, y: float = 0, width: float = 100, height: float = 100,
children: Iterable[UIWidget] = (), size_hint=None,
size_hint_min=None, size_hint_max=None, **kwargs)

Bases: UIWidget

UIMouseFilterMixin can be used to catch all mouse events which occur inside this widget.

Useful for window like widgets, UIMouseEvents should not trigger effects which are under the widget.

on_event(event)→ bool | None

class arcade.gui.UIWindowLikeMixin(*, x: float = 0, y: float = 0, width: float = 100, height: float = 100,
children: Iterable[UIWidget] = (), size_hint=None,
size_hint_min=None, size_hint_max=None, **kwargs)

Bases: UIMouseFilterMixin, UIDraggableMixin, UIWidget

Makes a widget window like:

• handles all mouse events that occur within the widgets boundaries

• can be dragged

class arcade.gui.Surface(*, size: Tuple[int, int], position: Tuple[int, int] = (0, 0), pixel_ratio: float = 1.0)
Bases:

Holds a arcade.gl.Framebuffer and abstracts the drawing on it. Used internally for rendering widgets.

activate()

Save and restore projection and activate Surface buffer to draw on. Also resets the limit of the surface
(viewport).

566 Chapter 33. API Reference

https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

Python Arcade Library, Release 3.0.0.dev26

clear(color: Tuple[int, int, int, int] = (0, 0, 0, 0))
Clear the surface

draw(area: Tuple[float, float, float, float] | List[float] | None = None)→ None
Draws the contents of the surface.

The surface will be rendered at the configured position and limited by the given area. The area can be
out of bounds.

Parameters
area – Limit the area in the surface we’re drawing (x, y, w, h)

draw_sprite(x, y, width, height, sprite)
Draw a sprite to the surface

draw_texture(x: float, y: float, width: float, height: float, tex: Texture | NinePatchTexture, angle: float =
0.0, alpha: int = 255)

limit(x, y, width, height)
Reduces the draw area to the given rect

resize(*, size: Tuple[int, int], pixel_ratio: float)→ None
Resize the internal texture by re-allocating a new one

Parameters
• size – The new size in pixels (xy)

• pixel_ratio – The pixel scale of the window

blend_func_render

Blend mode for when we’re drawing the surface

blend_func_render_into

Blend modes for when we’re drawing into the surface

height

pixel_ratio

position

Get or set the surface position

size

Size of the surface in window coordinates

size_scaled

The physical size of the buffer

width

class arcade.gui.UIButtonRow(vertical: bool = False, align: str = 'center', size_hint: ~typing.Any = (0, 0),
size_hint_min: ~typing.Any | None = None, size_hint_max: ~typing.Any | None
= None, space_between: int = 10, style: ~typing.Any | None = None,
button_factory: type = <class 'arcade.gui.widgets.buttons.UIFlatButton'>)

Bases: UIBoxLayout

Places buttons in a row. :param vertical: Whether the button row is vertical or not. :param align: Where to
align the button row. :param size_hint: Tuple of floats (0.0 - 1.0) of how much space of the parent should be
requested. :param size_hint_min: Min width and height in pixel. :param size_hint_max: Max width and height

33.29. GUI 567

https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None

Python Arcade Library, Release 3.0.0.dev26

in pixel. :param space_between: The space between the children. :param style: Not used. :param Tuple[str, . . .]
button_labels: The labels for the buttons. :param callback: The callback function which will receive the text of
the clicked button.

add_button(label: str, *, style=None, multiline=False)

on_action(event: UIOnActionEvent)

class arcade.gui.UIMessageBox(*, width: float, height: float, message_text: str, buttons=('Ok',))
Bases: UIMouseFilterMixin, UIAnchorLayout

A simple dialog box that pops up a message with buttons to close. Subclass this class or overwrite the ‘on_action’
event handler with

box = UIMessageBox(...)
@box.event("on_action")
def on_action(event: UIOnActionEvent):

pass

Parameters
• width – Width of the message box

• height – Height of the message box

• message_text – Text to show as message to the user

• buttons – List of strings, which are shown as buttons

on_action(event: UIOnActionEvent)
Called when button was pressed

class arcade.gui.UIManager(window: Window | None = None)
Bases: EventDispatcher

UIManager is the central component within Arcade’s GUI system. Handles window events, layout process and
rendering.

To process window events, UIManager.enable() has to be called, which will inject event callbacks for all
window events and redirects them through the widget tree.

If used within a view UIManager.enable() should be called from View.on_show_view() and UIManager.
disable() should be called from View.on_hide_view()

Supports size_hint to grow/shrink direct children dependent on window size. Supports size_hint_min to en-
sure size of direct children (e.g. UIBoxLayout). Supports size_hint_max to ensure size of direct children (e.g.
UIBoxLayout).

class MyView(arcade.View):
def __init__():

super().__init__()
manager = UIManager()

manager.add(Dummy())

def on_show_view(self):
Set background color
self.window.background_color = arcade.color.DARK_BLUE_GRAY

(continues on next page)

568 Chapter 33. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://pyglet.readthedocs.io/en/latest/modules/event.html#pyglet.event.EventDispatcher

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

Enable UIManager when view is shown to catch window events
self.ui.enable()

def on_hide_view(self):
Disable UIManager when view gets inactive
self.ui.disable()

def on_draw():
self.clear()

...

manager.draw() # draws the UI on screen

add(widget: W , *, index=None, layer=0)→ W
Add a widget to the UIManager. Added widgets will receive ui events and be rendered.

By default the latest added widget will receive ui events first and will be rendered on top of others.

The UIManager supports layered setups, widgets added to a higher layer are drawn above lower layers and
receive events first. The layer 10 is reserved for overlaying components like dropdowns or tooltips.

Parameters
• widget – widget to add

• index – position a widget is added, None has the highest priority

• layer – layer which the widget should be added to, higher layer are above

Returns
the widget

adjust_mouse_coordinates(x, y)
This method is used, to translate mouse coordinates to coordinates respecting the viewport and projection
of cameras. The implementation should work in most common cases.

If you use scrolling in the arcade.Camera you have to reset scrolling or overwrite this method using the
camera conversion:

ui_manager.adjust_mouse_coordinates = camera.mouse_coordinates_to_world

clear()

Remove all widgets from UIManager

debug()

Walks through all widgets of a UIManager and prints out the rect

disable()→ None
Remove handler functions (on_. . .) from arcade.Window

If every arcade.View uses its own arcade.gui.UIManager, this method should be called in arcade.
View.on_hide_view().

dispatch_ui_event(event)

draw()→ None

33.29. GUI 569

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

Python Arcade Library, Release 3.0.0.dev26

enable()→ None
Registers handler functions (on_. . .) to arcade.gui.UIElement

on_draw is not registered, to provide full control about draw order, so it has to be called by the devs them-
selves.

Within a view, this method should be called from arcade.View.on_show_view().

get_widgets_at(pos, cls: ~typing.Type[~arcade.gui.ui_manager.W] = <class
'arcade.gui.widgets.UIWidget'>, layer=0)→ Iterable[W]

Yields all widgets containing a position, returns first top laying widgets which is instance of cls.

Parameters
• pos – Pos within the widget bounds

• cls – class which the widget should be an instance of

• layer – layer to search, None will search through all layers

Returns
iterator of widgets of given type at position

on_event(event)→ bool | None

on_key_press(symbol: int, modifiers: int)

on_key_release(symbol: int, modifiers: int)

on_mouse_drag(x: float, y: float, dx: float, dy: float, buttons: int, modifiers: int)

on_mouse_motion(x: float, y: float, dx: float, dy: float)

on_mouse_press(x: float, y: float, button: int, modifiers: int)

on_mouse_release(x: float, y: float, button: int, modifiers: int)

on_mouse_scroll(x, y, scroll_x, scroll_y)

on_resize(width, height)

on_text(text)

on_text_motion(motion)

on_text_motion_select(motion)

on_update(time_delta)

remove(child: UIWidget)
Removes the given widget from UIManager.

Parameters
child – widget to remove

trigger_render()

Request rendering of all widgets

570 Chapter 33. API Reference

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Python Arcade Library, Release 3.0.0.dev26

walk_widgets(*, root: UIWidget | None = None, layer=0)→ Iterable[UIWidget]
walks through widget tree, in reverse draw order (most top drawn widget first)

Parameters
• root – root widget to start from, if None, the layer is used

• layer – layer to search, None will search through all layers

OVERLAY_LAYER = 10

camera

Camera used when drawing the UI

rect

class arcade.gui.NinePatchTexture(*, left: int, right: int, bottom: int, top: int, texture: Texture, atlas:
TextureAtlas | None = None)

Bases:

Keeps borders & corners at constant widths while stretching the middle.

It can be used with new or existing UIWidget subclasses wherever an ordinary arcade.Texture is supported.
This is useful for GUI elements which must grow or shrink while keeping their border decorations constant, such
as dialog boxes or text boxes.

The diagram below explains the stretching behavior of this class:

• Numbered regions with arrows (<--->) stretch along the direction(s) of any arrows present

• Bars (|---|) mark the distances specified by the border parameters (left, etc)

Listing 1: Stretch Axes & Border Parameters

left right
|------| |------|

top
+------+-----------------+------+ ---
| (1) | (2) | (3) | |
| | <-------------> | | |
+------+-----------------+------+ ---
(4)	(5) ^	(6)			
^			^		
		<------+------>			
v	v	v			
+------+-----------------+------+ ---					
(7)	(8)	(9)			
	<------------->				
+------+-----------------+------+ ---

bottom

As the texture is stretched, the numbered slices of the texture behave as follows:

• Areas (1), (3), (7) and (9) never stretch.

• Area (5) stretches both horizontally and vertically.

• Areas (2) and (8) only stretch horizontally.

33.29. GUI 571

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

Python Arcade Library, Release 3.0.0.dev26

• Areas (4) and (6) only stretch vertically.

Parameters
• left – The width of the left border of the 9-patch (in pixels)

• right – The width of the right border of the 9-patch (in pixels)

• bottom – The height of the bottom border of the 9-patch (in pixels)

• top – The height of the top border of the 9-patch (in pixels)

• texture – The raw texture to use for the 9-patch

• atlas – Specify an atlas other than arcade’s default texture atlas

draw_sized(*, position: Tuple[float, float] = (0.0, 0.0), size: Tuple[float, float], pixelated: bool = False,
**kwargs)

Draw the 9-patch texture with a specific size.

Warning: This method assumes the passed dimensions are proper!

Unexpected behavior may occur if you specify a size smaller than the total size of the border areas.

Parameters
• position – Bottom left offset of the texture in pixels

• size – Size of the 9-patch as width, height in pixels

• pixelated – Whether to draw with nearest neighbor interpolation

bottom

Get or set the bottom border of the 9-patch.

ctx

The OpenGL context.

height

The height of the texture in pixels.

left

Get or set the left border of the 9-patch.

program

Get or set the shader program.

Returns the default shader if no other shader is assigned.

right

Get or set the right border of the 9-patch.

size

The size of texture as a width, height tuple in pixels.

texture

Get or set the texture.

572 Chapter 33. API Reference

https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

Python Arcade Library, Release 3.0.0.dev26

top

Get or set the top border of the 9-patch.

width

The width of the texture in pixels.

33.30 GUI Widgets

class arcade.gui.UIImage(texture: Texture | NinePatchTexture, **kwargs)
Bases: UIWidget

UIWidget showing a texture.

do_render(surface: Surface)

texture: Texture | NinePatchTexture

An observable property which triggers observers when changed.

Parameters
• default – Default value which is returned, if no value set before

• default_factory – A callable which returns the default value. Will be called with the
property and the instance

class arcade.gui.UISlider(*, value: float = 0, min_value: float = 0, max_value: float = 100, x: float = 0, y:
float = 0, width: float = 300, height: float = 20, size_hint=None,
size_hint_min=None, size_hint_max=None, style: Mapping[str, UISliderStyle] |
None = None, **kwargs)

Bases: UIStyledWidget[UISliderStyle]

A simple horizontal slider. The value of the slider can be set by moving the cursor(indicator).

There are four states of the UISlider i.e normal, hovered, pressed and disabled.

Parameters
• value – Current value of the curosr of the slider.

• min_value – Minimum value of the slider.

• max_value – Maximum value of the slider.

• x – x coordinate of bottom left.

• y – y coordinate of bottom left.

• width – Width of the slider.

• height – Height of the slider.

• style (Mapping[str, "UISlider.UIStyle"] | None) – Used to style the slider for
different states.

UIStyle

alias of UISliderStyle

do_render(surface: Surface)

33.30. GUI Widgets 573

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

Python Arcade Library, Release 3.0.0.dev26

get_current_state()→ str
Returns the current state of the slider i.e disabled, press, hover or normal.

on_change(event: UIOnChangeEvent)
To be implemented by the user, triggered when the cursor’s value is changed.

on_event(event: UIEvent)→ bool | None

DEFAULT_STYLE = {'disabled': UISliderStyle(bg=Color(r=94, g=104, b=117, a=255),
border=Color(r=77, g=81, b=87, a=255), border_width=1, filled_bar=Color(r=50, g=50,
b=50, a=255), unfilled_bar=Color(r=116, g=125, b=123, a=255)), 'hover':
UISliderStyle(bg=Color(r=96, g=103, b=112, a=255), border=Color(r=77, g=81, b=87,
a=255), border_width=2, filled_bar=Color(r=50, g=50, b=50, a=255),
unfilled_bar=Color(r=116, g=125, b=123, a=255)), 'normal':
UISliderStyle(bg=Color(r=94, g=104, b=117, a=255), border=Color(r=77, g=81, b=87,
a=255), border_width=1, filled_bar=Color(r=50, g=50, b=50, a=255),
unfilled_bar=Color(r=116, g=125, b=123, a=255)), 'press':
UISliderStyle(bg=Color(r=96, g=103, b=112, a=255), border=Color(r=77, g=81, b=87,
a=255), border_width=3, filled_bar=Color(r=50, g=50, b=50, a=255),
unfilled_bar=Color(r=116, g=125, b=123, a=255))}

disabled

An observable property which triggers observers when changed.

Parameters
• default – Default value which is returned, if no value set before

• default_factory – A callable which returns the default value. Will be called with the
property and the instance

hovered

An observable property which triggers observers when changed.

Parameters
• default – Default value which is returned, if no value set before

• default_factory – A callable which returns the default value. Will be called with the
property and the instance

norm_value

Normalized value between 0.0 and 1.0

parent: UIManager | UIWidget | None

pressed

An observable property which triggers observers when changed.

Parameters
• default – Default value which is returned, if no value set before

• default_factory – A callable which returns the default value. Will be called with the
property and the instance

value

An observable property which triggers observers when changed.

Parameters
• default – Default value which is returned, if no value set before

574 Chapter 33. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

Python Arcade Library, Release 3.0.0.dev26

• default_factory – A callable which returns the default value. Will be called with the
property and the instance

value_x

Returns the current value of the cursor of the slider.

class arcade.gui.UISliderStyle(bg: Tuple[int, int, int, int] = (94, 104, 117, 255), border: Tuple[int, int, int,
int] = (77, 81, 87, 255), border_width: int = 1, filled_bar: Tuple[int, int, int,
int] = (50, 50, 50, 255), unfilled_bar: Tuple[int, int, int, int] = (116, 125,
123, 255))

Bases: UIStyleBase

Used to style the slider for different states. Below is its use case.

button = UITextureButton(style={"normal": UITextureButton.UIStyle(...),})

bg: Tuple[int, int, int, int] = (94, 104, 117, 255)

border: Tuple[int, int, int, int] = (77, 81, 87, 255)

border_width: int = 1

filled_bar: Tuple[int, int, int, int] = (50, 50, 50, 255)

unfilled_bar: Tuple[int, int, int, int] = (116, 125, 123, 255)

class arcade.gui.UIAnchorLayout(x: float = 0, y: float = 0, width: float = 100, height: float = 100, children:
Iterable[UIWidget] = (), size_hint=(1, 1), size_hint_min=None,
size_hint_max=None, **kwargs)

Bases: UILayout

Places children based on anchor values.

Defaults to size_hint = (1, 1).

Supports the options size_hint, size_hint_min, and size_hint_max. Children are allowed to overlap.

Child are resized based on size_hint. size_hint_min/max only take effect if a size_hint is set.

Allowed keyword options for add():

• anchor_x: str = None

Horizontal anchor position for the layout. The class constant default_anchor_x is used as default.

• anchor_y: str = None

Vertical anchor position for the layout. The class constant default_anchor_y is used as default.

• align_x: float = 0

Horizontal alignment for the layout.

• align_y: float = 0

Vertical alignement for the layout.

add(child: W , *, anchor_x: str | None = None, align_x: float = 0, anchor_y: str | None = None, align_y: float
= 0, **kwargs)→ W
Add a widget to the layout as a child. Added widgets will receive all user-interface events and be rendered.

By default, the latest added widget will receive events first and will be rendered on top of others. The
widgets will be automatically placed within this widget.

33.30. GUI Widgets 575

https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float

Python Arcade Library, Release 3.0.0.dev26

Parameters
• child – Specified child widget to add.

• anchor_x – Horizontal anchor. Valid options are left, right, and center.

• align_x – Offset or padding for the horizontal anchor.

• anchor_y – Vertical anchor. Valid options are top, center, and bottom.

• align_y – Offset or padding for the vertical anchor.

Returns
Given child that was just added to the layout.

do_layout()

default_anchor_x = 'center'

default_anchor_y = 'center'

class arcade.gui.UIBoxLayout(x=0, y=0, width=0, height=0, vertical=True, align='center', children:
Iterable[UIWidget] = (), size_hint=(0, 0), size_hint_min=None,
size_hint_max=None, space_between=0, style=None, **kwargs)

Bases: UILayout

Place widgets next to each other. Depending on the vertical attribute, the widgets are placed top to bottom or
left to right.

Hint: UIBoxLayout does not adjust its own size if children are added. This requires a UIManager or a
UIAnchorLayout as a parent.

Or use arcade.gui.UIBoxLayout.fit_content() to resize the layout. The bottom-left corner is used as the
default anchor point.

Supports the options: size_hint, size_hint_min, size_hint_max.

If a child widget provides a size_hint for a dimension, the child will be resized within the given range of
size_hint_min and size_hint_max (unrestricted if not given). If the parameter vertical is True, any
available space (layout size - min_size of children) will be distributed to the child widgets based on their
size_hint.

Parameters
• x – x coordinate of the bottom left corner.

• y – y coordinate of the bottom left corner.

• vertical – Layout children vertical (True) or horizontal (False).

• align – Align children in orthogonal direction:: - x: left, center, and right - y: top,
center, and bottom

• children – Initial list of children. More can be added later.

• size_hint – Size hint for the UILayout if the widget would like to grow. Defaults to 0, 0
-> minimal size to contain children.

• size_hint_min – Minimum width and height in pixels.

• size_hint_max – Maximum width and height in pixels.

• space_between – Space in pixels between the children.

576 Chapter 33. API Reference

https://docs.python.org/3/library/typing.html#typing.Iterable

Python Arcade Library, Release 3.0.0.dev26

do_layout()

fit_content()

Resize the layout to fit the content. This will take the minimal required size into account.

class arcade.gui.UIGridLayout(x=0, y=0, align_horizontal='center', align_vertical='center', children:
Iterable[UIWidget] = (), size_hint=(0, 0), size_hint_min=None,
size_hint_max=None, horizontal_spacing: int = 0, vertical_spacing: int = 0,
column_count: int = 1, row_count: int = 1, style=None, **kwargs)

Bases: UILayout

Place widgets in a grid layout. This is similar to tkinter’s grid layout geometry manager.

Defaults to size_hint = (0, 0).

Supports the options size_hint, size_hint_min, and size_hint_max.

Children are resized based on size_hint. Maximum and minimum size_hint``s only take effect if
a ``size_hint is given.

Parameters
• x – x coordinate of bottom left corner.

• y – y coordinate of bottom left corner.

• align_horizontal – Align children in orthogonal direction. Options include left,
center, and right.

• align_vertical – Align children in orthogonal direction. Options include top, center,
and bottom.

• children – Initial list of children. More can be added later.

• size_hint – A size hint for UILayout, if the UIWidget would like to grow.

• size_hint_min – Minimum width and height in pixels.

• size_hint_max – Maximum width and height in pixels.

• horizontal_spacing – Space between columns.

• vertical_spacing – Space between rows.

• column_count – Number of columns in the grid. This can be changed later.

• row_count – Number of rows in the grid. This can be changed later.

add(child: W , col_num: int = 0, row_num: int = 0, col_span: int = 1, row_span: int = 1, **kwargs)→ W
Add a widget to the grid layout.

Parameters
• child – Specified child widget to add.

• col_num – Column index in which the widget is to be added. The first column is numbered
0; which is the top left corner.

• row_num – The row number in which the widget is to be added. The first row is numbered
0; which is the

• col_span – Number of columns the widget will stretch for.

• row_span – Number of rows the widget will stretch for.

33.30. GUI Widgets 577

https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Python Arcade Library, Release 3.0.0.dev26

do_layout()

class arcade.gui.UIDropdown(x: float = 0, y: float = 0, width: float = 100, height: float = 100, default: str |
None = None, options: List[str | None] | None = None, style=None, **kwargs)

Bases: UILayout

A dropdown layout. When clicked displays a list of options provided.

Triggers an event when an option is clicked, the event can be read by

dropdown = Dropdown()

@dropdown.event()
def on_change(event: UIOnChangeEvent):

print(event.old_value, event.new_value)

Parameters
• x – x coordinate of bottom left

• y – y coordinate of bottom left

• width – Width of each of the option.

• height – Height of each of the option.

• default – The default value shown.

• options – The options displayed when the layout is clicked.

• style – Used to style the dropdown.

do_layout()

on_change(event: UIOnChangeEvent)
To be implemented by the user, triggered when the current selected value is changed to a different option.

DIVIDER = None

value

Current selected option.

class arcade.gui.UIInputText(x: float = 0, y: float = 0, width: float = 100, height: float = 24, text: str = '',
font_name=('Arial',), font_size: float = 12, text_color: Tuple[int, int, int] |
Tuple[int, int, int, int] = (0, 0, 0, 255), multiline=False, caret_color:
Tuple[ChannelType, ChannelType, ChannelType] = (0, 0, 0), size_hint=None,
size_hint_min=None, size_hint_max=None, **kwargs)

Bases: UIWidget

An input field the user can type text into. This is useful in returning string input from the user. A caret is
displayed, which the user can move around with a mouse or keyboard.

A mouse drag selects text, a mouse press moves the caret, and keys can move around the caret. Arcade confirms
that the field is active before allowing users to type, so it is okay to have multiple of these.

Parameters
• x – x position (default anchor is bottom-left).

• y – y position (default anchor is bottom-left).

• width – Width of the text field.

578 Chapter 33. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple

Python Arcade Library, Release 3.0.0.dev26

• height – Height of the text field.

• text – Initial text displayed. This can be modified later programmatically or by the user’s
interaction with the caret.

• font_name – A list of fonts to use. Arcade will start at the beginning of the tuple and keep
trying to load fonts until success.

• font_size – Font size of font.

• text_color – Color of the text.

• multiline – If enabled, a \n will start a new line. A UITextWidget multiline of True
is the same thing as a UITextArea.

• caret_color – RGB color of the caret.

• size_hint – A tuple of floats between 0 and 1 defining the amount of space of the parent
should be requested.

• size_hint_min – Minimum size hint width and height in pixel.

• size_hint_max – Maximum size hint width and height in pixel.

• style – Style has not been implemented for this widget, however it will be added in the near
future.

do_render(surface: Surface)

on_event(event: UIEvent)→ bool | None

on_update(dt)

LAYOUT_OFFSET = 1

text

class arcade.gui.UILabel(x: float = 0, y: float = 0, width: float | None = None, height: float | None = None,
text: str = '', font_name=('Arial',), font_size: float = 12, text_color: Tuple[int, int,
int] | Tuple[int, int, int, int] = (255, 255, 255, 255), bold=False, italic=False,
align='left', multiline: bool = False, size_hint=None, size_hint_min=None,
size_hint_max=None, **kwargs)

Bases: UIWidget

A simple text label. This widget is meant to display user instructions or information. This label supports multiline
text.

If you want to make a scrollable viewing text box, use a UITextArea.

By default, a label will fit its initial content. If the text is changed use fit_content() to adjust the size.

Parameters
• x – x position (default anchor is bottom-left).

• y – y position (default anchor is bottom-left).

• width – Width of the label. Defaults to text width if not specified. See content_width().

• height – Height of the label. Defaults to text height if not specified. See
content_height().

• text – Text displayed on the label.

• font_name – A list of fonts to use. Arcade will start at the beginning of the tuple and keep
trying to load fonts until success.

33.30. GUI Widgets 579

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

Python Arcade Library, Release 3.0.0.dev26

• font_size – Font size of font.

• text_color – Color of the text.

• bold – If enabled, the label’s text will be in a bold style.

• italic – If enabled, the label’s text will be in an italic style.

• stretch – Stretch font style.

• align – Horizontal alignment of text on a line. This only applies if a width is supplied.
Valid options include "left", "center" or "right".

• dpi – Resolution of the fonts in the layout. Defaults to 96.

• multiline – If enabled, a \n will start a new line. A UITextWidget with multiline of
True is the same thing as a UITextArea.

• size_hint – A tuple of floats between 0 and 1 defining the amount of space of the parent
should be requested.

• size_hint_min – Minimum size hint width and height in pixel.

• size_hint_max – Maximum size hint width and height in pixel.

• style – Not used. Labels will have no need for a style; they are too simple (just a text
display).

do_render(surface: Surface)

fit_content()

Set the width and height of the label to contain the whole text.

text

class arcade.gui.UITextArea(x: float = 0, y: float = 0, width: float = 400, height: float = 40, text: str = '',
font_name=('Arial',), font_size: float = 12, text_color: Tuple[int, int, int, int] =
(255, 255, 255, 255), multiline: bool = True, scroll_speed: float | None = None,
size_hint=None, size_hint_min=None, size_hint_max=None, **kwargs)

Bases: UIWidget

A text area that allows users to view large documents of text by scrolling the mouse.

Parameters
• x – x position (default anchor is bottom-left).

• y – y position (default anchor is bottom-left).

• width – Width of the text area.

• height – Height of the text area.

• text – Initial text displayed.

• font_name – A list of fonts to use. Arcade will start at the beginning of the tuple and keep
trying to load fonts until success.

• font_size – Font size of font.

• text_color – Color of the text.

• multiline – If enabled, a \n will start a new line.

• scroll_speed – Speed of mouse scrolling.

580 Chapter 33. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None

Python Arcade Library, Release 3.0.0.dev26

• size_hint – A tuple of floats between 0 and 1 defining the amount of space of the parent
should be requested.

• size_hint_min – Minimum size hint width and height in pixel.

• size_hint_max – Maximum size hint width and height in pixel.

• style – Style has not been implemented for this widget, however it will be added in the near
future.

do_render(surface: Surface)

fit_content()

Set the width and height of the text area to contain the whole text.

on_event(event: UIEvent)→ bool | None

text

class arcade.gui.UITextWidget(text: str = '', multiline: bool = False, **kwargs)
Bases: UIAnchorLayout

Adds the ability to add text to a widget.

The text can be placed within the widget using UIAnchorLayout parameters with place_text().

place_text(anchor_x: str | None = None, align_x: float = 0, anchor_y: str | None = None, align_y: float =
0, **kwargs)

Place widget’s text within the widget using UIAnchorLayout parameters.

label

multiline

Get or set the multiline mode.

Newline characters ("\n") will only be honored when this is set to True. If you want a scrollable text
widget, please use UITextArea instead.

parent: UIManager | UIWidget | None

text

Text of the widget. Modifying this repeatedly will cause significant lag; calculating glyph position is very
expensive.

ui_label

Internal py:class:~arcade.gui.UILabel used for rendering the text.

class arcade.gui.Rect(x: float, y: float, width: float, height: float)
Bases: NamedTuple

Representing a rectangle for GUI module. Rect is idempotent.

Bottom left corner is used as fix point (x, y)

repr(self)
Return a nicely formatted representation string

align_bottom(value: float)→ Rect
Returns new Rect, which is aligned to the bottom

33.30. GUI Widgets 581

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.NamedTuple
https://docs.python.org/3/library/functions.html#float

Python Arcade Library, Release 3.0.0.dev26

align_center(center_x, center_y)
Returns new Rect, which is aligned to the center x and y

align_center_x(value: float)→ Rect
Returns new Rect, which is aligned to the center_x

align_center_y(value: float)→ Rect
Returns new Rect, which is aligned to the center_y

align_left(value: float)→ Rect
Returns new Rect, which is aligned to the left

align_right(value: float)→ Rect
Returns new Rect, which is aligned to the right

align_top(value: float)→ Rect
Returns new Rect, which is aligned to the top

collide_with_point(x, y)

max_size(width: float | None = None, height: float | None = None)
Limits the size to the given max values.

min_size(width=None, height=None)
Sets the size to at least the given min values.

move(dx: float = 0, dy: float = 0)
Returns new Rect which is moved by dx and dy

resize(width=None, height=None)
Returns a rect with changed width and height. Fix x and y coordinate.

scale(scale: float)→ Rect
Returns a new rect with scale applied

union(rect: Rect)
Returns a new Rect that is the union of this rect and another. The union is the smallest rectangle that
contains theses two rectangles.

bottom

center

center_x

center_y

height: float

Alias for field number 3

left

position

Bottom left coordinates

right

size

582 Chapter 33. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Python Arcade Library, Release 3.0.0.dev26

top

width: float

Alias for field number 2

x: float

Alias for field number 0

y: float

Alias for field number 1

class arcade.gui.UIDummy(x=0, y=0, width=100, height=100, size_hint=None, size_hint_min=None,
size_hint_max=None, **kwargs)

Bases: UIInteractiveWidget

Solid color widget used for testing & examples

It should not be subclassed for real-world usage.

When clicked, it does the following:

• Outputs its rect attribute to the console

• Changes its color to a random fully opaque color

Parameters
• x – x coordinate of bottom left

• y – y coordinate of bottom left

• color – fill color for the widget

• width – width of widget

• height – height of widget

• size_hint – Tuple of floats (0.0-1.0), how much space of the parent should be requested

• size_hint_min – min width and height in pixel

• size_hint_max – max width and height in pixel

• style – not used

do_render(surface: Surface)

on_click(event: UIOnClickEvent)

on_update(dt)

class arcade.gui.UIInteractiveWidget(*, x: float = 0, y: float = 0, width: float, height: float,
size_hint=None, size_hint_min=None, size_hint_max=None,
**kwargs)

Bases: UIWidget

Base class for widgets which use mouse interaction (hover, pressed, clicked)

Parameters
• x – x coordinate of bottom left

• y – y coordinate of bottom left

• width – width of widget

33.30. GUI Widgets 583

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Python Arcade Library, Release 3.0.0.dev26

• height – height of widget

• size_hint – Tuple of floats (0.0-1.0), how much space of the parent should be requested

• size_hint_min – min width and height in pixel

• size_hint_max – max width and height in pixel:param x: center x of widget

• style – not used

on_click(event: UIOnClickEvent)

on_event(event: UIEvent)→ bool | None

disabled

An observable property which triggers observers when changed.

Parameters
• default – Default value which is returned, if no value set before

• default_factory – A callable which returns the default value. Will be called with the
property and the instance

hovered

An observable property which triggers observers when changed.

Parameters
• default – Default value which is returned, if no value set before

• default_factory – A callable which returns the default value. Will be called with the
property and the instance

pressed

An observable property which triggers observers when changed.

Parameters
• default – Default value which is returned, if no value set before

• default_factory – A callable which returns the default value. Will be called with the
property and the instance

class arcade.gui.UILayout(*, x: float = 0, y: float = 0, width: float = 100, height: float = 100, children:
Iterable[UIWidget] = (), size_hint=None, size_hint_min=None,
size_hint_max=None, **kwargs)

Bases: UIWidget

Base class for widgets, which position themselves or their children.

Parameters
• x – x coordinate of bottom left

• y – y coordinate of bottom left

• width – width of widget

• height – height of widget

• children – Child widgets of this group

• size_hint – A hint for UILayout, if this UIWidget would like to grow

• size_hint – Tuple of floats (0.0-1.0), how much space of the parent should be requested

584 Chapter 33. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Iterable

Python Arcade Library, Release 3.0.0.dev26

• size_hint_min – min width and height in pixel

• size_hint_max – max width and height in pixel

• style – not used

do_layout()

Triggered by the UIManager before rendering, UILayout s should place themselves and/or children. Do
layout will be triggered on children afterwards.

Use UIWidget.trigger_render() to trigger a rendering before the next frame, this will happen auto-
matically if the position or size of this widget changed.

class arcade.gui.UISpace(x=0, y=0, width=100, height=100, color=(0, 0, 0, 0), size_hint=None,
size_hint_min=None, size_hint_max=None, style=None, **kwargs)

Bases: UIWidget

Widget reserving space, can also have a background color.

Parameters
• x – x coordinate of bottom left

• y – y coordinate of bottom left

• width – width of widget

• height – height of widget

• color – Color for widget area

• size_hint – Tuple of floats (0.0-1.0), how much space of the parent should be requested

• size_hint_min – min width and height in pixel

• size_hint_max – max width and height in pixel

• style – not used

do_render(surface: Surface)

color

class arcade.gui.UISpriteWidget(*, x=0, y=0, width=100, height=100, sprite: Sprite | None = None,
size_hint=None, size_hint_min=None, size_hint_max=None, **kwargs)

Bases: UIWidget

Create a UI element with a sprite that controls what is displayed.

Parameters
• x – x coordinate of bottom left

• y – y coordinate of bottom left

• width – width of widget

• height – height of widget

• sprite – Sprite to embed in gui

• size_hint – Tuple of floats (0.0-1.0), how much space of the parent should be requested

• size_hint_min – min width and height in pixel

• size_hint_max – max width and height in pixel

• style – not used

33.30. GUI Widgets 585

https://docs.python.org/3/library/constants.html#None

Python Arcade Library, Release 3.0.0.dev26

do_render(surface: Surface)

on_update(dt)

class arcade.gui.UIWidget(*, x: float = 0, y: float = 0, width: float = 100, height: float = 100, children:
Iterable[UIWidget] = (), size_hint=None, size_hint_min=None,
size_hint_max=None, **kwargs)

Bases: EventDispatcher, ABC

The UIWidget class is the base class required for creating widgets.

We also have some default values and behaviors that you should be aware of:

• A UIWidget is not a UILayout: it will not change the position or the size of its children. If you want
control over positioning or sizing, use a UILayout.

Parameters
• x – x coordinate of bottom left

• y – y coordinate of bottom left

• width – width of widget

• height – height of widget

• size_hint – Tuple of floats (0.0-1.0), how much space of the parent should be requested

• size_hint_min – min width and height in pixel

• size_hint_max – max width and height in pixel

• style – not used

add(child: W , **kwargs)→ W
Add a widget to this UIWidget as a child. Added widgets will receive ui events and be rendered.

By default, the latest added widget will receive ui events first and will be rendered on top of others.

Parameters
• child – widget to add

• index – position a widget is added, None has the highest priority

Returns
given child

center_on_screen()→ W
Places this widget in the center of the current window.

clear()

dispatch_ui_event(event: UIEvent)
Dispatch a UIEvent using pyglet event dispatch mechanism

do_render(surface: Surface)
Render the widgets graphical representation, use UIWidget.prepare_render() to limit the drawing area
to the widgets rect and draw relative to 0,0.

do_render_base(surface: Surface)
Renders background, border and “padding”

586 Chapter 33. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Iterable
https://pyglet.readthedocs.io/en/latest/modules/event.html#pyglet.event.EventDispatcher
https://docs.python.org/3/library/abc.html#abc.ABC

Python Arcade Library, Release 3.0.0.dev26

move(dx=0, dy=0)
Move the widget by dx and dy.

Parameters
• dx – x axis difference

• dy – y axis difference

on_event(event: UIEvent)→ bool | None
Passes UIEvent s through the widget tree.

on_update(dt)
Custom logic which will be triggered.

prepare_render(surface)
Helper for rendering, the drawing area will be adjusted to the own position and size. Draw calls have to be
relative to 0,0. This will also prevent any overdraw outside of the widgets area

Parameters
surface – Surface used for rendering

remove(child: UIWidget)
Removes a child from the UIManager which was directly added to it. This will not remove widgets which
are added to a child of UIManager.

resize(*, width=None, height=None)

scale(factor)
Scales the size of the widget (x,y,width, height) by factor. :param factor: scale factor

trigger_full_render()→ None
In case a widget uses transparent areas or was moved, it might be important to request a full rendering of
parents

trigger_render()

This will delay a render right before the next frame is rendered, so that UIWidget.do_render() is not
called multiple times.

with_background(*, color: 'builtins.ellipsis' | Color = Ellipsis, texture: None | Texture | NinePatchTexture =
Ellipsis)→ UIWidget

Set widgets background.

A color or texture can be used for background, if a texture is given, start and end point can be added to use
the texture as ninepatch.

Parameters
• color – A color used as background

• texture – A texture or ninepatch texture used as background

Returns
self

with_border(width=2, color=(0, 0, 0))→ Self
Sets border properties :param width: border width :param color: border color :return: self

33.30. GUI Widgets 587

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

Python Arcade Library, Release 3.0.0.dev26

with_padding(top: 'builtins.ellipsis' | int = Ellipsis, right: 'builtins.ellipsis' | int = Ellipsis, bottom:
'builtins.ellipsis' | int = Ellipsis, left: 'builtins.ellipsis' | int = Ellipsis, all: 'builtins.ellipsis' |
int = Ellipsis)→ UIWidget

Changes the padding to the given values if set. Returns itself :return: self

bottom

center

center_x

center_y

children

content_height

content_rect

content_size

content_width

height

left

padding

position

Returns bottom left coordinates

rect: Rect

An observable property which triggers observers when changed.

Parameters
• default – Default value which is returned, if no value set before

• default_factory – A callable which returns the default value. Will be called with the
property and the instance

right

size

top

visible: bool

An observable property which triggers observers when changed.

Parameters
• default – Default value which is returned, if no value set before

• default_factory – A callable which returns the default value. Will be called with the
property and the instance

width

x

588 Chapter 33. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

Python Arcade Library, Release 3.0.0.dev26

y

class arcade.gui.UITextureToggle(x: float = 0, y: float = 0, width: float = 100, height: float = 50,
on_texture: Texture | None = None, off_texture: Texture | None = None,
value=False, size_hint=None, size_hint_min=None,
size_hint_max=None, **kwargs)

Bases: UIInteractiveWidget

A toggel button switching between on (True) and off (False) state.

on_texture and off_texture are required.

do_render(surface: Surface)

on_change(event: UIOnChangeEvent)

on_click(event: UIOnClickEvent)

value: bool

An observable property which triggers observers when changed.

Parameters
• default – Default value which is returned, if no value set before

• default_factory – A callable which returns the default value. Will be called with the
property and the instance

class arcade.gui.UIFlatButton(x: float = 0, y: float = 0, width: float = 100, height: float = 50, text='',
multiline=False, size_hint=None, size_hint_min=None, size_hint_max=None,
style=None, **kwargs)

Bases: UIInteractiveWidget, UIStyledWidget, UITextWidget

A text button, with support for background color and a border.

There are four states of the UITextureButton i.e normal, hovered, pressed and disabled.

Parameters
• x – x coordinate of bottom left

• y – y coordinate of bottom left

• width – width of widget. Defaults to texture width if not specified.

• height – height of widget. Defaults to texture height if not specified.

• text – text to add to the button.

• multiline – allows to wrap text, if not enough width available

• style – Used to style the button

class UIStyle(font_size: int = 12, font_name: str | Tuple[str, ...] = ('calibri', 'arial'), font_color: Tuple[int,
int, int, int] = (255, 255, 255, 255), bg: Tuple[int, int, int, int] = (21, 19, 21, 255), border:
Tuple[int, int, int, int] | None = None, border_width: int = 0)

Bases: UIStyleBase

Used to style the button. Below is its use case.

button = UIFlatButton(style={"normal": UIFlatButton.UIStyle(...),})

bg: Tuple[int, int, int, int] = (21, 19, 21, 255)

33.30. GUI Widgets 589

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Python Arcade Library, Release 3.0.0.dev26

border: Tuple[int, int, int, int] | None = None

border_width: int = 0

font_color: Tuple[int, int, int, int] = (255, 255, 255, 255)

font_name: str | Tuple[str, ...] = ('calibri', 'arial')

font_size: int = 12

do_render(surface: Surface)

get_current_state()→ str
Returns the current state of the button i.e disabled, press, hover or normal.

DEFAULT_STYLE = {'disabled': UIFlatButton.UIStyle(font_size=12,
font_name=('calibri', 'arial'), font_color=Color(r=255, g=255, b=255, a=255),
bg=Color(r=128, g=128, b=128, a=255), border=None, border_width=2), 'hover':
UIFlatButton.UIStyle(font_size=12, font_name=('calibri', 'arial'),
font_color=Color(r=255, g=255, b=255, a=255), bg=(21, 19, 21, 255), border=(77, 81,
87, 255), border_width=2), 'normal': UIFlatButton.UIStyle(font_size=12,
font_name=('calibri', 'arial'), font_color=Color(r=255, g=255, b=255, a=255),
bg=(21, 19, 21, 255), border=None, border_width=0), 'press':
UIFlatButton.UIStyle(font_size=12, font_name=('calibri', 'arial'),
font_color=Color(r=0, g=0, b=0, a=255), bg=Color(r=255, g=255, b=255, a=255),
border=Color(r=255, g=255, b=255, a=255), border_width=2)}

parent: UIManager | UIWidget | None

class arcade.gui.UITextureButton(x: float = 0, y: float = 0, width: float | None = None, height: float | None
= None, texture: None | Texture | NinePatchTexture = None,
texture_hovered: None | Texture | NinePatchTexture = None,
texture_pressed: None | Texture | NinePatchTexture = None,
texture_disabled: None | Texture | NinePatchTexture = None, text: str =
'', multiline: bool = False, scale: float | None = None, style: Dict[str,
UIStyleBase] | None = None, size_hint=None, size_hint_min=None,
size_hint_max=None, **kwargs)

Bases: UIInteractiveWidget, UIStyledWidget[UITextureButtonStyle], UITextWidget

A button with an image for the face of the button.

There are four states of the UITextureButton i.e normal, hovered, pressed and disabled.

Parameters
• x – x coordinate of bottom left

• y – y coordinate of bottom left

• width – width of widget. Defaults to texture width if not specified.

• height – height of widget. Defaults to texture height if not specified.

• texture – texture to display for the widget.

• texture_hovered – different texture to display if mouse is hovering over button.

• texture_pressed – different texture to display if mouse button is pressed while hovering
over button.

• text – text to add to the button.

590 Chapter 33. API Reference

https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

Python Arcade Library, Release 3.0.0.dev26

• multiline – allows to wrap text, if not enough width available

• style – Used to style the button for different states.

• scale – scale the button, based on the base texture size.

• size_hint – Tuple of floats (0.0-1.0), how much space of the parent should be requested

• size_hint_min – min width and height in pixel

• size_hint_max – max width and height in pixel

UIStyle

alias of UITextureButtonStyle

do_render(surface: Surface)

get_current_state()→ str
Returns the current state of the button i.e disabled, press, hover or normal.

DEFAULT_STYLE = {'disabled': UITextureButtonStyle(font_size=12,
font_name=('calibri', 'arial'), font_color=Color(r=255, g=255, b=255, a=255),
border_width=2), 'hover': UITextureButtonStyle(font_size=12, font_name=('calibri',
'arial'), font_color=Color(r=255, g=255, b=255, a=255), border_width=2), 'normal':
UITextureButtonStyle(font_size=12, font_name=('calibri', 'arial'),
font_color=Color(r=255, g=255, b=255, a=255), border_width=2), 'press':
UITextureButtonStyle(font_size=12, font_name=('calibri', 'arial'),
font_color=Color(r=0, g=0, b=0, a=255), border_width=2)}

texture

Returns the normal texture for the face of the button.

texture_hovered

Returns the hover texture for the face of the button.

texture_pressed

Returns the pressed texture for the face of the button.

class arcade.gui.UITextureButtonStyle(font_size: int = 12, font_name: str | Tuple[str, ...] = ('calibri',
'arial'), font_color: Tuple[int, int, int, int] = (255, 255, 255, 255),
border_width: int = 2)

Bases: UIStyleBase

Used to style the texture button. Below is its use case.

button = UITextureButton(style={"normal": UITextureButton.UIStyle(...),})

border_width: int = 2

font_color: Tuple[int, int, int, int] = (255, 255, 255, 255)

font_name: str | Tuple[str, ...] = ('calibri', 'arial')

font_size: int = 12

33.30. GUI Widgets 591

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Python Arcade Library, Release 3.0.0.dev26

33.31 GUI Events

class arcade.gui.UIEvent(source: Any)
Bases:

An event created by the GUI system. Can be passed using widget.dispatch(“on_event”, event). An event always
has a source, which is the UIManager for general input events, but will be the specific widget in case of events
like on_click events.

source: Any

class arcade.gui.UIKeyEvent(source: Any, symbol: int, modifiers: int)
Bases: UIEvent

Covers all keyboard event.

modifiers: int

symbol: int

class arcade.gui.UIKeyPressEvent(source: Any, symbol: int, modifiers: int)
Bases: UIKeyEvent

Triggered when a key is pressed.

modifiers: int

source: Any

symbol: int

class arcade.gui.UIKeyReleaseEvent(source: Any, symbol: int, modifiers: int)
Bases: UIKeyEvent

Triggered when a key is released.

modifiers: int

source: Any

symbol: int

class arcade.gui.UIMouseDragEvent(source: Any, x: float, y: float, dx: float, dy: float, buttons: int, modifiers:
int)

Bases: UIMouseEvent

Triggered when the mouse moves while one of its buttons being pressed.

buttons: int

dx: float

dy: float

modifiers: int

class arcade.gui.UIMouseEvent(source: Any, x: float, y: float)
Bases: UIEvent

Covers all mouse event

592 Chapter 33. API Reference

https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Python Arcade Library, Release 3.0.0.dev26

pos

x: float

y: float

class arcade.gui.UIMouseMovementEvent(source: Any, x: float, y: float, dx: float, dy: float)
Bases: UIMouseEvent

Triggered when the mouse is moved.

dx: float

dy: float

class arcade.gui.UIMousePressEvent(source: Any, x: float, y: float, button: int, modifiers: int)
Bases: UIMouseEvent

Triggered when a mouse button(left, right, middle) is pressed.

button: int

modifiers: int

class arcade.gui.UIMouseReleaseEvent(source: Any, x: float, y: float, button: int, modifiers: int)
Bases: UIMouseEvent

Triggered when a mouse button is released.

button: int

modifiers: int

class arcade.gui.UIMouseScrollEvent(source: Any, x: float, y: float, scroll_x: int, scroll_y: int)
Bases: UIMouseEvent

Triggered by rotating the scroll wheel on the mouse.

scroll_x: int

scroll_y: int

class arcade.gui.UIOnActionEvent(source: Any, action: Any)
Bases: UIEvent

Notification about an action

Parameters
action – Value describing the action, mostly a string

action: Any

class arcade.gui.UIOnChangeEvent(source: Any, old_value: Any, new_value: Any)
Bases: UIEvent

Value of a widget changed

new_value: Any

old_value: Any

33.31. GUI Events 593

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any

Python Arcade Library, Release 3.0.0.dev26

class arcade.gui.UIOnClickEvent(source: Any, x: float, y: float)
Bases: UIMouseEvent

Triggered when a button is clicked.

source: Any

x: float

y: float

class arcade.gui.UIOnUpdateEvent(source: Any, dt: int)
Bases: UIEvent

Arcade on_update callback passed as UIEvent

dt: int

class arcade.gui.UITextEvent(source: Any, text: str)
Bases: UIEvent

Covers all the text cursor event.

text: str

class arcade.gui.UITextMotionEvent(source: Any, motion: Any)
Bases: UIEvent

Triggered when text cursor moves.

motion: Any

class arcade.gui.UITextMotionSelectEvent(source: Any, selection: Any)
Bases: UIEvent

Triggered when the text cursor moves selecting the text with it.

selection: Any

33.32 GUI Properties

class arcade.gui.DictProperty

Bases: Property

Property that represents a dict. Only dict are allowed. Any other classes are forbidden.

set(instance, value: dict)

default_factory

name: str

obs: WeakKeyDictionary[Any, _Obs]

class arcade.gui.ListProperty

Bases: Property

Property that represents a list. Only list are allowed. Any other classes are forbidden.

594 Chapter 33. API Reference

https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/weakref.html#weakref.WeakKeyDictionary
https://docs.python.org/3/library/typing.html#typing.Any

Python Arcade Library, Release 3.0.0.dev26

set(instance, value: dict)

default_factory

name: str

obs: WeakKeyDictionary[Any, _Obs]

class arcade.gui.Property(default: P | None = None, default_factory: Callable[[Any, Any], P] | None =
None)

Bases: Generic[P]

An observable property which triggers observers when changed.

Parameters
• default – Default value which is returned, if no value set before

• default_factory – A callable which returns the default value. Will be called with the
property and the instance

bind(instance, callback)

dispatch(instance, value)

get(instance)→ P

set(instance, value)

default_factory

name: str

obs: WeakKeyDictionary[Any, _Obs]

arcade.gui.bind(instance, property: str, callback)
Binds a function to the change event of the property. A reference to the function will be kept, so that it will be
still invoked, even if it would normally have been garbage collected.

def log_change():
print(“Something changed”)

class MyObject:
name = Property()

my_obj = MyObject() bind(my_obj, “name”, log_change)

my_obj.name = “Hans” # > Something changed

Parameters
• instance – Instance owning the property

• property – Name of the property

• callback – Function to call

Returns
None

33.32. GUI Properties 595

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/weakref.html#weakref.WeakKeyDictionary
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Generic
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/weakref.html#weakref.WeakKeyDictionary
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str

Python Arcade Library, Release 3.0.0.dev26

33.33 GUI Style

class arcade.gui.UIStyleBase

Bases:

Base class for styles to ensure a general interface and implement additional magic.

Support dict like access syntax.

A styled widget should own a dataclass, which subclasses this class

get(key, default: str)→ str
get(key, default: Any)→ Any

class arcade.gui.UIStyledWidget(*, style: Mapping[str, StyleRef], **kwargs)
Bases: UIWidget, Generic[StyleRef]

abstract get_current_state()→ str
Return the current state of the widget. These should be contained in the style dict.

Well known states: - normal - hover - press - disabled

get_current_style()→ StyleRef
Return style based on any state of the widget

style: Mapping

Property that represents a dict. Only dict are allowed. Any other classes are forbidden.

33.34 arcade.key package

Mapping of keyboard keys to values.

flake8: noqa
"""
Constants used to signify what keys on the keyboard were pressed.
"""

from __future__ import annotations
from sys import platform

Key modifiers
Done in powers of two, so you can do a bit-wise 'and' to detect
multiple modifiers.
MOD_SHIFT = 1
MOD_CTRL = 2
MOD_ALT = 4
MOD_CAPSLOCK = 8
MOD_NUMLOCK = 16
MOD_WINDOWS = 32
MOD_COMMAND = 64
MOD_OPTION = 128
MOD_SCROLLLOCK = 256

Platform-specific base hotkey modifier
(continues on next page)

596 Chapter 33. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Generic
https://docs.python.org/3/library/stdtypes.html#str

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

MOD_ACCEL = MOD_CTRL
if platform == 'darwin':

MOD_ACCEL = MOD_COMMAND

Keys
BACKSPACE = 65288
TAB = 65289
LINEFEED = 65290
CLEAR = 65291
RETURN = 65293
ENTER = 65293
PAUSE = 65299
SCROLLLOCK = 65300
SYSREQ = 65301
ESCAPE = 65307
HOME = 65360
LEFT = 65361
UP = 65362
RIGHT = 65363
DOWN = 65364
PAGEUP = 65365
PAGEDOWN = 65366
END = 65367
BEGIN = 65368
DELETE = 65535
SELECT = 65376
PRINT = 65377
EXECUTE = 65378
INSERT = 65379
UNDO = 65381
REDO = 65382
MENU = 65383
FIND = 65384
CANCEL = 65385
HELP = 65386
BREAK = 65387
MODESWITCH = 65406
SCRIPTSWITCH = 65406
MOTION_UP = 65362
MOTION_RIGHT = 65363
MOTION_DOWN = 65364
MOTION_LEFT = 65361
MOTION_NEXT_WORD = 1
MOTION_PREVIOUS_WORD = 2
MOTION_BEGINNING_OF_LINE = 3
MOTION_END_OF_LINE = 4
MOTION_NEXT_PAGE = 65366
MOTION_PREVIOUS_PAGE = 65365
MOTION_BEGINNING_OF_FILE = 5
MOTION_END_OF_FILE = 6
MOTION_BACKSPACE = 65288
MOTION_DELETE = 65535

(continues on next page)

33.34. arcade.key package 597

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

NUMLOCK = 65407
NUM_SPACE = 65408
NUM_TAB = 65417
NUM_ENTER = 65421
NUM_F1 = 65425
NUM_F2 = 65426
NUM_F3 = 65427
NUM_F4 = 65428
NUM_HOME = 65429
NUM_LEFT = 65430
NUM_UP = 65431
NUM_RIGHT = 65432
NUM_DOWN = 65433
NUM_PRIOR = 65434
NUM_PAGE_UP = 65434
NUM_NEXT = 65435
NUM_PAGE_DOWN = 65435
NUM_END = 65436
NUM_BEGIN = 65437
NUM_INSERT = 65438
NUM_DELETE = 65439
NUM_EQUAL = 65469
NUM_MULTIPLY = 65450
NUM_ADD = 65451
NUM_SEPARATOR = 65452
NUM_SUBTRACT = 65453
NUM_DECIMAL = 65454
NUM_DIVIDE = 65455

Numbers on the numberpad
NUM_0 = 65456
NUM_1 = 65457
NUM_2 = 65458
NUM_3 = 65459
NUM_4 = 65460
NUM_5 = 65461
NUM_6 = 65462
NUM_7 = 65463
NUM_8 = 65464
NUM_9 = 65465

F1 = 65470
F2 = 65471
F3 = 65472
F4 = 65473
F5 = 65474
F6 = 65475
F7 = 65476
F8 = 65477
F9 = 65478
F10 = 65479
F11 = 65480

(continues on next page)

598 Chapter 33. API Reference

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

F12 = 65481
F13 = 65482
F14 = 65483
F15 = 65484
F16 = 65485
F17 = 65486
F18 = 65487
F19 = 65488
F20 = 65489
F21 = 65490
F22 = 65491
F23 = 65492
F24 = 65493
LSHIFT = 65505
RSHIFT = 65506
LCTRL = 65507
RCTRL = 65508
CAPSLOCK = 65509
LMETA = 65511
RMETA = 65512
LALT = 65513
RALT = 65514
LWINDOWS = 65515
RWINDOWS = 65516
LCOMMAND = 65517
RCOMMAND = 65518
LOPTION = 65488
ROPTION = 65489
SPACE = 32
EXCLAMATION = 33
DOUBLEQUOTE = 34
HASH = 35
POUND = 35
DOLLAR = 36
PERCENT = 37
AMPERSAND = 38
APOSTROPHE = 39
PARENLEFT = 40
PARENRIGHT = 41
ASTERISK = 42
PLUS = 43
COMMA = 44
MINUS = 45
PERIOD = 46
SLASH = 47

Numbers on the main keyboard
KEY_0 = 48
KEY_1 = 49
KEY_2 = 50
KEY_3 = 51
KEY_4 = 52

(continues on next page)

33.34. arcade.key package 599

Python Arcade Library, Release 3.0.0.dev26

(continued from previous page)

KEY_5 = 53
KEY_6 = 54
KEY_7 = 55
KEY_8 = 56
KEY_9 = 57
COLON = 58
SEMICOLON = 59
LESS = 60
EQUAL = 61
GREATER = 62
QUESTION = 63
AT = 64
BRACKETLEFT = 91
BACKSLASH = 92
BRACKETRIGHT = 93
ASCIICIRCUM = 94
UNDERSCORE = 95
GRAVE = 96
QUOTELEFT = 96
A = 97
B = 98
C = 99
D = 100
E = 101
F = 102
G = 103
H = 104
noinspection PyPep8
I = 105
J = 106
K = 107
L = 108
M = 109
N = 110
noinspection PyPep8
O = 111
P = 112
Q = 113
R = 114
S = 115
T = 116
U = 117
V = 118
W = 119
X = 120
Y = 121
Z = 122
BRACELEFT = 123
BAR = 124
BRACERIGHT = 125
ASCIITILDE = 126

600 Chapter 33. API Reference

Python Arcade Library, Release 3.0.0.dev26

33.35 arcade.csscolor package

These are standard CSS named colors you can use when drawing.

You can specify colors four ways:

• Standard CSS color names (this package): arcade.csscolor.RED

• Nonstandard color names arcade.color package: arcade.color.RED

• Three-byte numbers: (255, 0, 0)

• Four-byte numbers (fourth byte is transparency. 0 transparent, 255 opaque): (255, 0, 0, 255)

33.36 arcade.color package

These are named colors you can use when drawing.

You can specify colors four ways:

• Standard CSS color names arcade.csscolor package: arcade.csscolor.RED

• Nonstandard color names (this package): arcade.color.RED

• Three-byte numbers: (255, 0, 0)

• Four-byte numbers (fourth byte is transparency. 0 transparent, 255 opaque): (255, 0, 0, 255)

33.35. arcade.csscolor package 601

Python Arcade Library, Release 3.0.0.dev26

602 Chapter 33. API Reference

CHAPTER

THIRTYFOUR

BUILT-IN RESOURCES

Resource files are images and sounds built into Arcade that can be used to quickly build and test simple code without
having to worry about copying files into the project.

Any file loaded that starts with :resources: will attempt to load that file from the library resources instead of the
project directory.

Many of the resources come from Kenney.nl and are licensed under CC0 (Creative Commons Zero). Be sure to check
out his web page for a much wider selection of assets.

Table 1: :resources:gui_basic_assets/

red_button_normal.png slider_thumb.png slider_bar.png

red_button_press.png red_button_hover.png button_square_blue_pressed.png

button_square_blue.png

Table 2: :resources:gui_basic_assets/icons/

larger.png smaller.png

603

https://kenney.nl/

Python Arcade Library, Release 3.0.0.dev26

Table 3: :resources:gui_basic_assets/window/

dark_blue_gray_panel.png grey_panel.png

Table 4: :resources:gui_basic_assets/items/

sword_gold.png shield_gold.png

Table 5: :resources:gui_basic_assets/toggle/

switch_red.png switch_green.png circle_switch_on.png

circle_switch_off.png

604 Chapter 34. Built-In Resources

Python Arcade Library, Release 3.0.0.dev26

Table 6: :resources:images/miami_synth_parallax/layers/

sun.png palms.png buildings.png

back.png highway.png

Table 7: :resources:images/miami_synth_parallax/car/

car-idle.png car-running0.png car-running1.png

car-running3.png car-running2.png

605

Python Arcade Library, Release 3.0.0.dev26

Table 8: :resources:images/topdown_tanks/

tileGrass_roadCornerUR.png tileSand_roadCornerUL.png tileGrass_roadSplitS.png

tankGreen_barrel3_outline.png tankBlue_barrel2.png tileSand2.png

tankBody_darkLarge_outline.png tankBody_bigRed_outline.png tankSand_barrel2.png

tankGreen_barrel3.png tankBody_sand_outline.png treeBrown_large.png

tileGrass_roadTransitionN.png tank_blue.png tank_red.png

tileSand_roadNorth.png tileGrass_roadSplitN.png treeBrown_small.png

tankRed_barrel2_outline.png tileSand_roadSplitW.png tankDark_barrel2_outline.png

tileGrass_roadTransitionN_dirt.png tankRed_barrel1.png tankDark_barrel3.png

tankBody_red_outline.png tank_sand.png tileGrass_roadCrossing.png
continues on next page

606 Chapter 34. Built-In Resources

Python Arcade Library, Release 3.0.0.dev26

Table 8 – continued from previous page

tankBody_darkLarge.png tankBlue_barrel3_outline.png tankBody_huge_outline.png

tankRed_barrel2.png tankBlue_barrel1.png tankSand_barrel1_outline.png

tankGreen_barrel2.png tankGreen_barrel1.png tileGrass_roadTransitionS.png

tankBody_dark_outline.png tank_dark.png tankBody_sand.png

tileGrass_roadEast.png tank_green.png tileGrass_transitionN.png

tileSand_roadSplitN.png tileGrass_roadNorth.png tileGrass_roadTransitionS_dirt.png

tileSand_roadSplitS.png tankDark_barrel1_outline.png tileGrass_roadTransitionE.png

tileGrass_transitionS.png tankBody_blue.png tileSand_roadSplitE.png

tankBody_red.png tileGrass_roadCornerLR.png tankBody_blue_outline.png

tankDark_barrel2.png tileGrass_roadSplitW.png tileSand_roadCrossingRound.png
continues on next page

607

Python Arcade Library, Release 3.0.0.dev26

Table 8 – continued from previous page

tankBody_dark.png tileGrass_roadCrossingRound.png tileGrass_transitionE.png

tankBody_green.png tileSand_roadCornerUR.png tileGrass2.png

tankRed_barrel3_outline.png tankGreen_barrel1_outline.png tankRed_barrel1_outline.png

tileGrass_roadTransitionW.png tankBlue_barrel3.png tileGrass_roadCornerLL.png

tankDark_barrel3_outline.png tileGrass_transitionW.png tankBlue_barrel1_outline.png

tileGrass1.png tracksSmall.png tileGrass_roadSplitE.png

tileSand_roadCornerLR.png tile-
Grass_roadTransitionW_dirt.png

tileSand_roadEast.png

tankBlue_barrel2_outline.png tileGrass_roadCornerUL.png treeGreen_large.png

tankSand_barrel3.png tankBody_green_outline.png tankRed_barrel3.png

tracksDouble.png tankBody_bigRed.png tankDark_barrel1.png
continues on next page

608 Chapter 34. Built-In Resources

Python Arcade Library, Release 3.0.0.dev26

Table 8 – continued from previous page

tankBody_huge.png tankSand_barrel1.png treeGreen_small.png

tankGreen_barrel2_outline.png tileSand1.png tileSand_roadCornerLL.png

tileGrass_roadTransitionE_dirt.png tankSand_barrel2_outline.png tankSand_barrel3_outline.png

tracksLarge.png tileSand_roadCrossing.png

Table 9: :resources:images/pinball/

pool_cue_ball.png bumper.png

609

Python Arcade Library, Release 3.0.0.dev26

Table 10: :resources:images/backgrounds/

stars.png instructions_1.png abstract_1.jpg

abstract_2.jpg instructions_0.png

610 Chapter 34. Built-In Resources

Python Arcade Library, Release 3.0.0.dev26

Table 11: :resources:images/cards/

cardClubs6.png cardBack_green5.png cardClubs10.png

cardHearts6.png cardBack_green3.png cardSpades6.png

cardClubsA.png cardSpadesA.png cardHeartsQ.png

cardDiamonds6.png cardHeartsA.png cardHearts8.png

cardDiamondsQ.png cardBack_blue2.png cardClubs8.png

cardBack_green2.png cardSpades9.png cardSpades2.png

cardDiamonds2.png cardSpades4.png cardHearts7.png

cardSpades10.png cardSpades7.png cardHearts3.png

cardDiamonds5.png cardBack_blue3.png cardSpadesK.png

cardSpades8.png cardClubsQ.png cardClubs3.png

cardHearts10.png cardHearts2.png cardBack_red1.png

cardHeartsK.png cardBack_green1.png cardClubs4.png

cardHearts9.png cardClubsK.png cardDiamonds3.png

cardBack_red5.png cardBack_green4.png cardSpadesJ.png

cardHearts5.png cardBack_blue4.png cardBack_blue5.png

cardSpades5.png cardBack_red2.png cardDiamondsA.png

cardDiamondsK.png cardHearts4.png cardBack_blue1.png

cardHeartsJ.png cardSpadesQ.png cardJoker.png

cardBack_red4.png cardClubsJ.png cardClubs5.png

cardClubs2.png cardDiamonds10.png cardDiamonds7.png

cardClubs7.png cardDiamondsJ.png cardDiamonds4.png

cardBack_red3.png cardDiamonds8.png cardClubs9.png

cardDiamonds9.png cardSpades3.png

611

Python Arcade Library, Release 3.0.0.dev26

Table 12: :resources:images/spritesheets/

number_sheet.png codepage_437.png explosion.png

tiles.png

Table 13: :resources:images/cybercity_background/

far-buildings.png foreground.png back-buildings.png

612 Chapter 34. Built-In Resources

Python Arcade Library, Release 3.0.0.dev26

Table 14: :resources:images/items/

coinGold_ur.png coinGold_ul.png coinSilver.png

keyBlue.png coinGold.png flagRed1.png

flagYellow_down.png coinGold_lr.png keyRed.png

ladderMid.png flagRed2.png gemBlue.png

flagGreen_down.png gold_1.png star.png

flagYellow1.png gold_2.png coinBronze.png

gold_3.png flagGreen1.png keyYellow.png

keyGreen.png flagGreen2.png ladderTop.png

coinSilver_test.png flagYellow2.png gemYellow.png

gemRed.png gold_4.png gemGreen.png

flagRed_down.png coinGold_ll.png

613

Python Arcade Library, Release 3.0.0.dev26

Table 15: :resources:images/space_shooter/

playerShip2_orange.png meteorGrey_small2.png playerShip1_blue.png

meteorGrey_med2.png meteorGrey_tiny1.png laserRed01.png

meteorGrey_big1.png playerShip1_orange.png playerLife1_orange.png

meteorGrey_med1.png playerShip3_orange.png meteorGrey_big3.png

meteorGrey_big2.png playerLife1_green.png playerLife1_blue.png

meteorGrey_tiny2.png playerShip1_green.png meteorGrey_big4.png

meteorGrey_small1.png laserBlue01.png

614 Chapter 34. Built-In Resources

Python Arcade Library, Release 3.0.0.dev26

Table 16: :resources:images/alien/

alienBlue_jump.png alienBlue_climb1.png alienBlue_walk2.png

alienBlue_front.png alienBlue_climb2.png alienBlue_walk1.png

Table 17: :resources:images/test_textures/

xy_square.png test_texture.png anim.gif

615

Python Arcade Library, Release 3.0.0.dev26

Table 18: :resources:images/test_textures/normal_mapping/

normal.jpg diffuse.jpg

Table 19: :resources:images/tiles/

sandCorner_right.png dirtCliffAlt_right.png waterTop_low.png

stoneCenter.png planetHalf_left.png sandHill_left.png

switchGreen_pressed.png dirtCenter_rounded.png planetCliff_left.png
continues on next page

616 Chapter 34. Built-In Resources

Python Arcade Library, Release 3.0.0.dev26

Table 19 – continued from previous page

snowCorner_right.png dirtHill_right.png planetLeft.png

grassCenter_round.png grassCorner_left.png snowCorner_left.png

dirtHalf_mid.png snowCenter_rounded.png planetHill_right.png

brickBrown.png dirtRight.png grassHalf_left.png

boxCrate_single.png plantPurple.png switchRed.png
continues on next page

617

Python Arcade Library, Release 3.0.0.dev26

Table 19 – continued from previous page

grassHill_left.png waterTop_high.png sandHalf.png

lavaTop_high.png doorClosed_mid.png snowMid.png

cactus.png grassCliff_right.png planetCorner_left.png

grassHill_right.png stoneMid.png stoneHalf_right.png

switchRed_pressed.png stoneCorner_left.png planetCenter.png
continues on next page

618 Chapter 34. Built-In Resources

Python Arcade Library, Release 3.0.0.dev26

Table 19 – continued from previous page

planetHill_left.png sandCenter.png dirtLeft.png

dirtCorner_left.png grassCliffAlt_right.png planetCorner_right.png

grassCorner_right.png ladderMid.png sandCorner_left.png

snowHalf.png signRight.png sand.png

snow_pile.png bomb.png bush.png
continues on next page

619

Python Arcade Library, Release 3.0.0.dev26

Table 19 – continued from previous page

leverMid.png sandHalf_left.png torchOff.png

stoneCliff_left.png dirtHalf_left.png signLeft.png

grass.png water.png stoneCliffAlt_right.png

spikes.png signExit.png planetRight.png

snowHill_right.png snowHalf_mid.png lavaTop_low.png
continues on next page

620 Chapter 34. Built-In Resources

Python Arcade Library, Release 3.0.0.dev26

Table 19 – continued from previous page

dirtHalf.png planetCliff_right.png sandHalf_right.png

dirtMid.png dirtCliffAlt_left.png sandLeft.png

boxCrate.png dirtHalf_right.png stoneHalf.png

planetCliffAlt_left.png stoneLeft.png sandCenter_rounded.png

sandCliff_left.png dirtCenter.png planetCliffAlt_right.png
continues on next page

621

Python Arcade Library, Release 3.0.0.dev26

Table 19 – continued from previous page

grass_sprout.png grassRight.png brickGrey.png

sandHalf_mid.png snow.png rock.png

lockYellow.png sandCliff_right.png sandHill_right.png

grassMid.png torch2.png planetCenter_rounded.png

snowRight.png ladderTop.png snowHill_left.png
continues on next page

622 Chapter 34. Built-In Resources

Python Arcade Library, Release 3.0.0.dev26

Table 19 – continued from previous page

sandRight.png dirtCorner_right.png doorClosed_top.png

brickTextureWhite.png stoneHill_left.png stoneRight.png

grassHalf_mid.png grassCliffAlt_left.png snowCliffAlt_left.png

sandMid.png lava.png snowLeft.png

stoneCliffAlt_left.png switchGreen.png torch1.png
continues on next page

623

Python Arcade Library, Release 3.0.0.dev26

Table 19 – continued from previous page

sandCliffAlt_right.png leverLeft.png dirtHill_left.png

planetHalf_mid.png snowHalf_left.png snowCliff_right.png

grassCliff_left.png bridgeA.png planet.png

sandCliffAlt_left.png snowCliff_left.png stone.png

grassHalf_right.png grassLeft.png lockRed.png
continues on next page

624 Chapter 34. Built-In Resources

Python Arcade Library, Release 3.0.0.dev26

Table 19 – continued from previous page

leverRight.png snowHalf_right.png dirtCliff_right.png

stoneCenter_rounded.png planetHalf.png grassHalf.png

stoneHalf_left.png grassCenter.png stoneHalf_mid.png

mushroomRed.png stoneHill_right.png stoneCorner_right.png

dirtCliff_left.png planetHalf_right.png snowCenter.png
continues on next page

625

Python Arcade Library, Release 3.0.0.dev26

Table 19 – continued from previous page

boxCrate_double.png bridgeB.png dirt.png

stoneCliff_right.png snowCliffAlt_right.png planetMid.png

626 Chapter 34. Built-In Resources

Python Arcade Library, Release 3.0.0.dev26

Table 20: :resources:images/enemies/

slimeBlue_move.png frog.png fly.png

fishPink.png wormGreen_move.png frog_move.png

slimeGreen.png mouse.png fishGreen.png

wormPink.png sawHalf.png wormGreen.png

saw.png wormGreen_dead.png slimePurple.png

ladybug.png bee.png slimeBlock.png

slimeBlue.png

627

Python Arcade Library, Release 3.0.0.dev26

Table 21: :resources:images/animated_characters/male_person/

malePerson_walk2.png malePerson_walk0.png malePerson_jump.png

malePerson_walk6.png malePerson_climb0.png malePerson_walk4.png

malePerson_idle.png malePerson_walk7.png malePerson_walk1.png

malePerson_walk5.png malePerson_fall.png malePerson_walk3.png

malePerson_climb1.png

628 Chapter 34. Built-In Resources

Python Arcade Library, Release 3.0.0.dev26

Table 22: :resources:images/animated_characters/robot/

robot_walk6.png robot_jump.png robot_walk1.png

robot_idle.png robot_walk2.png robot_walk5.png

robot_walk0.png robot_climb0.png robot_walk4.png

robot_fall.png robot_walk3.png robot_climb1.png

robot_walk7.png

629

Python Arcade Library, Release 3.0.0.dev26

Table 23: :resources:images/animated_characters/zombie/

zombie_fall.png zombie_walk3.png zombie_jump.png

zombie_walk4.png zombie_idle.png zombie_walk2.png

zombie_walk7.png zombie_climb1.png zombie_walk5.png

zombie_climb0.png zombie_walk0.png zombie_walk6.png

zombie_walk1.png

630 Chapter 34. Built-In Resources

Python Arcade Library, Release 3.0.0.dev26

Table 24: :resources:images/animated_characters/male_adventurer/

maleAdventurer_jump.png maleAdventurer_walk3.png maleAdventurer_climb1.png

maleAdventurer_climb0.png maleAdventurer_walk1.png maleAdventurer_walk2.png

maleAdventurer_walk0.png maleAdventurer_walk5.png maleAdventurer_idle.png

maleAdventurer_walk6.png maleAdventurer_fall.png maleAdventurer_walk4.png

maleAdventurer_walk7.png

631

Python Arcade Library, Release 3.0.0.dev26

Table 25: :resources:images/animated_characters/female_adventurer/

femaleAdventurer_walk5.png femaleAdventurer_walk0.png femaleAdventurer_climb0.png

femaleAdventurer_walk6.png femaleAdventurer_walk4.png femaleAdventurer_jump.png

femaleAdventurer_idle.png femaleAdventurer_walk1.png femaleAdventurer_climb1.png

femaleAdventurer_walk7.png femaleAdventurer_walk3.png femaleAdventurer_fall.png

femaleAdventurer_walk2.png

632 Chapter 34. Built-In Resources

Python Arcade Library, Release 3.0.0.dev26

Table 26: :resources:images/animated_characters/female_person/

femalePerson_walk6.png femalePerson_walk5.png femalePerson_walk3.png

femalePerson_idle.png femalePerson_walk4.png femalePerson_walk1.png

femalePerson_fall.png femalePerson_walk0.png femalePerson_jump.png

femalePerson_climb1.png femalePerson_climb0.png femalePerson_walk7.png

femalePerson_walk2.png

Table 27: :resources:cache/

hit_box_cache.json

633

Python Arcade Library, Release 3.0.0.dev26

Table 28: :resources:music/

Table 29: :resources:video/

earth.mp4

634 Chapter 34. Built-In Resources

Python Arcade Library, Release 3.0.0.dev26

Table 30: :resources:onscreen_controls/flat_dark/

cancel.png key_square.png pause.png

right.png start.png expand.png

checked.png sound_off.png wrench.png

pause_square.png save.png play.png

hamburger.png a.png x.png

search.png music_off.png left.png

star.png gear.png y.png

star_square.png r.png select.png

key_round.png flatDark20.png music_on.png

down.png close.png b.png

l.png unchecked.png sound_on.png

up.png

635

Python Arcade Library, Release 3.0.0.dev26

Table 31: :resources:onscreen_controls/shaded_dark/

cancel.png key_square.png pause.png

right.png start.png expand.png

checked.png sound_off.png wrench.png

pause_square.png save.png play.png

hamburger.png a.png x.png

search.png music_off.png left.png

gear.png y.png star_round.png

star_square.png r.png select.png

key_round.png music_on.png down.png

back.png close.png b.png

l.png unchecked.png sound_on.png

up.png

636 Chapter 34. Built-In Resources

Python Arcade Library, Release 3.0.0.dev26

Table 32: :resources:onscreen_controls/flat_light/

cancel.png key_square.png pause.png

right.png start.png expand.png

checked.png sound_off.png wrench.png

pause_square.png save.png play.png

hamburger.png a.png x.png

search.png music_off.png left.png

gear.png y.png star_round.png

star_square.png r.png select.png

key_round.png music_on.png down.png

back.png close.png b.png

l.png unchecked.png sound_on.png

up.png

637

Python Arcade Library, Release 3.0.0.dev26

Table 33: :resources:onscreen_controls/shaded_light/

cancel.png pause.png right.png

start.png expand.png checked.png

sound_off.png wrench.png pause_square.png

save.png play.png hamburger.png

a.png x.png search.png

music_off.png left.png gear.png

y.png star_round.png star_square.png

r.png select.png key_round.png

key.png music_on.png down.png

back.png close.png b.png

l.png unchecked.png sound_on.png

up.png

638 Chapter 34. Built-In Resources

Python Arcade Library, Release 3.0.0.dev26

Table 34: :resources:tiled_maps/

map2_level_2.json spritesheet.json test_map_7.json
dirt.json test_map_2.json grass.json
items.json test_objects.json more_tiles.json
level_1.json pymunk_test_map.json test_map_6.json
standard_tileset.json map2_level_1.json level_2.json
map.json test_map_3.json test_map_5.json
map_with_ladders.json test_map_1.json

Table 35: :resources:sounds/

639

Python Arcade Library, Release 3.0.0.dev26

640 Chapter 34. Built-In Resources

CHAPTER

THIRTYFIVE

RELEASE NOTES

Keep up-to-date with the latest changes to the Arcade library by the release notes.

35.1 Version 3.0.0

Unreleased

You can grab pre-release versions from PyPi. See the available versions from the Arcade PyPi Release History.

Version 3.0.0 is a major update to Arcade. It is not 100% compatible with the 2.6 API.

35.1.1 Breaking Changes

These are the API changes which could require updates to existing code based on the 2.6 API. Some of these things may
be repeated in the “Updates” section of these release notes, however we have compiled the breaking changes here for
an easy reference. There may be other behavior changes that could break specific scenarios, but this section is limited
to changes which directly changed the API in a way that is not compatible with how it was used in 2.6.

• arcade.Sprite.angle() has changed to clockwise. So everything rotates different now.

• Signature for Sprite creation has changed.

• The deprecated update() function has been removed from the Window, View, Section, and SectionManager
classes. Instead, please use the on_update() function. It works the same as the update function, but has a
delta_time parameter which holds the time in seconds since the last update.

• The update_rate parameter of Window can no longer be set to None. Previously it defaulted to 1 / 60 however
could be set to None. The default is still the same, but setting it to None will not do anything.

• Sprites created from the TileMap class would previously set a key in the Sprite.properties dictionary named
type. This key has been renamed to class. This is in keeping with Tiled’s renaming of the key and following
the Tiled format/API as closely as possible.

• The arcade.text_pillow and arcade.text_pyglet modules have been completely removed. The Pillow
implementation is gone, and the Pyglet one has been renamed to just arcade.text. These modules were largely
internal, but it is possible to have referenced them directly.

• Due to the above change and removal of the Pillow text implementation, the create_text_sprite() previously
referred to the Pillow text implementation, and there was no easy way to create a sprite from Text with the pyglet
implementation. This function has been re-worked to use the pyglet based text system. It has no API breaking
changes, but the underlying functionality has changed a lot, so if you are using this function it may be worth
checking the docs for it again. The main concern for a difference here would be if you are also using any custom
TextureAtlas.

641

https://pypi.org/project/arcade/#history

Python Arcade Library, Release 3.0.0.dev26

• The GUI package has been changed significantly.

• Buffered shapes (shape list items) have been moved to their own sub-module.

• use_spatial_hash parameter for SpriteList and TileMap is now a bool instead of Optional[bool]

35.1.2 Featured Updates

• Arcade now supports mixing Pyglet and Arcade drawing. This means you can, for example, use Pyglet batches.
Pyglet batches can draw thousands of Pyglet objects with the cost and performance time of only a few.

• The code behind the texture atlas Arcade creates for each SpriteList has been reworked to be faster and more
efficient. Reversed/flipped sprites are no longer duplicated.

• Added a new system for handling background textures (ADD MORE INFO)

• Arcade now supports OpenGL ES 3.1/3.2 and have been tested on the Raspberry Pi 4. Any model using the
Cortex-A72 CPU should work. Note that you need fairly new Mesa drivers to get the new V3D drivers.

35.1.3 Changes

• Window

– Removal of the update function in favor of on_update()

– update_rate parameter in the constructor can no longer be set to None. Must be a float.

– Added draw_rate parameter to constructor __init__(), this will control the interval that the on_draw()
function is called at. This can be used with the pre-existing update_rate parameter which controls
on_update() to achieve separate draw and update rates.

• View

– Removal of the update function in favor of on_update()

• Section and SectionManager

– Removal of the update function in favor of arcade.Section.on_update()

• GUI

– UIWidget
∗ Supports padding, border and background (color and texture)

∗ Visibility: visible=False will prevent rendering of the widget. It will also not receive any UI events

∗ Dropped with_space_around()

∗ UIWidget.with_ methods do not wrap the widget anymore, they only change the attributes

∗ Fixed an blending issue when rendering the gui surface to the screen

∗ Support nine patch information to draw background texture

∗ Performance improvements

∗ Removed some attributes from public interface, use UIWidget.with_ methods
· UIWidget.border_width

· UIWidget.border_color

· UIWidget.bg_color

642 Chapter 35. Release Notes

Python Arcade Library, Release 3.0.0.dev26

· UIWidget.bg_texture

· UIWidget.padding_top

· UIWidget.padding_right

· UIWidget.padding_bottom

· UIWidget.padding_left

∗ Update and add example code.

∗ Iterable (providing direct children)

– New widgets:

∗ UIDropdown

∗ UIImage

∗ UISlider

∗ UIButtonRow (PR1580 and PR1253)

– Arcade Property:

∗ Properties are observable attributes (supported: primitive, list and dict). Listener can be bound with
bind()

– All UILayout`s support ``size_hint`, size_hint_min, size_hint_max.

∗ UIBoxLayout

∗ UIAnchorLayout

∗ UIGridLayout (PR1478)

– Replaces deprecated usage of draw_text()

– Misc Changes

∗ arcade.color_from_hex_string() changed to follow the CSS hex string standard

∗ Windows Text glyph are now created with DirectWrite instead of GDI

∗ Removal of various deprecated functions and parameters

∗ OpenGL examples moved to examples/gl from experiments/examples

• Sprites

– The method signature for arcade.Sprite.__init__() has been changed. (May break old code.)

– The sprite code has been cleaned up and broken into parts.

– arcade.Sprite.angle() now rotates clockwise. Why it ever rotated the other way, and why it lasted so
long, we do not know.

• Controller Input

– Previously controllers were usable via the arcade.joysticks module. This module is still available in
3.0. However, it should largely be seen as deprecated for most people who want basic controller support.
This module existed basically just as an alias to the Pyglet joysticks module. We now have a new arcade.
controller module, which is similarly just an alias to Pyglet’s newer Controller API. This change should
make a much wider selection of controllers able to work with Arcade, and provide newer functionality and
be easier to use for most cases than the joystick module. The joystick module may still be useful if you need
specialty controllers such as racing wheels or flight sticks. All existing example code has been updated to
use the new controller API.

35.1. Version 3.0.0 643

https://github.com/pythonarcade/arcade/pull/1580
https://github.com/pythonarcade/arcade/pull/1253
https://github.com/pythonarcade/arcade/pull/1478
https://github.com/pythonarcade/arcade/tree/development/arcade/examples/gl

Python Arcade Library, Release 3.0.0.dev26

• Text

– Complete removal of the old PIL based text system. In Arcade 2.6 we had largely switched to the newer
Pyglet based system, however there were still remnants of the PIL implementation around. Namely the
create_text_sprite() function which has been updated to use the Pyglet system. There’s no API
breaking change here but if you are using the function it would be worth reading the new docs for it, as there
are some different considerations surrounding use of a custom TextureAtlas if you are also doing that.
This function should now be much much faster than the old PIL implementation. The texture generation
happens almost entirely on the GPU now.

– As part of this move, the arcade.text_pillow module has been removed completely, and the arcade.
text_pyglet module has been re-named just be arcade.text.

– draw_text() and Text both now accept a start_z parameter. This will allow advanced usage to set the
Z position of the underlying Label. This parameter defaults to 0 and does not change any existing usage.

• OpenGL

– Support for OpenGL ES 3.1 and 3.2. 3.2 is fully supported, 3.1 is only supported if the
EXT_geometry_shader extension is provided by the driver. This is part of the minimum spec in 3.2
so it is guaranteed to be there. This is the only optional extension that Arcade needs to function with 3.1.

As an example, the Raspberry Pi 4b only supports OpenGL ES 3.1, however does provide this extension,
so is fully compatible with Arcade.

– Textures now support immutable storage for OpenGL ES compatability.

– Arcade is now using Pyglet’s projection and view matrix. All functions setting matrices will update the
Pyglet window’s view and projection attributes. Arcade shaders is also using Pyglet’s WindowBlock
UBO.

– Uniforms are now set using glProgramUniform instead of glUniform when the extension is available.

– Fixed many implicit type conversions in the shader code for wider support.

– Added front_face property on the context for configuring front face winding order of triangles

– Added cull_face property on the context for configuring what triangle face to cull

– Added support for bindless textures

– Added support for 64 bit integer uniforms

– Added support for 64 float uniforms

• TileMap

– Added support Tiles defined as a sub-rectangle of an image. See Tiled 1.9 Release Notes for more infor-
mation on this feature.

– Changed the Sprite.properties key “type” to “class” to stay in line with Tiled’s re-naming of this key
in their API.

– You can now define a custom texture atlas for SpriteLists created in a TileMap. You can provide a map
default to the texture_atlas parameter of the Tilemap class or the load_tilemap() function. This
will be used by default on all layers, however it can be overridden on a per-layer basis as defined by the new
texture_atlas key in the layer_options dictionary. If no custom atlas is provided, then the global
default atlas will be used (This is how it works pre-Arcade 3.0).

– Fix for animated tiles from sprite sheets

– TextureAtlas: Added sync_texture_image method to sync the texture in the atlas back into the internal
pillow image in the arcade.Texture.

644 Chapter 35. Release Notes

https://www.mapeditor.org/2022/06/25/tiled-1-9-released.html

Python Arcade Library, Release 3.0.0.dev26

– TextureAtlas: Added get_texture_image method to get pixel data of a texture in the atlas as a pillow
image.

• Collision Detection

– Collision detection is now even faster.

– Remove Shapely for collision detection as 3.11 is faster without it.

• Shape list

– Add in arcade.create_triangles_strip_filled_with_colors()

– Moved all buffered items that can be added to a shape list to arcade.shape_list

• Documentation

– How-To Example Code code page has been reorganized

– CONTRIBUTING.md page has been updated

– Improve background_parallax example

Special thanks to Einar Forselv Darren Eberly, pushfoo, Maic Siemering, Cleptomania, Aspect1103, Alejandro
Casanovas, Ibrahim, Andrew, Alexander, kosvitko, and pvcraven for their contributions to this release. Also, thanks to
everyone on the Pyglet team! We depend heavily on Pyglet’s continued development.

35.2 Version 2.6.16

Released 2022-Sept-24

• Support Tiled 1.9 via PyTiled Parser 2.2.0 (#1324)

• Headless rendering with EGL should now work again

• Fix code highlights in two examples

• Fix data tables in quick index. (#1312)

• Fix issues running in headless mode

• Update pymunk physics engine to return pre handler (#1322)

• Bump Pyglet version to 2.0dev23

• Few PEP-8 fixes

• Fix perspective example

Note: Development continues on version 2.7, which will be another leap forward in Arcade development. Feel free to
check out the ‘development’ branch for the 2.7 changes.

35.3 Version 2.6.15

Released 2022-Jun-03

• Pin Pygments version to get around a Pygments/Furo incompatibility. (#1224).

• Fix Google analytics ID

• Bump Pyglet version to 2.0.dev18. (Thanks Pyglet!)

• Fix API colors for Furo theme

35.2. Version 2.6.16 645

https://github.com/pythonarcade/arcade/blob/development/CONTRIBUTING.md
https://github.com/einarf
https://github.com/Cleptomania
https://github.com/pushfoo
https://github.com/eruvanos
https://github.com/Cleptomania
https://github.com/Aspect1103
https://github.com/janscas
https://github.com/janscas
https://github.com/Ibrahim2750mi
https://github.com/cspotcode
https://github.com/ccntrq
https://github.com/kosvitko
https://github.com/pvcraven
http://pyglet.org/
https://github.com/pythonarcade/arcade/issues/1324
https://github.com/pythonarcade/arcade/issues/1312
https://github.com/pythonarcade/arcade/issues/1322
https://github.com/pythonarcade/arcade/issues/1224

Python Arcade Library, Release 3.0.0.dev26

35.4 Version 2.6.14

Released 2022-May-18

• Various Improvements

– Allow specifying hit box parameters in load_textures() and load_spritesheet()

– Camera should no longer apply zoom on the z axis

– Promote using arcade.View.on_show_view() in examples and tutorials

– The arcade window and views now expose arcade.Window.on_enter() arcade.Window.
on_leave(). These events are triggered when the mouse enters and leaves the window area.

– Sections should now also support mouse enter/leave events

– Hit box calculation methods should raise a more useful error message when the texture is not RGBA.

– Slight optimization in updating sprite location in SpriteList

– Removed all remaining references to texture transforms

– Removed the broken Sprite.__lt__ method

– Added get_angle_radians()

– Removed Texture.draw_transformed

– Add support for changing the pitch while playing a sound. See the speed parameter in arcade.
play_sound().

– Set better blending defaults for arcade GUI

– Can now create a texture filled with a single color. See Texture.create_filled(). The Sprite class
will use this when creating a solid colored sprite.

– Bump version numbers of Sphinx, Pillow to current release as of 17-May.

– Bump Pyglet version to 2.0.dev16. (Thanks Pyglet!)

• Shadertoy

– Added Shadertoy.delta_time alias for time_delta (iTimeDelta)

– Support the iFrame uniform. Set frame using the arcade.experimental.ShadertoyBase.frame at-
tribute

– Support the iChannelTime uniform. Set time for each individual channel using the arcade.
experimental.ShadertoyBase.channel_time attribute.

– Support the iFrameRate uniform. Set frame rate using the arcade.experimental.ShadertoyBase.
frame_rate attribute

– Support the iDate uniform. This uniform will be automatically set. See arcade.experimental.
ShadertoyBase._get_date()

– Support the iChannelResolution uniform. This uniform will be automatically set

– Added example using video with shadertoy

– Improve Shadertoy docstrings + unit tests

• Docs / Tutorials / Examples

– Updated install docs

– Added tutorial for compiling an arcade game with Nuika

646 Chapter 35. Release Notes

Python Arcade Library, Release 3.0.0.dev26

– Improved/extended shadertoy tutorials

– Added example using textures with shadertoy

– Added sprite rotation examples

– Clarified the difference between arcade.View.on_show_view() and arcade.View.on_show()

– Improved UIManager docstrings

– Various annotation and docstring improvements

– Fixed several broken links in docs

– We’re now building PDF/EPUB docs

• OpenGL

– Added new method for safely setting shader program uniforms: arcade.gl.Program.
set_uniform_safe(). This method will ignore KeyError if the uniform doesn’t exist. This is
often practical during development because most GLSL compilers/linkers will remove uniforms that is
determined to not affect the outcome of a shader.

– Added new method for safely setting a uniform array: arcade.gl.Program.
set_uniform_array_safe(). This is practical during development because uniform arrays are in
most cases shortened by GLSL compiler if not all array indices are used by the shader.

– Added arcade.gl.Texture.swizzle. This can be used to reorder how components are read from the
texture by a shader making it easy to crate simple effects or automatically convert BGR pixel formats to
RGB when needed.

– Added ray marching example with fragment shader

– Allow reading framebuffer data with 2 and 4 byte component sizes

– Simplified texture atlas texture coordinates to make them easier to use in custom shaders.

– Support dumping the atlas texture as RGB

– Support dumping the atlas texture with debug lines showing texture borders

– We no longer check GL_CONTEXT_PROFILE_MASK due to missing support in older drivers. Especially GL
3.1 drivers that can in theory run arcade

– Various shader cleanups

• Experimental

– Added a simple profiler class

Special thanks to Vincent Poulailleau Ian Currie Mohammad Ibrahim, pushfoo, Alejandro Casanovas, Darren Eberly,
pvcraven and Einar Forselv for their contributions to this release. Also, thanks to everyone on the Pyglet team! We
depend heavily on Pyglet’s continued development.

35.4. Version 2.6.14 647

https://github.com/vpoulailleau
https://github.com/iansedano
https://github.com/Ibrahim2750mi
https://github.com/pushfoo
https://github.com/janscas
https://github.com/Cleptomania
https://github.com/pvcraven
https://github.com/einarf

Python Arcade Library, Release 3.0.0.dev26

35.5 Version 2.6.13

Released 2022-Mar-25

• New Features

– Arcade can now run in headless mode on linux servers opening more possibilities for users in for example
the data science community (#1107). See Headless Arcade for more information.

• Bugfixes

– The random text glitching issue especially affecting users with iGPUs is finally resolved in pyglet. For that
reason we have upgraded to the pyglet 2.0a2 release.

– Fixed an issue causing arcade.draw_circle_filled() and arcade.draw_circle_outline() to al-
ways render with 3 segments on some iGPUs.

– Fixed an issue causing interactive widgets to unnecessarily re-draw when hovering or pressing them. This
could cause performance issues.

– SectionManager’s on_show_view was never called when showing a view

• Various Improvements

– arcade.load_font() now supports resource handles

– PhysicsEngineSimple can now take an iterable of wall spritelists

– Sprite creation is now ~6-8% faster.

– Removed warning about missing shapely on startup

– Window titles are now optional. If no window title is specified the title will be the absolute path to the
python file it was created in. This was changed because of the new headless mode.

– Removed arcade.quick_run. This function had no useful purpose.

– Added clear method to UIManager (#1116)

– Updated from Pillow 9.0.0 to 9.0.1

• Tilemap

– Rectangle objects which are empty(have no width or height) will now be automatically converted into single
points.

– The Tile ID of a sprite can be access with sprite.properties["tile_id"]. This refers to the local
ID of the tile within the Tileset. This value can be used to get the tile info for a given Sprite created from
loading a tilemap.

• Docs

– Added python version support info to install instructions (#1122)

– Fixed typo in append_texture() docstring(#1126)

– Improved the raycasting tutorial (#1124)

– Replace mentions of 3.6 on Linux install page (#1129)

– Fix broken links in the homepage (#1139)

– Lots of other improvements to docstrings throughout the code base

– General documentation improvements

• OpenGL

648 Chapter 35. Release Notes

https://github.com/pythonarcade/arcade/issues/1107
https://github.com/pythonarcade/arcade/pull/1116
https://github.com/pythonarcade/arcade/pull/1122
https://github.com/pythonarcade/arcade/pull/1126
https://github.com/pythonarcade/arcade/issues/1124
https://github.com/pythonarcade/arcade/pull/1129
https://github.com/pythonarcade/arcade/pull/1130

Python Arcade Library, Release 3.0.0.dev26

– arcade.gl.Geometry now supports transforming to multiple buffers.

– Added and improved examples in experimental/examples.

– Major improvements to API docs

Special thanks to Mohammad Ibrahim, pushfoo, Alejandro Casanovas, Maic Siemering, Cleptomania, pvcraven and
einarf for their contributions to this release. Also, thanks to everyone on the Pyglet team! We depend heavily on Pyglet’s
continued development.

35.6 Version 2.6.12

Released 2022-Mar-20

• General:

– Bugfix: check_for_collision_with_list() selected the wrong collision algorithm. This could affect
performance.

– Bugfix: GPU collision detection show now work on older MacBooks

– Added arcade.Text.draw_debug() that will visualize the content area of the text and the anchor point.
This can be useful to understand the text anchoring.

– arcade.Text now has a left, right top and bottom attribute for getting the pixel locations of the
content borders.

– Added performance warning for arcade.draw_text(). Using arcade.Text is a lot faster. We have also
promoted the use of text objects in examples.

– Removed the deprecated arcade.create_text function

– UITextureButton.texture_pressed now returns the pressed texture, not the texture

• Documentation

– Work on Shader Toy - Glow.

– Docstring improvements throughout the code base

– Many examples are cleaned up

• OpenGL

– arcade.gl.Buffer is guaranteed to contain zero byte values on creation.

– Expose Limits in arcade.gl.Context.info and document all limit values

– Added limit: MAX_TRANSFORM_FEEDBACK_SEPARATE_ATTRIBS

– arcade.gl.Buffer.read() now reads the correct number of bytes when only offset parameter is
passed.

– Improved compute shader examples

– Support uniform blocks in compute shaders

– Bug: arcade.gl.Context.enabled now properly reverts to the original context flags

– Many docstring improvements in the arcade.gl module

– Bugfix: Query objects ignored creation parameters

– arcade.gl.ComputeShader is now part of the gl module

– arcade.gl.ComputeShader was added to docs

35.6. Version 2.6.12 649

https://github.com/Ibrahim2750mi
https://github.com/pushfoo
https://github.com/janscas
https://github.com/eruvanos
https://github.com/Cleptomania
https://github.com/pvcraven
https://github.com/einarf

Python Arcade Library, Release 3.0.0.dev26

– Expose and document arcade.gl.context.ContextStats

Special thanks to MrWardKKHS, pvcraven and einarf for their contributions to this release. Also, thanks to everyone
on the Pyglet team! We depend heavily on Pyglet’s continued development.

Also thanks to:

• DragonMoffon for arcade.gl testing and feedback

• bunny-therapist discovering collision bug

• Robert Morris for making us aware of the MacBook issue

35.7 Version 2.6.11

Released 2022-Mar-17

• Sections - Add support to divide window into sections. (Thanks janscas for the contribution.)

– Add arcade.Section to the API.

– Add arcade.SectionManager to the API.

– Add examples on how to use: Sectioning a View

• New Example Code:

– Add parallax example: background_parallax.

– Add GUI flat button styling example: gui_flat_button_styled.

– Add perspective example.

• New functionality:

– Add arcade.get_angle_degrees() function.

– Add easing functions and example. See easing_example_1 and easing_example_2.

– Add arcade.Sprite.facePoint() to face sprite towards a point.

• Fixes:

– Fixed issue #1074 to prevent a crash when opening a window.

– Fixed issue #978, copy button in examples moved to the left to prevent it disappearing.

– Fixed issue #967, CRT example now pulls from resources so people don’t have to download image to try it
out.

– PyMunk sample map now in resources so people don’t have to download it.

– arcade.draw_points() no longer draws the points twice, improving performance.

• Documentation:

– Update Pygame Comparison.

– Improve Sprite.texture docs.

– When building Arcade docs, script now lets us know what classes don’t have docstrings.

– Spelling/typo fixes in docs.

• Misc:

– Update arcade.Sprite to use decorators to declare properties instead of the older method.

650 Chapter 35. Release Notes

https://github.com/MrWardKKHS
https://github.com/pvcraven
https://github.com/einarf
https://github.com/DragonMoffon
https://github.com/bunny-therapist
https://github.com/morrissimo
https://github.com/janscas
https://github.com/pythonarcade/arcade/issues/1074
https://github.com/pythonarcade/arcade/issues/978
https://github.com/pythonarcade/arcade/issues/967

Python Arcade Library, Release 3.0.0.dev26

– #1095, Improvements to arcade.Text and its documentation. We can now also get the pixel size of a Text
contents though content_width, content_height and content_size.

– Force GDI text on windows until direct write is more mature.

– Optimized text rendering and text rotation

– arcade.draw_text() and arcade.Text objects now accepts any python object as text and converts it
into a string internally if needed.

– SpriteList now exposes several new members that used to be private. These are lower level mem-
bers related to the underlying geometry of the spritelist and can be used by custom shaders to do inter-
esting things blazingly fast. SpriteList interaction example with shaders can be found in the experimen-
tal directory. Members include write_sprite_buffers_to_gpu(), geometry, buffer_positions,
buffer_sizes, buffer_textures, buffer_colors, buffer_angles and buffer_indices

• OpenGL:

– Added support for indirect rendering. This is an OpenGL 4.3 feature. It makes us able to render multiple
meshes in the the same draw call providing significant speed increases in some use cases. See arcade.
gl.Geometry.render_indirect() and examples in the experimental directory.

– Added support for unsigned integer uniform types

– arcade.gl.Geometry.transform no longer takes a mode parameter.

Special thanks to einarf, eruvanos, janscas, MrWardKKHS, DragonMoffon, pvcraven, for their contributions to this
release. Also, thanks to everyone on the Pyglet team! We depend heavily on Pyglet’s continued development.

35.8 Version 2.6.10

Released 2022-Jan-29

• Sprites

– Collision checking against one or more sprite lists can use the GPU via a ‘transform’ for
much better performance. The arcade.check_for_collision_with_list() and arcade.
check_for_collision_with_lists()methods now support selection between spatial, GPU, and CPU
methods of detection.

– Added clear() for resetting/clearing a spritelist. This will iterate and remove all sprites by default, or do
a faster O(1) clear. Please read the api docs to find out what version fits your use case.

– SpriteList now supports setting a global color and alpha value. The new color, color_normalized ,
alpha and alpha_normalized will affect every sprite in the list. This global color value is multiplied by
the individual sprite colors.

– The Sprite initializer now also accepts None value for hit_box_algorithm in line with the underlying
texture method.

– Fixed a bug causing sprites to have incorrect scale when passing a texture during creation.

– Removed the texture transform feature in sprites. This feature no longer makes sense since arcade 2.6.0 due
to the new texture atlas feature.

• Tiled Maps

– Fixed issue #1068 (#1069) where loaded rectangular hit box was wrong.

– Add better error for infinite tile maps

35.8. Version 2.6.10 651

https://github.com/pythonarcade/arcade/issues/1095
https://github.com/einarf
https://github.com/eruvanos
https://github.com/janscas
https://github.com/MrWardKKHS
https://github.com/DragonMoffon
https://github.com/pvcraven
https://github.com/pythonarcade/arcade/issues/1068

Python Arcade Library, Release 3.0.0.dev26

– Added SpriteList.properties and properties from Image and Tile layers will automatically be loaded
into that when loading a Tiled map

• General

– Window.current_camera will now hold a reference to the currently active camera. This will be set when
calling arcade.Camera.use(), if no camera is active then it will be None.

– Window.clear can now clear a sub-section of the screen through the new optional viewport parameter.

– arcade.Window.clear() can now take normalized/float color values

– The new arcade.View.clear() method now clears the current window. This can be used as a shortcut
arcade.Window.clear() when inside of a View class.

– Add support for custom resource handles

– Add support for anisotropic filtering with textures.

– Clearing the window should always clear the entire window regardless of camera / viewport setup (unless
a scissor box is set)

• Documentation

– Change examples so instead of arcade.start_render() we use self.clear(). The start render func-
tion was confusing people. #1071

– Fix a bunch of links that were incorrectly pointing to old pvcraven instead of pythonarcade. #1063

– Update pyinstaller instructions

– Various documentation improvements and updates

• arcade.gl

– Fixed a bug were out attributes in transforms was not properly detected with geometry shaders

– Fixed a bug were specifying vertex count wasn’t possible with transforms when the vertex array has an
index buffer bound.

– The Query object now allows for selecting what specific queries should be performed

– Fixed a issue causing the wrong garbage collection mode to activate during context creation

– Viewport values for the default framebuffer now applies pixel ratio by default

– Scissor values for the default framebuffer now applies pixel ratio by default

• arcade.gui

– UIBoxLayout supports now align in constructor (changing later requires a UIBoxLay-
out.trigger_full_render()).

– UIBoxLayout supports now space_between in constructor.

– UIManager fix #1067, consume press and release mouse events

– UIManager add() returns added child

– UILayout add() returns added child

– UIWidget add() returns added child

– New method in UIManager: walk_widgets()

– New method in UIManager: get_widgets_at()

– New method in UIWidget: move()

652 Chapter 35. Release Notes

https://github.com/pythonarcade/arcade/issues/1071
https://github.com/pythonarcade/arcade/issues/1063

Python Arcade Library, Release 3.0.0.dev26

Special thanks to Cleptomania, einarf, eruvanos, nrukin, Jayman2000, pvcraven, for their contributions to this release.
Also, thanks to everyone on the Pyglet team! We depend heavily on Pyglet’s continued development.

35.9 Version 2.6.9

Released on 2022-Jan-13

• Bump version of Pillow from 8.4 to 9.0.0 due to security vulnerability in Pillow.

35.10 Version 2.6.8

Released on 2021-Dec-25

• The Shapely library is now optional. The shapely library uses native code to make operations such as collision
detection and some other geometry operations faster. However they have not updated their binaries to support
Python 3.10 on macOS and Windows. If Shapely is installed, Arcade will use that library. Otherwise it will fall
back to slower, but Python-only code. See: https://github.com/shapely/shapely/issues/1215

• TileMap changes:

There are no API changes to the TileMap class, however full support for TMX maps, TSX tilesets, and TX object
templates has been added thanks to pytiled-parser 2.0. You should be able to load these formats with 0 change
to your code, and use all the same features that were available with JSON maps.

This update also includes the ability to cross-load JSON and TMX maps/tilesets. Meaning you can have a JSON
map load a TSX tileset, or have a TMX map load a JSON tileset.

You don’t ever need to explicitly set or configure a format to use, it will be automatically determined based on
the file you pass in. It is determined based on the actual content of the file, and not the filetype, so if you give it
a .json file that actually contains TMX, or vice versa, it will still work without problem.

• Update Pyglet to 2.0.dev13 which fixes a bug where on_resize wasn’t getting called.

• Added a compute shader tutorial.

Special thanks to Cleptomania, einarf, pvcraven, for their contributions to this release. Also, thanks to everyone on the
Pyglet team! We depend heavily on Pyglet’s continued development.

35.11 Version 2.6.7

Released on 2021-Dec-15

• This version updates Pyglet to 2.0dev12. Programs WILL NOT RUN with prior versions of Pyglet.

• Window changes:

– Added enable_polling option to constructor. If enabled then window.keyboard and window.mouse
will be activated and able to be used to poll input by accessing them as if they were a dictionary. This option
is enabled by default. See #1038

window.keyboard can be polled using the values from arcade.key.

window.mouse can be polled using the following values:

∗ 1: Left click

∗ 2: Right click

35.9. Version 2.6.9 653

https://github.com/Cleptomania
https://github.com/einarf
https://github.com/eruvanos
https://github.com/nrukin
https://github.com/Jayman2000
https://github.com/pvcraven
https://shapely.readthedocs.io/en/latest/
https://github.com/shapely/shapely/issues/1215
http://pyglet.org/
https://api.arcade.academy/en/development/tutorials/compute_shader/index.html
https://github.com/Cleptomania
https://github.com/einarf
https://github.com/pvcraven
https://github.com/pythonarcade/arcade/issues/1038

Python Arcade Library, Release 3.0.0.dev26

∗ 3: Middle click

∗ “x”: X position

∗ “y”: Y position

• Camera changes:

– Defaults the viewport width and height to the window size if they are set to 0 now, since you cannot have
a size of 0 in any direction due to projection calculation. This means that if you do not provide those
arguments to the constructor it will default to the window size. See #1041

• TileMap changes:

– Added support for layer position offsets. This allows passing a tuple containing an X and Y offset that
will be applied to each Sprite/Object within the layer. You can set this via an offset parameter in the
layer_options dict, or you can supply a global offset to the map which will be applied to all layers via
the offset parameter of either arcade.load_tilemap or to the TileMap constructor directly. Layer
specific offsets will override the global default if both are set. See #1048

– Added a new error message for JSONDecodeError exceptions, a common problem when tilesets are TSX
but maps are JSON. This change simply provides a more clear error of the most likely cause of the problem
so users don’t have to dig as much.

• Text

– Reverted the extra guards around text rendering that was implemented in 2.6.6. This turned out to cause
slowdowns where text was being used heavily. Work is still ongoing to fix the remaining issues with text.

• Docs Fixes:

– See #1033 and #1046

– #1043 Update moving platforms example.

Special thanks to Cleptomania, einarf, pvcraven, mlr07, pushfoo, for their contributions to this release. Also, thanks to
everyone on the Pyglet team! We depend heavily on Pyglet’s continued development.

35.12 Version 2.6.6

Released on 2021-Dec-04

• TileMap changes:

– Added tiled_map parameter to init function of TileMap class. It allows to pass an already parsed map
from from pytiled-parser to it. Previously it could only be used with raw files and would handle the parsing
automatically. If a pre-parsed map is passed to this, the map_file parameter will simply be ignored. This
addition makes working with pre-parsed maps from a World file possible.

• Text

– Added extra guards around text rendering calls to hopefully reduce glitchy text rendering. Work is still
ongoing to fix the remaining issues with text.

• Window:

– Added samples parameter so user can specify antialiasing quality.

– The arcade window should fall back to no antialiasing if the window creation fails. Some drivers/hardware
don’t support it. For example when running arcade in WSL or services like Repl.it.

• SpriteList

654 Chapter 35. Release Notes

https://github.com/pythonarcade/arcade/issues/1041
https://github.com/pythonarcade/arcade/issues/1048
https://github.com/pythonarcade/arcade/issues/1033
https://github.com/pythonarcade/arcade/issues/1046
https://github.com/pythonarcade/arcade/issues/1043
https://github.com/Cleptomania
https://github.com/einarf
https://github.com/pvcraven
https://github.com/mlr07
https://github.com/pushfoo

Python Arcade Library, Release 3.0.0.dev26

– Optimization: Empty spritelists created before the window or created with lazy=True no longer auto-
matically initialize internal OpenGL resources for empty spritelists and will instead immediately leave the
draw() method.

• UI

– Add experimental UI styles dataclasses for UIWidget styling.

– Add UISlider, which provides a general slider element with some basic functionality

– Fix UIInputText rendering

• Sound

– Pyglet audio drivers can now be overridden using the ARCADE_SOUND_BACKENDS environment variable for
debug purposes. It expects a comma separated string with driver names.

• OpenGL

– From version 2.6.6 Arcade is no longer using the auto garbage collection mode for OpenGL resources. This
mode has the same behavior as the Python garbage collection. Instead we’re now using the context_gc
mode were resources are released every time Window.flip() is called (every frame by default). This
solves many problems such as threads in your project or external libraries suddenly trying to garbage collect
OpenGL objects while this is only possible in the main thread. This should not cause any problems for most
users.

– Added Context.copy_framebuffer. This can be used to copy framebuffers with or without multisam-
pling to another framebuffer. This makes us able to do offscreen rendering with multisampling.

– Texture s can now be created with multisampling by passing the samples parameter. This should only be
used for attachments to framebuffers. The Texture object now also has a samples property (read only).

• Examples

– Update mini-map example

– Update scrolling camera example

– Update google analytics code in docs

– Remove some less-than-useful examples in the example code section

– Update platformer example

– Update windows install instructions

– Update sample games to show more sample games

– Improve CRT filter tutorial

– New example code on how to follow a path

– Added Game of Life example using shaders

• Documentation

– Added API docs for arcade.gl

– ArcadeContext should now show inherited members

– Edge artifact page now encourage using pixelated argument instead of importing OpenGL enums from
pyglet

Special thanks to einarf, pvcraven, Cleptomania, eruvanos, for their contributions to this release. Also, thanks to
everyone on the Pyglet team! We depend heavily on Pyglet’s continued development.

35.12. Version 2.6.6 655

https://github.com/einarf
https://github.com/pvcraven
https://github.com/Cleptomania
https://github.com/eruvanos

Python Arcade Library, Release 3.0.0.dev26

35.13 Version 2.6.5

Released on 2021-Nov-5

• Increased pyglet’s default atlas size for text glyphs to remove text flickering and various other artifacts. This issue
will be fixed in future versions of pyglet.

• Fixed as issue causing all sprites to use the same texture on some Macs.

• Improved doc for setting the viewport.

Special thanks to einarf, pushfoo, for their contributions to this release.

35.14 Version 2.6.4

Released on 2021-Nov-3

• Python 3.10 updates. Dependent library versions have been updated to include Python 3.10 support. All libraries
appear to support 3.10 except Shapely 1.8.0 on the Windows platform. Until those binaries are released, 3.10
support for Windows is still not there.

• SpriteList additions:

– A visible attribute has been added to this class. If set to False, when calling draw() on the SpriteList
it will simply return and do nothing. Causing the SpriteList to not be drawn.

– SpriteList now has a lazy (bool) parameter causing it to not create internal OpenGL resources until the
first draw call or until SpriteList’s initialize() is called. This means that sprite lists and sprites can now
be created in threads.

– Fixes/optimized reverse() and shuffle() methods.

– Added sort() method. This is identical to Python’s list.sort but are many times faster sorting your
sprites.

– Removed noisy warning message when spritelists were created before the window

– Fixed an issue with insert() when trying to insert sprites past an index greater than the current length. It
could cause inserted sprites to be invisible.

• Sprite changes:

– Added arcade.Sprite.visible property for quickly making sprites visible/invisible. This is simply a
shortcut for changing the alpha value.

– Optimization: Sprites should now take ~15% less memory and be ~15% faster to create

– SpriteCircle and SpriteSolidColor textures are now cached internally for better performance.

• PhysicsEnginePlatformer Optimization:

A walls parameter has been added to this class. The new intention for usage of this class is for static(non-
moving) sprites to be sent to the walls parameter, while moving platforms should be sent to the platforms
parameter. Properly differentiating between these parameters can result in extreme performance benefits. Sprites
added to platforms are O(n) whereas Sprites added to walls are O(1). This has been tested with anywhere
from 100 to 500k+ Sprites, and the physics engine shows no measurable difference between those scenarios.

We have also removed the ability to send a single Sprite to the platforms, ladders, and walls parameters of
this class. This is a use case which results in some improper usage and unnecessary slowdowns. These parameters
will now only accept SpriteLists or an iterable such as a list containing SpriteLists. If you are currently using
this functionality, you just need to add your Sprite to a SpriteList and provide that instead.

656 Chapter 35. Release Notes

https://github.com/einarf
https://github.com/pushfoo

Python Arcade Library, Release 3.0.0.dev26

The simple platformer tutorial has already been updated to make use of this optimization.

• Scene is additions:

– The Scene class is now sub-scriptable, previously in order to retrieve a SpriteList from Scene, you needed to
use either Scene.name_mapping or Scene.get_sprite_list. We have now added the ability to access
it by sub-scripting the Scene object directly, like spritelist = my_scene["My Layer"]

– Added on_update() method. Previously Scene only had update(). Both of these methods simply call
the corresponding one on each SpriteList, however previously you could not do this with on_update().
The difference between these methods is that on_update() allows passing a delta time, whereas update()
does not.

• TileMap additions and fixes:

– When loading a Tiled map Arcade will now respect if layers are visible or not. If a layer is not visible in
Tiled, the SpriteList created for it will use the new visible attribute to control it. This means that when
creating a Scene from a TileMap, this will automatically be respected as well.

– Fixed support for parallax values on layers. Currently there is no support to do anything with these out of
the box, you’d need to manually pull the values and do something based on them, however previously the
map would not load if the values were changed from the default. This has been fixed in pytiled-parser and
we have updated our version in Arcade accordingly.

– Removed a lingering debug tactic of printing the class name of custom SpriteList classes when loading a
TileMap.

• UI

– UIInputText now supports both RGB and RGBA text color

• Text

– Several text related bugs have been resolved in pyglet, the underlying library we now use for text drawing.
This has been a fairly time consuming task over several weeks and we hope the new pyglet based text system
will stabilize from now on. Arcade is an early adopter of pyglet 2.0 currently using a pre-release

– The Text object is now usable and is preferred over arcade.draw_text() in many cases for performance
reasons.

– Text related functions should now have better documentation

• Misc:

– Added support to the View class for on_resize()

– Many docstring improvements. Initializer docstrings have now been moved to the class docstring ensuring
they will always show up in the generated api docs.

– Added some new sections under advanced docs related to OpenGL, textures and texture atlas

– New utility function color_from_hex_string() that will turn a hex string into a color.

– Bug: Removed a lingering debug key F12 that showed the contents of the global texture atlas

– Several improvements to typing and PEP-8. Plus automated tests to help keep things in good shape.

– Added run() shortcut in arcade.Window. Usage: MyWindow().run()

– Addition of PymunkException class for throwing Pymunk errors in the Pymunk physics engine.

– The check_for_collision_with_lists() function will now accept any Iterable(List, Tuple, Set, etc)
containing SpriteLists.

• Lower level rendering API:

35.14. Version 2.6.4 657

Python Arcade Library, Release 3.0.0.dev26

– Fixed a problem causing Geometry / VertexArray to ignore POINTS primitive mode when this is set as
default.

– Added support for compute shaders. We support writing to textures and SSBOs (buffers). Examples can
be found in arcade/experimental/examples

– Fixed a crash when drawing with geometry shaders due to referencing a non-existent enum

Special thanks to einarf, pvcraven, pushfoo, Cleptomania, Olliroxx, mlr07, yegarti, Jayman2000 for their contributions
to this release.

Special thanks to Benjamin and caffeinepills for their help to squash bugs in pyglet 2.0.

35.15 Version 2.6.3

Released on 2021-Sept-21

• Bug fix, use a signed in as the ‘killed’ index. #965

• Fix dead links on getting started page See #960

• Fix some doc language that mixed function/method vocabulary. See #963

• Some initial work on compute and camera shader work. Not done yet.

• Fixed a bug causing the sprite geometry shader to not compile in some platforms

• Fixed a bug related to texture bleeding with sprites. Texture atlases now pad the texture borders with repeating
pixel data to combat this. It should make sprites look much better when scrolling, zooming and on hidpi displays.
#959

• Added hack for some gui text not appearing (pyglet 2.0 bug)

• UIMessageBox should now respect the width and height of the widget

• SpriteList.draw: Added pixelated (bool) argument as a shortcut to setting nearest interpolation

• SpriteList.draw: The arguments are now better exposed in docs

• Sprite.draw now has the same blending and interpolation argument as SpriteList.draw

• Upgraded to pyglet 2.0dev9

35.16 Version 2.6.2

Released on 2021-Sept-18

• Support for custom classes that subclass Sprite for tiles in TileMap objects. See #942

• Update PymunkPhysicsEngine to work with any direction of gravity rather than just downward. See #940

• Update library versions we depend on. PIL, Pymunk, etc.

• Fix the card game example code. See #951

• Fix for drawing small circles not using enough segments. See #950

• A lot of documentation links in the .py files were old and not updated to the RTD way, fixed now.

• arcade.key was missing from the documentation quick index. Fixed.

• Fixed a rendering issue with sprites on M1 Macs

658 Chapter 35. Release Notes

https://github.com/einarf
https://github.com/pvcraven
https://github.com/pushfoo
https://github.com/Cleptomania
https://github.com/Olliroxx
https://github.com/mlr07
https://github.com/yegarti
https://github.com/Jayman2000
https://github.com/benmoran56
https://github.com/caffeinepills
https://github.com/pythonarcade/arcade/issues/965
https://github.com/pythonarcade/arcade/issues/960
https://github.com/pythonarcade/arcade/issues/963
https://github.com/pythonarcade/arcade/issues/959
https://github.com/pythonarcade/arcade/issues/942
https://github.com/pythonarcade/arcade/issues/940
https://github.com/pythonarcade/arcade/issues/951
https://github.com/pythonarcade/arcade/issues/950

Python Arcade Library, Release 3.0.0.dev26

• Fix caret not showing up in input box

• Lots of type-hint fixes

35.17 Version 2.6.1

35.17.1 Fixes

• Removed type annotations which were introduced in Python 3.8 to fix compatibility with Python 3.7 and 3.6

• Fixed flickering on static drawing. See #858

35.18 Version 2.6.0

Version 2.6.0 is a major update to Arcade. It is not 100% backwards compatible with the 2.5 API. Updates were made
to text rendering, tiled map support, sprites, shaders, textures, GUI system, and the documentation.

• Tiled Map Editor support has been overhauled.

– Arcade now uses the .json file format for maps created by the Tiled Map Editor rather than the TMX format.
Tile sets and other supporting files need to all be saved in .json format. The XML based formats are no
longer supported by Arcade.

– Arcade now supports a minimum version of Tiled 1.5. Maps saved with an older version of Tiled will likely
work in most scenarios, but for all features the minimum version we can support is 1.5 due to changes in
the Tiled map format.

– Feature-support for Tiled maps has been improved to have near 100% parity with Tiled itself.

– See Simple Platformer for a how-to, Tiled usage starts at Chapter 9.

– See Community RPG or Community Platformer for a more complex example program.

• Texture atlases have been introduced, texture management has been improved.

– A sprite list will create and use its own texture atlas.

– This introduces a new arcade.TextureAtlas class that is used internally by SpriteList.

– Sprites with new textures can be added to a sprite list without the delay. Arcade 2.5 had a delay caused by
rebuilding its internal sprite sheet.

35.17. Version 2.6.1 659

https://github.com/pythonarcade/arcade/issues/858
https://www.mapeditor.org/
https://github.com/pythonarcade/community-rpg
https://github.com/pythonarcade/community-platformer

Python Arcade Library, Release 3.0.0.dev26

– As a side effect, sprites can only belong to one sprite list that renders.

– The texture atlas portion of a sprite can be drawn to, and quickly updated on the GPU side.

∗ To demonstrate, there is a new minimap example that creates a sprite that has a dynamic minimap
projected onto it.

• Revamped text rendering done by arcade.draw_text(). Rather than use Pillow to render onto an image,
Arcade uses Pyglet’s text drawing system. Text drawing is faster, higher resolution, and not prone to memory
leaks. Fonts are now specifed by the font name, rather than the file name of the font.

– Fonts can be dynamically loaded with arcade.load_font().

– Kenney.nl’s TTF are now included as build-in resources.

– See the drawing_text example.

• SpriteList optimizations.

– Sprites now draw even faster than before. On an Intel i7 with nVidia 980 Ti graphics card, 8,000+ moving
sprites can be drawn while maintaining 60 FPS. The same machine can only do 2,000 sprites with Pygame
before FPS drops.

• Shadertoy support.

– Shadertoy.com is a website that makes it easier to write OpenGL shaders.

– The new arcade.Shadertoy class makes it easy to run and interact with these shaders in Arcade.

– See Shader Toy - Glow and Asteroids.

660 Chapter 35. Release Notes

https://www.shadertoy.com/
https://github.com/pythonarcade/asteroids

Python Arcade Library, Release 3.0.0.dev26

• Reworked GUI

35.18. Version 2.6.0 661

Python Arcade Library, Release 3.0.0.dev26

– UIElements are replaced by UIWidgets

– Option to relative pin widgets on screen to center or border (supports resizing)

– Widgets can be placed on top of each other

– Overlapping widgets properly handle mouse interaction

– Fully typed event classes

– Events contain source widget

– ScrollableText widgets (more to come)

– Support for Sprites within Widgets

– Declarative coding style for borders and padding widget.with_border(. . .)

– Automatically place widgets vertically or horizontally (UIBoxLayout)

– Dropped support for YAML style files

– Better performance and limited memory usage

– More documentation (GUI Concepts)

– Available Elements:

∗ UIWidget:

· UIFlatButton - 2D flat button for simple interactions (hover, press, release, click)

· UITextureButton - textured button (use arcade.load_texture()) for simple interactions
(hover, press, release, click)

· UILabel - Simple text, supports multiline

· UIInputText - field to accept user text input

· UITextArea - Multiline scrollable text widget.

· UISpriteWidget - Embeds a Sprite within the GUI tree

∗ UILayout:

· UIBoxLayout - Places widgets next to each other (vertical or horizontal)

∗ UIWrapper:

· UIPadding - Add space around a widget

· UIBorder - Add border around a widget

· UIAnchorWidget - Used to position UIWidgets relative on screen

∗ Constructs

662 Chapter 35. Release Notes

Python Arcade Library, Release 3.0.0.dev26

· UIMessageBox - Popup box with a message text and a few buttons.

∗ Mixins

· UIDraggableMixin - Makes a widget draggable.

· UIMouseFilterMixin - Catches mouse events that occure within the widget boundaries.

· UIWindowLikeMixin - Combination of UIDraggableMixin and UIMouseFilterMixin.

– WIP * UIWidgets contain information about preferred sizes * UILayouts can grow or shrink widgets, to
adjust to different screen sizes

• Scene Manager.

– There is now a new arcade.Scene class that can be used to manage SpriteLists and their draw order. This
can be used in place of having to draw multiple spritelists in your draw function.

– Contains special integration with arcade.TileMap using arcade.Scene.from_tilemap() which will
automatically create an entire scene from a loaded tilemap in the proper draw order.

– See Simple Platformer for an introduction to this concept, and it is used heavily throughout that tutorial.

• Camera support

– Easy scrolling with arcade.Camera

– For an example of this see the example: sprite_move_scrolling.

– Automatic camera shake can be added in, see the example: sprite_move_scrolling_shake.

– Several other examples and tutorials make use of this class, like Simple Platformer.

• Add a set of functions to track performance statistics. See Performance Information.

• Added the class arcade.PerfGraph , a subclass of Sprite that will graph FPS or time to process a dispatch-able
event line ‘update’ or ‘on_draw’.

• Documentation

– Lots of individual documentation updates for commands.

– The API Index has been reorganized to be easier to find commands, and the individual API documentation
pages have been broken into parts, so it isn’t one large monolithic page.

– New tutorial for Ray-casting Shadows.

35.18. Version 2.6.0 663

Python Arcade Library, Release 3.0.0.dev26

– New tutorial for Shader Toy - Glow.

– Revamped tutorial: Simple Platformer.

– Revamped minimap example: minimap.

– Moved from AWS hosting to read-the-docs hosting so we can support multiple versions of docs.

– New example showing how to use the new performance statistics API: performance_statistics_example

– New example: gui_widgets

– New example: gui_flat_button

– New example: gui_ok_messagebox

• API commands

– arcade.get_pixel() supports getting RGB and RGBA color value

– arcade.get_three_color_float() Returns colors as RGB float with numbers 0.0-1.1 for each color

– arcade.get_four_color_float() Returns colors as RGBA float with numbers 0.0-1.1 for each color

• Better PyInstaller Support

Previously our PyInstaller hook only fully functioned on Windows, with a bit of functionality on Linux. Mac
was just completely unsupported and would raise an UnimplementedError if you tried.

Now we have full out of the box support for PyInstaller with Windows, Mac, and Linux.

See Bundling a Game with PyInstaller for an example of how to use it.

• Sound

The sound API remains unchanged, however general stability of the sound system has been greatly improved via
updates to Pyglet.

• Fix for A-star path finding routing through walls

Special thanks to:

• einarf for performance improvements, texture atlas support, shader toy support, text drawing support, advice on
GUI, and more.

• Cleptomania for Tiled Map support, sound support, and more.

• eruvanos for the original GUI and all the GUI updates.

• benmoran56 and everyone that contributes to the excellent Pyglet library we use so much.

664 Chapter 35. Release Notes

http://pyglet.org/
https://github.com/pythonarcade/arcade/issues/806
https://github.com/einarf
https://github.com/Cleptomania
https://github.com/eruvanos
https://github.com/benmoran56
http://pyglet.org/

Python Arcade Library, Release 3.0.0.dev26

35.19 Version 2.5.7

Released on 2021-May-25

35.19.1 Fixes

• The arcade gui should now respect the current viewport

• Fixed an issue with UILabel allocating large amounts of textures over time consuming a lot of memory

• Fixed an issue with the initial viewport sometimes being 1 pixel too small causing some artifacts

• Fixed a race condition in Sound.stop() sometimes causing a crash

• Fixed an issue in requirements causing issues for poetry

• Fixed an error reporting issue when reaching maximum texture size

35.19.2 New Features

replit.com
Arcade should now work out of the box on replit.com. We detect when arcade runs in replit tweaking various settings.
One important setting we disable is antialiasing since this doesn’t work well with software rendering.

Alternative Garbage Collection of OpenGL Resources
arcade.gl.Context now supports an alternative garbage collection mode more compatible with threaded applica-
tions and garbage collection of OpenGL resources. OpenGL resources can only be accessed or destroyed from the
same thread the window was created. In threaded applications the Python garbage collector can in some cases try to
destroy OpenGL objects possibly causing a hard crash.

This can be configured when creating the arcade.Window passing in a new gc_mode parameter. By default this
parameter is "auto" providing the default garbage collection we have in Python.

Passing in "context_gc" on the other hand will move all “dead” OpenGL objects into Context.objects. These
can be garbage collected manually by calling Context.gc() in a more controlled way in the the right thread.

35.20 Version 2.5.6

Version 2.5.6 was released 2021-03-28

• Fix issue with PyInstaller and Pymunk not allowing Arcade to work with bundling

• Fix some PyMunk examples

• Update some example code. Highlight PyInstaller instructions

35.19. Version 2.5.7 665

https://github.com/pythonarcade/arcade/issues/835

Python Arcade Library, Release 3.0.0.dev26

35.21 Version 2.5.5

Version 2.5.5 was released 2021-02-23

• Fix setting an individual sprite list location to a new sprite not working

35.22 Version 2.5.4

Version 2.5.4 was released 2021-02-19

• Fix for soloud installer hook

• Add fishy game on example page

• Fix but around framebuffer creation not properly restoring active frame buffer

• Fix for but where TextureRenderTarget creates FBO twice

• Updated pinned version numbers for dependent libraries

• MyPy fixes

• Minor improvements around SpriteList list operations

• Fix for physics engine getting stuck on a corner

35.23 Version 2.5.3

Version 2.5.3 was released 2021-01-27

• Fix memory leak when removing sprites from sprite list

• Fix solitaire example using old hitbox parameter

• Fix/improve tetris example

• Fix for camera2d.scroll_x

35.24 Version 2.5.2

Version 2.5.2 was released 2020-12-27

• Improve schedule/unschedule docstrings

• Fix Sound.get_length

• Raise error if there are multiple instances of a streaming source

• Fix background music example to match new sound API

• Update main landing page for docs

• Split sprite platformer tutorial into multiple pages

• Add ‘related projects’ page

• Add ‘adventure’ sample game link

• Add resources for top-down tank images

666 Chapter 35. Release Notes

https://github.com/pythonarcade/arcade/issues/824
https://github.com/pythonarcade/arcade/issues/816
https://github.com/pythonarcade/arcade/issues/820
https://github.com/pythonarcade/arcade/issues/815
https://github.com/pythonarcade/arcade/issues/814

Python Arcade Library, Release 3.0.0.dev26

• Add turn-and-move example

• Fix name of sandCorner_left.png

• Update tilemap to error out instead of continuing if we can’t find a tile

• Improve view tutorial

• Generate error rather than warning if we can’t find image or sound file

• Specify timer resolution in Windows

35.25 Version 2.5.1

Version 2.5.1 was released 2020-12-14

• Fix bug with sound where panning wasn’t working on Windows machines.

• Fix for create_lines_with_colors

• Fix for pegboard example, coin image too small

• Fix for create_ellipse dimensions being too big.

• Add visible kwarg to window constructor

• Fix some type-checking errors found by mypy.

• Update API docs

35.26 Version 2.5

Version 2.5 was released 2020-12-09

(Note, libraries Arcade depends on do not work yet with Python 3.9 on Mac. Mac users will need to use Python 3.6,
3.7 or 3.8.)

• Changing to Pyglet from Soloud for Sound

• Optimize has_line_of_sight using shapely

• Update setuptools configuration to align with PEP 517/518

• Changed algorithm for checking for polygon collisions

• Fix incorrect PyInstaller data file path handling docs

• Fix for hitbox not scaling

• Add support for pyinstaller on Linux

General

• SpriteList.draw now supports a blend_function parameter. This opens up for drawing sprites with different blend
modes.

• Bugfix: Sprite hit box didn’t properly update when changing width or height

• GUI improvements (eruvanos needs to elaborate)

• Several examples was improved

• Improvements to the pyinstaller tutorial

35.25. Version 2.5.1 667

https://github.com/pythonarcade/arcade/issues/804
https://github.com/pythonarcade/arcade/issues/779
https://github.com/pythonarcade/arcade/issues/756
https://github.com/pythonarcade/arcade/pull/802
https://github.com/pythonarcade/arcade/pull/746
https://github.com/pythonarcade/arcade/pull/783
https://github.com/pythonarcade/arcade/pull/780
https://github.com/pythonarcade/arcade/issues/771
https://github.com/pythonarcade/arcade/pull/774
https://github.com/pythonarcade/arcade/issues/752
https://github.com/pythonarcade/arcade/issues/800
https://github.com/pythonarcade/arcade/pull/770

Python Arcade Library, Release 3.0.0.dev26

• Better pin versions of depended libraries

• Fix issues with simple and platformer physics engines.

Advanced

• Added support for tessellation shaders

• arcade.Window now takes a gl_version parameter so users can request a higher OpenGL version than the
default (3, 3) version. This only be used to advanced users.

• Bugfix: Geometry’s internal vertex count was incorrect when using an index buffer

• We now support 8, 16 and 32 bit index buffers

• Optimized several draw methods by omitting tobytes() letting the buffer protocol do the work

• More advanced examples was added to arcade/experimental/examples

Documentation

• Add conway_alpha example showing how to use alpha to control display of sprites in a grid.

• Improve documentation around sound API.

• Improve documentation with FPS and timing stats example.

• Improve moving platform docs a bit in Simple Platformer tutorial.

35.27 Version 2.4.3

Version 2.4.3 was released 2020-09-30

General

• Added PyInstalled hook and tutorial

• ShapeLists should no longer share position between instances

• GUI improvements: new UIImageToggle

Low level rendering API (arcade.gl):

• ArcadeContext now has a load_texture method for creating opengl textures using Pillow.

• Bug: Fixed an issue related to drawing indexed geometry with offset

• Bug: Scissor box not updating when using framebuffer

• Bug: Fixed an issue with pack/unpack alignment for textures

• Bug: Transforming geometry into a target buffer should now work with byte offset

• Bug: Duplicate sprites in ‘check_for_collision_with_list’ Issue #763

• Improved docstrings in arcade.gl

668 Chapter 35. Release Notes

https://github.com/pythonarcade/arcade/issues/763

Python Arcade Library, Release 3.0.0.dev26

35.28 Version 2.4.2

Version 2.4.2 was released 2020-09-08

• Enhancement: draw_hit_boxes new method in SpriteList.

• Enhancement: draw_points now significantly faster

• Added UIToggle, on/off switch

• Add example showing how to do GPU transformations with the mouse

• Create buttons with default size/position so size can be set after creation.

• Allow checking if a sound is done playing Issue 728

• Add an early camera mock-up

• Add finish method to arcade.gl.context.

• New example arcade.experimental.examples.3d_cube (experimental)

• New example arcade.examples.camera_example

• Improved UIManager.unregister_handlers(), improves multi view setup

• Update preload_textures method of SpriteList to actually pre-load textures

• GUI code clean-up Issue 723

• Update downloadable .zip for for platformer example code to match current code in documentation.

• Bug Fix: draw_point calculates wrong point size

• Fixed draw_points calculates wrong point size

• Fixed create_line_loop for thickness !=

• Fixed pixel scale for offscreen framebuffers and read()

• Fixed SpriteList iterator is stateful

• Fix for pixel scale in offscreen framebuffers

• Fix for UI tests

• Fix issues with FBO binding

• Cleanup Remove old examples and code

35.29 Version 2.4

Arcade 2.4.1 was released 2020-07-13.

Arcade version 2.4 is a major enhancement release to Arcade.

35.28. Version 2.4.2 669

https://github.com/pvcraven/arcade/issues/728
https://github.com/pvcraven/arcade/issues/723

Python Arcade Library, Release 3.0.0.dev26

35.29.1 Version 2.4 Major Features

• Support for defining your own frame buffers, shaders, and more advanced OpenGL programming. New API in
Arcade Open GL.

– Support to render to frame buffer, then re-render.

– Use frame buffers to create a ‘glow’ or ‘bloom’ effect: bloom_defender.

– Use frame-buffers to support lights: light_demo.

• New support for style-able GUI elements.

670 Chapter 35. Release Notes

examples/light_demo.html
examples/astar_pathfinding.html
examples/bloom_defender.html
tutorials/pymunk_platformer/index.html
tutorials/gpu_particle_burst/index.html
tutorials/card_game/index.html
examples/transform_feedback.html

Python Arcade Library, Release 3.0.0.dev26

• PyMunk engine for platformers. See tutorial: Pymunk Platformer.

• AStar algorithm for finding paths. See astar_calculate_path and AStarBarrierList.

– For an example of using the A-Star algorithm, see astar_pathfinding.

35.29.2 Version 2.4 Minor Features

New functions/classes:
• Added get_display_size() to get resolution of the monitor

• Added Window.center_window() to center the window on the monitor.

• Added has_line_of_sight() to calculate if there is line-of-sight between two points.

• Added SpriteSolidColor class that makes a solid-color rectangular sprite.

• Added SpriteCircle class that makes a circular sprite, either solid or with a fading gradient.

• Added get_distance function to get the distance between two points.

New functionality:
• Support for logging. See Logging.

• Support volume and pan arguments in play_sound

• Add ability to directly assign items in a sprite list. This is particularly useful when re-ordering sprites for drawing.

• Support left/right/rotated sprites in tmx maps generated by the Tiled Map Editor.

• Support getting tmx layer by path, making it less likely reading in a tmx file will have directory confusion issues.

• Add in font searching code if we can’t find default font when drawing text.

• Added arcade.Sprite.draw_hit_box method to draw a hit box outline.

• The arcade.Texture class, arcade.Sprite class, and arcade.tilemap.process_layer take in
hit_box_algorithm and hit_box_detail parameters for hit box calculation.

Fig. 1: hit_box_algorithm = “None”

Fig. 2: hit_box_algorithm = “Simple”

35.29. Version 2.4 671

arcade.html#arcade.get_display_size
arcade.html#arcade.Window.center_window
arcade.html#arcade.has_line_of_sight
arcade.html#arcade.SpriteSolidColor
arcade.html#arcade.SpriteCircle
arcade.html#arcade.play_sound

Python Arcade Library, Release 3.0.0.dev26

Fig. 3: hit_box_algorithm = “Detailed”

35.29.3 Version 2.4 Under-the-hood improvements

General
• Simple Physics engine is less likely to ‘glitch’ out.

• Anti-aliasing should now work on windows if antialiasing=True is passed in the window constructor.

• Major speed improvements to drawing of shape primitives, such as lines, squares, and circles by moving more
of the work to the graphics processor.

• Speed improvements for sprites including gpu-based sprite culling (don’t draw sprites outside the screen).

• Speed improvements due to shader caching. This should be especially noticeable on Mac OS.

• Speed improvements due to more efficient ways of setting rendering states such as projection.

• Speed improvements due to less memory copying in the lower level rendering API.

OpenGL API
A brand new low level rendering API wrapping OpenGL 3.3 core was added in this release. It’s loosely based on the
ModernGL API, so ModernGL users should be able to pick it up fast. This API is used by arcade for all the higher
level drawing functionality, but can also be used by end users to really take advantage of their GPU. More guides and
tutorials around this is likely to appear in the future.

A simplified list of features in the new API:

• A Context and arcade.ArcadeContext object was introduced and can be found through the window.ctx
property. This object offers methods to create opengl resources such as textures, programs/shaders, framebuffers,
buffers and queries. It also has shortcuts for changing various context states. When working with OpenGL in
arcade you are encouraged to use arcade.gl instead of pyglet.gl. This is important as the context is doing
quite a bit of bookkeeping to make our life easier.

• New Texture class supporting a wide variety of formats such as 8/16/32 bit integer, unsigned integer and float
values. New convenient methods and properties was also added to change filtering, repeat mode, read and write
data, building mipmaps etc.

• New Buffer class with methods for manipulating data such as simple reading/writing and copying data from
other buffers. This buffer can also now be bound as a uniform buffer object.

• New Framebuffer wrapper class making us able to render any content into one more more textures. This opens
up for a lot of possibilities.

• The Program has been expanded to support geometry shaders and transform feedback (rendering to a buffer
instead of a screen). It also exposes a lot of new properties due to much more details introspection during
creation. We also able to assign binding locations for uniform blocks.

672 Chapter 35. Release Notes

https://github.com/moderngl/moderngl

Python Arcade Library, Release 3.0.0.dev26

• A simple glsl wrapper/parser was introduced to sanity check the glsl code, inject preprocessor values and auto
detect out attributes (used in transforms).

• A higher level type Geometry was introduced to make working with shaders/programs a lot easier. It supports
using a subset of attributes defined in your buffer description by inspecting the the program’s attributes generating
and caching compatible variants internally.

• A Query class was added for easy access to low level measuring of opengl rendering calls. We can get the
number samples written, number of primitives processed and time elapsed in nanoseconds.

• Added support for the buffer protocol. When arcade.gl requires byte data we can also pass objects like numpy
array of pythons array.array directly not having to convert this data to bytes.

35.29.4 Version 2.4 New Documentation

• New Tutorial: Pymunk Platformer

• New Tutorial: Using Views for Start/End Screens

• New Tutorial: Solitaire

• New Tutorial: GPU Particle Burst

• Several new and updated examples on How-To Example Code

• New performance testing project

• A lot of improvements to https://learn.arcade.academy

• Instructional videos added to for https://learn.arcade.academy

35.29.5 Version 2.4 ‘Experimental’

There is now an arcade.experimental module that holds code still under development. Any code in this module
might still have API changes.

35.29.6 Special Thanks

Special thanks to Einar Forselv and Maic Siemering for their significant work in helping put this release together.

35.30 Version 2.3.15

Release Date: Apr-14-2020

• Bug Fix: Fix invalid empty text width Issue 633

• Bug Fix: Make sure file name is string before checking resources Issue 636

• Enhancement: Implement Size and Rotation for Tiled Objects Issue 638

• Documentation: Fix incorrect link to ‘sprites following player’ example

35.30. Version 2.3.15 673

https://craven-performance-testing.s3-us-west-2.amazonaws.com/index.html
https://learn.arcade.academy
https://www.youtube.com/playlist?list=PLUjR0nhln8uaI277eQfKkM8Nhp-xARriu
https://learn.arcade.academy
https://github.com/einarf
https://github.com/eruvanos
https://github.com/pvcraven/arcade/issues/633
https://github.com/pvcraven/arcade/issues/636
https://github.com/pvcraven/arcade/issues/638

Python Arcade Library, Release 3.0.0.dev26

35.31 Version 2.3.14

Release Date: Apr-9-2020

• Bug Fix: Another attempt at fixing sprites with different dimensions added to same SpriteList didn’t display
correctly Issue 630

• Add lots of unit tests around Sprites and texture loading.

35.32 Version 2.3.13

Release Date: Apr-8-2020

• Bug Fix: Sprites with different dimensions added to same SpriteList didn’t display correctly Issue 630

35.33 Version 2.3.12

Release Date: Apr-8-2020

• Enhancement: Support more textures in a SpriteList Issue 332

35.34 Version 2.3.11

Release Date: Apr-5-2020

• Bug Fix: Fix procedural_caves_bsp.py

• Bug Fix: Improve Windows install docs Issue 623

35.35 Version 2.3.10

Release Date: Mar-31-2020

• Bug Fix: Remove unused AudioStream and PlaysoundException from __init__

• Remove attempts to load ffmpeg library

• Add background music example

• Bug Fix: Improve Windows install docs Issue 619

• Add tutorial on edge artifacts Issue 418

• Bug Fix: Can’t remove sprite from multiple lists Issue 621

• Several documentation updates

674 Chapter 35. Release Notes

https://github.com/pvcraven/arcade/issues/630
https://github.com/pvcraven/arcade/issues/630
https://github.com/pvcraven/arcade/issues/332
https://github.com/pvcraven/arcade/issues/623
https://github.com/pvcraven/arcade/issues/619
https://github.com/pvcraven/arcade/issues/418
https://github.com/pvcraven/arcade/issues/621

Python Arcade Library, Release 3.0.0.dev26

35.36 Version 2.3.9

Release Date: Mar-25-2020

• Bug Fix: Fix for calling SpriteList.remove Issue 613

• Bug Fix: get_image not working correctly on hi-res macs Issue 594

• Bug Fix: Fix for “shiver” in simple physics engine Issue 614

• Bug Fix: Fix for create_line_strip Issue 616

• Bug Fix: Fix for volume control Issue 610

• Bug Fix: Fix for loading SoLoud under Win64 Issue 615

• Fix jumping/falling texture in platformer example

• Add tests for gui.theme Issue 605

• Fix bad link to arcade.color docs

35.37 Version 2.3.8

Release Date: Mar-09-2020

• Major enhancement to sound. Uses SoLoud cross-platform library. New features include support for sound
volume, sound stop, and pan left/right.

35.38 Version 2.3.7

Release Date: Feb-27-2020

• Bug Fix: If setting color of sprite with 4 ints, also set alpha

• Enhancement: Add image for code page 437

• Bug Fix: Fixes around hit box calcs Issue 601

• Bug Fix: Fixes for animated tiles and loading animated tiles from tile maps Issue 603

35.39 Version 2.3.6

Release Date: Feb-17-2020

• Enhancement: Add texture transformations Issue 596

• Bug Fix: Fix off-by-one issue with default viewport

• Bug Fix: Arcs are drawn double-sized Issue 598

• Enhancement: Add get_sprites_at_exact_point function

• Enhancement: Add code page 437 to default resources

35.36. Version 2.3.9 675

https://github.com/pvcraven/arcade/issues/613
https://github.com/pvcraven/arcade/issues/594
https://github.com/pvcraven/arcade/issues/614
https://github.com/pvcraven/arcade/issues/616
https://github.com/pvcraven/arcade/issues/610
https://github.com/pvcraven/arcade/issues/615
https://github.com/pvcraven/arcade/issues/605
https://github.com/pvcraven/arcade/issues/601
https://github.com/pvcraven/arcade/issues/603
https://github.com/pvcraven/arcade/issues/596
https://github.com/pvcraven/arcade/issues/598

Python Arcade Library, Release 3.0.0.dev26

35.40 Version 2.3.5

Release Date: Feb-12-2020

• Bug Fix: Calling sprite.draw wasn’t drawing the sprite if scale was 1 Issue 575

• Add unit test for Issue 575

• Bug Fix: Changing sprite scale didn’t cause sprite to redraw in new scale Issue 588

• Add unit test for Issue 588

• Enhancement: Simplify using built-in resources Issue 576

• Fix for failure on on_resize(), which pyglet was quietly ignoring

• Update rotate_point function to make it more obvious it takes degrees

35.41 Version 2.3.4

Release Date: Feb-08-2020

• Bug Fix: Sprites weren’t appearing Issue 585

35.42 Version 2.3.3

Release Date: Feb-08-2020

• Bug Fix: set_scale checks height rather than scale Issue 578

• Bug Fix: Window flickers for drawing when not derived from Window class Issue 579

• Enhancement: Allow joystick selection in dual-stick shooter Issue 571

• Test coverage reporting now working correctly with TravisCI

• Improved test coverage

• Improved documentation and typing with Texture class

• Improve minimal View example

35.43 Version 2.3.2

Release Date: Feb-01-2020

• Remove scale as a parameter to load_textures because it is not unused

• Improve documentation

• Add example for acceleration/friction

676 Chapter 35. Release Notes

https://github.com/pvcraven/arcade/issues/575
https://github.com/pvcraven/arcade/issues/588
https://github.com/pvcraven/arcade/issues/576
https://github.com/pvcraven/arcade/issues/585
https://github.com/pvcraven/arcade/issues/578
https://github.com/pvcraven/arcade/issues/579
https://github.com/pvcraven/arcade/issues/571

Python Arcade Library, Release 3.0.0.dev26

35.44 Version 2.3.1

Release Date: Jan-30-2020

• Don’t auto-update sprite hit box with animated sprite

• Fix issues with sprite.draw

• Improve error message given when trying to do a collision check and there’s no hit box set on the sprite.

35.45 Version 2.3.0

Release Date: Jan-30-2020

• Backwards Incompatability: arcade.Texture no longer has a scale property. This property made things confusing
as Sprites had their own scale attribute. This seemingly small change required a lot of rework around sprites,
sprite lists, hit boxes, and drawing of textured rectangles.

• Include all the things that were part of 2.2.8, but hopefully working now.

• Bug Fix: Error when calling Sprite.draw() Issue 570

• Enhancement: Added Sprite.draw_hit_box to visually draw the hit box. (Kind of slow, but useful for debugging.)

35.46 Version 2.2.9

Release Date: Jan-28-2020

• Roll back to 2.2.7 because bug fixes in 2.2.8 messed up scaling

35.47 Version 2.2.8

Release Date: Jan-27-2020

• Version number now contained in one file, rather than three.

• Enhancement: Move several GitHub-listed enhancements to the .rst enhancement list

• Bug Fix: Texture scale not accounted for when getting height Issue 516

• Bug Fix: Issue with text cut off if it goes below baseline Issue 515

• Enhancement: Allow non-cached texture creation, fixing issue with resizing Issue 506

• Enhancement: Physics engine supports rotation

• Bug Fix: Need to better resolve collisions so sprite doesn’t get hyper-spaces to new weird spot Issue 569

• Bug Fix: Hit box not getting properly created when working with multi-texture player sprite. Issue 568

• Bug Fix: Issue with text_sprite and anchor y of top Issue 567

• Bug Fix: Issues with documentation

35.44. Version 2.3.1 677

https://github.com/pvcraven/arcade/issues/570
https://github.com/pvcraven/arcade/issues/516
https://github.com/pvcraven/arcade/issues/515
https://github.com/pvcraven/arcade/issues/506
https://github.com/pvcraven/arcade/issues/569
https://github.com/pvcraven/arcade/issues/568
https://github.com/pvcraven/arcade/issues/567

Python Arcade Library, Release 3.0.0.dev26

35.48 Version 2.2.7

Release Date: Jan-25-2020

• Enhancement: Have draw_text return a sprite Issue 565

• Enhancement: Improve speed when changing alpha of text Issue 563

• Enhancement: Add dual-stick shooter example Issue 301

• Bug Fix: Fix for Pyglet 2.0dev incompatability Issue 560

• Bug Fix: Fix broken particle_systems.py example Issue 558

• Enhancement: Added mypy check to TravisCI build Issue 557

• Enhancement: Fix typing issues Issue 537

• Enhancement: Optimize load font in draw_text Issue 525

• Enhancement: Reorganize examples

• Bug Fix: get_pixel not working on MacOS Issue 539

35.49 Version 2.2.6

Release Date: Jan-20-2020

• Bug Fix: particle_fireworks example is not running with 2.2.5 Issue 555

• Bug Fix: Sprite.pop isn’t reliable Issue 531

• Enhancement: Raise error if default font not found on system Issue 432

• Enhancement: Add space invaders clone to example list Issue 526

• Enhancement: Add sitemap to website

• Enhancement: Improve performance, error handling around setting a sprite’s color

• Enhancement: Implement optional filtering parameter to SpriteList.draw Issue 405

• Enhancement: Return list of items hit during physics engine update Issue 401

• Enhancement: Update resources documentation Issue 549

• Enhancement: Add on_update to sprites, which includes delta_time Issue 266

• Enhancement: Close enhancement-related github issues and reference them in the new enhancement list.

35.50 Version 2.2.5

Release Date: Jan-17-2020

• Enhancement: Improved speed when rendering non-buffered drawing primitives

• Bug fix: Angle working in radians instead of degrees in 2.2.4 Issue 552

• Bug fix: Angle and color of sprite not updating in 2.2.4 Issue 553

678 Chapter 35. Release Notes

https://github.com/pvcraven/arcade/issues/565
https://github.com/pvcraven/arcade/issues/563
https://github.com/pvcraven/arcade/issues/301
https://github.com/pvcraven/arcade/issues/560
https://github.com/pvcraven/arcade/issues/558
https://github.com/pvcraven/arcade/issues/557
https://github.com/pvcraven/arcade/issues/537
https://github.com/pvcraven/arcade/issues/525
https://github.com/pvcraven/arcade/issues/539
https://github.com/pvcraven/arcade/issues/555
https://github.com/pvcraven/arcade/issues/531
https://github.com/pvcraven/arcade/issues/432
https://github.com/pvcraven/arcade/issues/526
https://github.com/pvcraven/arcade/issues/405
https://github.com/pvcraven/arcade/issues/401
https://github.com/pvcraven/arcade/issues/549
https://github.com/pvcraven/arcade/issues/266
https://github.com/pvcraven/arcade/issues/552
https://github.com/pvcraven/arcade/issues/553

Python Arcade Library, Release 3.0.0.dev26

35.51 Version 2.2.4

Release Date: Jan-15-2020

• Enhancement: Moving sprites now 20% more efficient.

35.52 Version 2.2.3

Release Date: Jan-12-2020

• Bug fix: Hit boxes not getting updated with rotation and scaling. Issue 548 This update depricates Sprite.points
and instead uses Sprint.hit_box and Sprint.get_adjusted_hit_box

• Major internal change around not having __init__ do import * but specifically name everything. Issue 537
This rearranded a lot of files and also reworked the quickindex in documentation.

35.53 Version 2.2.2

Release Date: Jan-09-2020

• Bug fix: Arcade assumes tiles in tileset are same sized Issue 550

35.54 Version 2.2.1

Release Date: Dec-22-2019

• Bug fix: Resource folder not included in distribution Issue 541

35.55 Version 2.2.0

Release Date: Dec-19-2019*

• Major Enhancement: Add built-in resources support Issue 209 This also required many changes to the code
samples, but they can be run now without downloading separate images.

• Major Enhancement: Auto-calculate hit box points by trimming out the transparency

• Major Enhancement: Sprite sheet support for the tiled map editor works now

• Enhancement: Added load_spritesheet for loading images from a sprite sheet

• Enhancement: Updates to physics engine to better handle non-rectangular sprites

• Enhancement: Add SpriteSolidColor class, for creating a single-color rectangular sprite

• Enhancement: Expose type hints to modules that depend on arcade via PEP 561 Issue 533 and Issue 534

• Enhancement: Add font_color to gui.TextButton init Issue 521

• Enhancement: Improve error messages around loading tilemaps

• Bug fix: Turn on vsync as it sometimes was limiting FPS to 30.

• Bug fix: get_tile_by_gid() incorrectly assumes tile GID cannot exceed tileset length Issue 527

35.51. Version 2.2.4 679

https://github.com/pvcraven/arcade/issues/548
https://github.com/pvcraven/arcade/issues/537
https://github.com/pvcraven/arcade/issues/550
https://github.com/pvcraven/arcade/issues/541
https://github.com/pvcraven/arcade/issues/209
https://github.com/pvcraven/arcade/issues/533
https://github.com/pvcraven/arcade/issues/534
https://github.com/pvcraven/arcade/issues/521
https://github.com/pvcraven/arcade/issues/527

Python Arcade Library, Release 3.0.0.dev26

• Bug fix: Tiles in object layers not placed properly Issue 536

• Bug fix: Typo when loading font Issue 518

• Updated requirements.txt file

• Add robots.txt to documentation

Please also update pyglet, pyglet_ffmpeg2, and pytiled_parser libraries.

Special tanks to Jon Fincher, Mr. Gallo, SirGnip, lubie0kasztanki, and EvgeniyKrysanoc for their contributions to this
release.

35.56 Version 2.1.7

• Enhancement: Tile set support. Issue 511

• Bug fix, search file tile images relative to tile map. Issue 480

35.57 Version 2.1.6

• Fix: Lots of fixes around positioning and hitboxes with tile maps Issue 503

• Documentation updates, particularly using on_update instead of update and remove_from_sprite_lists instead of
kill. Issue 381

• Remove/adjust some examples using csvs for maps

35.58 Version 2.1.5

• Fix: Default font sometimes not pulling on mac Issue 488

• Documentation updates, particularly around examples for animated characters on platformers

• Fix to Sprite class to better support character animation around ladders

35.59 Version 2.1.4

• Fix: Error when importing arcade on Raspberry Pi 4 Issue 485

• Fix: Transparency not working in draw functions Issue 489

• Fix: Order of parameters in draw_ellipse documentation Issue 490

• Raise better error on data classes missing

• Lots of code cleanup from SirGnip Issue 484

• New code for buttons and dialog boxes from wamiqurrehman093 Issue 476

680 Chapter 35. Release Notes

https://github.com/pvcraven/arcade/issues/536
https://github.com/pvcraven/arcade/issues/518
https://github.com/pvcraven/arcade/issues/511
https://github.com/pvcraven/arcade/issues/480
https://github.com/pvcraven/arcade/issues/503
https://github.com/pvcraven/arcade/issues/381
https://github.com/pvcraven/arcade/issues/488
https://github.com/pvcraven/arcade/issues/485
https://github.com/pvcraven/arcade/issues/489
https://github.com/pvcraven/arcade/issues/490
https://github.com/pvcraven/arcade/pull/484
https://github.com/pvcraven/arcade/pull/476

Python Arcade Library, Release 3.0.0.dev26

35.60 Version 2.1.3

• Fix: Ellipses drawn to incorrect dimensions Issue 479

• Enhancement: Add unit test for debugging Issue 478

• Enhancement: Add more descriptive error when file not found Issue 472

• Enhancement: Explicitly state delta time is in seconds Issue 473

• Fix: Add missing ‘draw’ function to view Issue 470

35.61 Version 2.1.2

• Fix: Linked to wrong version of Pyglet Issue 467

35.62 Version 2.1.1

• Added pytiled-parser as a dependency in setup.py

35.63 Version 2.1.0

• New file reader for tmx files http://arcade.academy/arcade.html#module-arcade.tilemap

• Add new view switching framework http://arcade.academy/example_code/how_to_examples/index.html#
view-management

• Fix and Re-enable TravisCI builds https://travis-ci.org/pvcraven/arcade/builds

• New: Collision methods to Sprite Issue 434

• Fix: make_circle_texture Issue 431

• Fix: Points drawn as triangles rather than rects Issue 429

• Fix: Fix screen update rate issue Issue 424

• Fix: Typo Issue 422

• Put in exampel Kayzee game

• Fix: Add links to PyCon video Issue 414

• Fix: Docstring Issue 409

• Fix: Typo Issue 403

Thanks to SirGnip, Mr. Gallow, and Christian Clauss for their contributions.

35.60. Version 2.1.3 681

https://github.com/pvcraven/arcade/issues/467
https://github.com/pvcraven/arcade/issues/478
https://github.com/pvcraven/arcade/issues/472
https://github.com/pvcraven/arcade/issues/473
https://github.com/pvcraven/arcade/issues/470
https://github.com/pvcraven/arcade/issues/467
http://arcade.academy/arcade.html#module-arcade.tilemap
http://arcade.academy/example_code/how_to_examples/index.html#view-management
http://arcade.academy/example_code/how_to_examples/index.html#view-management
https://travis-ci.org/pvcraven/arcade/builds
https://github.com/pvcraven/arcade/issues/434
https://github.com/pvcraven/arcade/issues/431
https://github.com/pvcraven/arcade/issues/429
https://github.com/pvcraven/arcade/issues/424
https://github.com/pvcraven/arcade/issues/422
https://github.com/pvcraven/arcade/issues/414
https://github.com/pvcraven/arcade/issues/409
https://github.com/pvcraven/arcade/issues/403

Python Arcade Library, Release 3.0.0.dev26

35.64 Version 2.0.9

• Fix: Unable to specify path to .tsx file for tiled spritesheet Issue 360

• Fix: TypeError: __init__() takes from 3 to 11 positional arguments but 12 were given in text.py Issue 373

• Fix: Test create_line_strip Issue 379

• Fix: TypeError: draw_rectangle_filled() got an unexpected keyword argument ‘border_width’ Issue 385

• Fix: See about creating a localization/internationalization example Issue 391

• Fix: Glitch when you die in the lava in 09_endgame.py Issue 392

• Fix: No default font found on ArchLinux and no error message (includes patch) Issue 402

• Fix: Update docs around batch drawing and array_backed_grid.py example Issue 403

35.65 Version 2.0.8

• Add example code from lixingque

• Fix: Drawing primitives example broke in prior release Issue 365

• Update: Improve automated testing of all code examples Issue 326

• Update: raspberry pi instructions, although it still doesn’t work yet

• Fix: Some buffered draw commands not working Issue 368

• Remove yml files for build environments that don’t work because of OpenGL

• Update requirement.txt files

• Fix mountain examples

• Better error handling when playing sounds

• Remove a few unused example code files

35.66 Version 2.0.7

• Last release improperly required pyglet-ffmpeg, updated to pyglet-ffmpeg2

• Fix: The alpha value seems NOT work with draw_texture_rectangle Issue 364

• Fix: draw_xywh_rectangle_textured error Issue 363

35.67 Version 2.0.6

• Improve ffmpeg support. Think it works on MacOS and Windows now. Issue 350

• Improve buffered drawing command support

• Improve PEP-8 compliance

• Fix for tiled map reader, Issue 360

• Fix for animated sprites Issue 359

682 Chapter 35. Release Notes

https://github.com/pvcraven/arcade/issues/360
https://github.com/pvcraven/arcade/issues/373
https://github.com/pvcraven/arcade/issues/379
https://github.com/pvcraven/arcade/issues/385
https://github.com/pvcraven/arcade/issues/391
https://github.com/pvcraven/arcade/issues/392
https://github.com/pvcraven/arcade/issues/402
https://github.com/pvcraven/arcade/issues/403
https://github.com/pvcraven/arcade/issues/365
https://github.com/pvcraven/arcade/issues/326
https://github.com/pvcraven/arcade/issues/368
https://github.com/pvcraven/arcade/issues/364
https://github.com/pvcraven/arcade/issues/363
https://github.com/pvcraven/arcade/issues/350
https://github.com/pvcraven/arcade/issues/360
https://github.com/pvcraven/arcade/issues/359

Python Arcade Library, Release 3.0.0.dev26

• Remove unused avbin library for mac

35.68 Version 2.0.5

• Issue if scale is set for a sprite that doesn’t yet have a texture set. Issue 354

• Fix for Sprite.set_position not working. Issue 356

35.69 Version 2.0.4

• Fix for drawing with a border width of 1 Issue 352

35.70 Version 2.0.3

Version 2.0.2 was compiled off the wrong branch, so it had a bunch of untested code. 2.0.3 is what 2.0.2 was supposed
to be.

35.71 Version 2.0.2

• Fix for loading a wav file Issue 344

• Fix Linux only getting 30 fps Issue 342

• Fix error on window creation Issue 340

• Fix for graphics cards not supporting multi-sample Issue 339

• Fix for set view error on mac Issue 336

• Changing scale attribute on Sprite now dynamically changes sprite scale Issue 331

35.72 Version 2.0.1

• Turn on multi-sampling so lines could be anti-aliased Issue 325

35.73 Version 2.0.0

Released 2019-03-10

Lots of improvements in 2.0.0. Too many to list, but the two main improvements:

• Using shaders for sprites, making drawing sprites incredibly fast.

• Using ffmpeg for sound.

35.68. Version 2.0.5 683

https://github.com/pvcraven/arcade/issues/354
https://github.com/pvcraven/arcade/issues/354
https://github.com/pvcraven/arcade/issues/352
https://github.com/pvcraven/arcade/issues/344
https://github.com/pvcraven/arcade/issues/342
https://github.com/pvcraven/arcade/issues/340
https://github.com/pvcraven/arcade/issues/339
https://github.com/pvcraven/arcade/issues/336
https://github.com/pvcraven/arcade/issues/331
https://github.com/pvcraven/arcade/issues/325

Python Arcade Library, Release 3.0.0.dev26

35.74 Version 1.3.7

Released 2018-10-28

• Fix for Issue 275 where sprites can get blurry.

35.75 Version 1.3.6

Released 2018-10-10

• Bux fix for spatial hashing

• Implement commands for getting a pixel, and image from screen

35.76 Version 1.3.5

Released 08-23-2018

Bug fixes for spatial hashing and sound.

35.77 Version 1.3.4

Released 28-May-2018

35.77.1 New Features

• Issue 197: Add new set of color names that match CSS color names

• Issue 203: Add on_update as alternative to update

• Add ability to read .tmx files.

35.77.2 Bug Fixes

• Issue 159: Fix array backed grid buffer example

• Issue 177: Kind of fix issue with gi sound library

• Issue 180: Fix up API docs with sound

• Issue 198: Add start of isometric tile support

• Issue 210: Fix bug in MacOS sound handling

• Issue 213: Update code with gi streamer

• Issue 214: Fix issue with missing images in animated sprites

• Issue 216: Fix bug with venv

• Issue 222: Fix get_window when using a Window class

684 Chapter 35. Release Notes

https://github.com/pvcraven/arcade/issues/275
https://github.com/pvcraven/arcade/issues/197
https://github.com/pvcraven/arcade/issues/203
https://github.com/pvcraven/arcade/issues/159
https://github.com/pvcraven/arcade/issues/177
https://github.com/pvcraven/arcade/issues/180
https://github.com/pvcraven/arcade/issues/198
https://github.com/pvcraven/arcade/issues/210
https://github.com/pvcraven/arcade/issues/213
https://github.com/pvcraven/arcade/issues/214
https://github.com/pvcraven/arcade/issues/216
https://github.com/pvcraven/arcade/issues/222

Python Arcade Library, Release 3.0.0.dev26

35.77.3 Documentation

• Issue 217: Fix typo in doc string

• Issue 198: Add example showing start of isometric tile support

35.78 Version 1.3.3

Released 2018-May-05

35.78.1 New Features

• Issue 184: For sound, wav, mp3, and ogg should work on Linux and Windows. wav and mp3 should work on
Mac.

35.78.2 Updated Examples

• Add happy face drawing example

35.79 Version 1.3.2

Released 2018-Apr-20

35.79.1 New Features

• Issue 189: Add spatial hashing for faster collision detection

• Issue 191: Add function to get the distance between two sprites

• Issue 192: Add function to get closest sprite in a list to another sprite

• Issue 193: Improve decorator support

35.79.2 Updated Documentation

• Link the class methods in the quick index to class method documentation

• Add mountain midpoint displacement example

• Improve CSS

• Add “Two Worlds” example game

35.78. Version 1.3.3 685

https://github.com/pvcraven/arcade/issues/217
https://github.com/pvcraven/arcade/issues/198
https://github.com/pvcraven/arcade/issues/184
https://github.com/pvcraven/arcade/issues/189
https://github.com/pvcraven/arcade/issues/191
https://github.com/pvcraven/arcade/issues/192
https://github.com/pvcraven/arcade/issues/193

Python Arcade Library, Release 3.0.0.dev26

35.79.3 Updated Examples

• Update sprite_collect_coints_move_down.py to not use all_sprites_list

• Update sprite_bullets_aimed.py to add a warning about how to manage text on a scrolling screen

• Issue 194: Fix for calculating distance traveled in scrolling examples

35.80 Version 1.3.1

Released 2018-Mar-31

35.80.1 New Features

• Update create_rectangle code so that it uses color buffers to improve performance

• Issue 185: Add support for repeating textures

• Issue 186: Add support for repeating textures on Sprites

• Issue 184: Improve sound support

• Issue 180: Improve sound support

• Work on improving sound support

35.80.2 Updated Documentation

• Update quick-links on homepage of http://arcade.academy

• Update Sprite class documentation

• Update copyright date to 2018

35.80.3 Updated Examples

• Update PyMunk example code to use keyboard constants rather than hard-coded values

• New sample code showing how to avoid placing coins on walls when randomly placing them

• Improve listing/organization of sample code

• Work at improving sample code, specifically try to avoid using all_sprites_list

• Add PyMunk platformer sample code

• Unsuccessful work at getting TravisCI builds to work

• Add new sample for using shape lists

• Create sample code showing difference in speed when using ShapeLists.

• Issue 182: Use explicit imports in sample PyMunk code

• Improve sample code for using a graphic background

• Improve collect coins example

• New sample code for creating caves using cellular automata

686 Chapter 35. Release Notes

https://github.com/pvcraven/arcade/issues/194
https://github.com/pvcraven/arcade/issues/185
https://github.com/pvcraven/arcade/issues/186
https://github.com/pvcraven/arcade/issues/184
https://github.com/pvcraven/arcade/issues/180
http://arcade.academy
https://github.com/pvcraven/arcade/issues/182

Python Arcade Library, Release 3.0.0.dev26

• New sample code for creating caves using Binary Space Partitioning

• New sample code for explosions

35.81 Version 1.3.0

Released 2018-February-11.

35.81.1 Enhancements

• Issue 126: Initial support for decorators.

• Issue 167: Improve audio support.

• Issue 169: Code cleanup in SpriteList.move()

• Issue 174: Support for gradients.

35.82 Version 1.2.5

Released 2017-December-29.

35.82.1 Bug Fixes

• Issue 173: JPGs not included in examples

35.82.2 Enhancements

• Issue 171: Clean up sprite list code

35.83 Version 1.2.4

Released 2017-December-23.

35.83.1 Bug Fixes

• Issue 170: Unusually high CPU

35.81. Version 1.3.0 687

https://github.com/pvcraven/arcade/issues/126
https://github.com/pvcraven/arcade/issues/167
https://github.com/pvcraven/arcade/issues/169
https://github.com/pvcraven/arcade/issues/174
https://github.com/pvcraven/arcade/issues/173
https://github.com/pvcraven/arcade/issues/171
https://github.com/pvcraven/arcade/issues/170

Python Arcade Library, Release 3.0.0.dev26

35.84 Version 1.2.3

Released 2017-December-20.

35.84.1 Bug Fixes

• Issue 44: Improve wildcard imports

• Issue 150: “Shapes” example refers to chapter that does not exist

• Issue 157: Different levels example documentation hook is messed up.

• Issue 160: sprite_collect_coins example fails to run

• Issue 163: Some examples aren’t loading images

35.84.2 Enhancements

• Issue 84: Allow quick running via -m

• Issue 149: Need better error message with check_for_collision

• Issue 151: Need example showing how to go between rooms

• Issue 152: Standardize name of main class in examples

• Issue 154: Improve GitHub compatibility

• Issue 155: Improve readme documentation

• Issue 156: Clean up root folder

• Issue 162: Add documentation with performance tips

• Issue 164: Create option for a static sprite list where we don’t check to see if things moved.

• Issue 165: Improve error message with physics engine

35.85 Version 1.2.2

Released 2017-December-02.

35.85.1 Bug Fixes

• Issue 143: Error thrown when using scroll wheel

• Issue 128: Fix infinite loop in physics engine

• Issue 127: Fix bug around warning with Python 3.6 when imported

• Issue 125: Fix bug when creating window on Linux

688 Chapter 35. Release Notes

https://github.com/pvcraven/arcade/issues/44
https://github.com/pvcraven/arcade/issues/150
https://github.com/pvcraven/arcade/issues/157
https://github.com/pvcraven/arcade/issues/160
https://github.com/pvcraven/arcade/issues/163
https://github.com/pvcraven/arcade/issues/84
https://github.com/pvcraven/arcade/issues/149
https://github.com/pvcraven/arcade/issues/151
https://github.com/pvcraven/arcade/issues/152
https://github.com/pvcraven/arcade/issues/154
https://github.com/pvcraven/arcade/issues/155
https://github.com/pvcraven/arcade/issues/156
https://github.com/pvcraven/arcade/issues/162
https://github.com/pvcraven/arcade/issues/164
https://github.com/pvcraven/arcade/issues/165
https://github.com/pvcraven/arcade/issues/143
https://github.com/pvcraven/arcade/issues/128
https://github.com/pvcraven/arcade/issues/127
https://github.com/pvcraven/arcade/issues/125

Python Arcade Library, Release 3.0.0.dev26

35.85.2 Enhancements

• Issue 147: Fix bug building documentation where two image files where specified incorrectly

• Issue 146: Add release notes to documentation

• Issue 144: Add code to get window and viewport dimensions

• Issue 139: Add documentation on what collision_radius is

• Issue 131: Add example code on how to do full-screen games

• Issue 113: Add example code showing enemy turning around when hitting a wall

• Issue 67: Improved support and documentation for joystick/game controllers

35.85. Version 1.2.2 689

https://github.com/pvcraven/arcade/issues/147
https://github.com/pvcraven/arcade/issues/146
https://github.com/pvcraven/arcade/issues/144
https://github.com/pvcraven/arcade/issues/139
https://github.com/pvcraven/arcade/issues/131
https://github.com/pvcraven/arcade/issues/113
https://github.com/pvcraven/arcade/issues/67

Python Arcade Library, Release 3.0.0.dev26

690 Chapter 35. Release Notes

CHAPTER

THIRTYSIX

WAYS TO CONTRIBUTE

We would love to have you contribute to the project! There are several ways that you can do so.

36.1 How to contribute without coding

• Community - Post your projects, code, screen-shots, and discuss the Arcade library on the Python Arcade Sub-
Reddit.

• Try coding your own animations and games. Write down notes on anything that is difficult to implement or
understand about the library.

• Suggest improvements - Post bugs and enhancement requests at the Github Issue List.

36.2 How to contribute code

First, take some time to understand the project layout:

• Directory Structure

• One-time build

• How to Submit Changes

Then, perform the following steps:

1. Make sure you have Python 3.9+ installed rather than 3.8+ to meet dev tool requirements.

2. Make a virtual environment.

3. Run pip install -e .[dev] to perform a dev install.

Afterwards, you can improve these parts of the project:

• Document - Edit the reStructuredText and docstrings to make the Arcade documentation better.

• Test - Improve the unit testing.

• Code - Contribute bug fixes and enhancements to the code.

691

https://www.reddit.com/r/pythonarcade
https://www.reddit.com/r/pythonarcade
https://github.com/pythonarcade/arcade/issues
http://www.sphinx-doc.org/en/stable/rest.html
http://www.pythonforbeginners.com/basics/python-docstrings

Python Arcade Library, Release 3.0.0.dev26

692 Chapter 36. Ways to Contribute

CHAPTER

THIRTYSEVEN

CONTRIBUTING TO ARCADE

Arcade welcomes contributions, including:

• Bug reports & feature suggestions

• Bug fixes

• Implementations of requested features

• Corrections & additions to the documentation

• Improvements to the tests

If you’re looking for a way to contribute, try checking the currently active issues for one that needs work.

37.1 Before Making Changes

Before working on an improvement, please make sure to open an issue if one does not already exist for it.

Tips:

1. Try to keep individual PRs to reasonable sizes

2. If you want to make large changes, please discuss them with Arcade’s developers beforehand

Discussion can happen in a GitHub issue’s comments or on Arcade’s Discord server.

37.2 After Making Changes

After you finish your changes, you should do the following:

1. Test your changes according to the Testing section below

2. Submit a pull request from your fork to Arcade’s development branch.

The rest of the guide will help you get to this point & explain how to test in more detail.

693

https://github.com/pythonarcade/arcade/issues
https://github.com/pythonarcade/arcade/issues
https://github.com/pythonarcade/arcade/issues
https://discord.gg/ZjGDqMp
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests

Python Arcade Library, Release 3.0.0.dev26

37.3 Requirements

Although using arcade only requires Python 3.8 or higher, development currently requires 3.9 or higher.

The rest of this guide assumes you’ve already done the following:

1. Installed Python 3.9+ with pip

2. Installed git

3. Forked the repo on GitHub

4. Cloned your fork locally

5. Changed directories into your local Arcade clone’s folder

Creating & using a virtual environment is also strongly recommended.

37.4 Installing Arcade in Editable Mode

To install all necessary development dependencies, run this command in your terminal from inside the top level of the
arcade directory:

pip install -e '.[dev]'

If you get an error like the one below, you probably need to update your pip version:

ERROR: File "setup.py" not found. Directory cannot be installed in editable mode: /home/
→˓user/Projects/arcade
(A "pyproject.toml" file was found, but editable mode currently requires a setup.py␣
→˓based build.)

Upgrade by running the following command:

pip install --upgrade pip

Mac & Linux users can improve their development experience further by following the optional steps at the end of this
document.

37.5 Testing

You should test your changes locally before submitting a pull request to make sure they work correctly & don’t break
anything.

Ideally, you should also write unit tests for new features. See the tests folder in this repo for current tests.

694 Chapter 37. Contributing to Arcade

https://wiki.python.org/moin/BeginnersGuide/Download
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://docs.github.com/en/get-started/quickstart/fork-a-repo#forking-a-repository
https://docs.github.com/en/get-started/quickstart/fork-a-repo#cloning-your-forked-repository
https://docs.python.org/3/library/venv.html#creating-virtual-environments

Python Arcade Library, Release 3.0.0.dev26

37.5.1 Testing Code Changes

First, run the below command to run our linting tools automatically. This will run Mypy and Ruff against Arcade. The
first run of this may take some as MyPy will not have any caches built up. Sub-sequent runs will be much faster.

python make.py lint

If you want to run either of these tools individually, you can do

python make.py ruff

or

python make.py mypy

Now you run the framework’s unit tests with the following command:

python make.py test

37.5.2 Building & Testing Documentation

Automatic Rebuild with Live Reload

You can build & preview documentation locally using the following steps.

Run the doc build to build the web page files, and host a webserver to preview:

python make.py serve

You can now open http://localhost:8000 in your browser to preview the docs.

The doc/build/html directory will contain the generated website files. When you change source files, it will auto-
matically regenerate, and browser tabs will automatically refresh to show your updates.

If you suspect the automatic rebuilds are failing to detect changes, you can run a simpler one-time build using the
following instructions.

One-time build

Run the doc build to build the web page files:

python make.py html

The doc/build/html directory will contain the generated website files.

Start a local web server to preview the doc:

python -m http.server -d doc/build/html

You can now open http://localhost:8000 in your browser to preview the doc.

Be sure to re-run build & refresh to update after making changes!

37.5. Testing 695

http://localhost:8000
http://localhost:8000

Python Arcade Library, Release 3.0.0.dev26

37.6 Optional: Improve Ergonomics on Mac and Linux

37.6.1 make.py shorthand

On Mac & Linux, you can run the make script as ./make.py instead of python make.py.

For example, this command:

python make.py lint

can now be run this way:

./make.py lint

37.6.2 Enable Shell Completions

On Mac & Linux, you can enable tab completion for commands on the following supported shells:

• bash (the most common default shell)

• zsh

• fish

• powershell

• powersh

For example, if you have typed the following. . .

./make.py h

Tab completion would allow you to press tab to auto-complete the command:

./make.py html

Note that this may interfere if you work on other projects that also have a make.py file.

To enable this feature, most users can follow these steps:

1. Run ./make.py whichshell to find out what your default shell is

2. If it is one of the supported shells, run ./make.py --install-completion $(basename "$SHELL")

3. Restart your terminal

If your default shell is not the shell you prefer using for arcade development, you may need to specify it to the command
above directly instead of using auto-detection.

696 Chapter 37. Contributing to Arcade

CHAPTER

THIRTYEIGHT

DIRECTORY STRUCTURE

Directory Description
\arcade Source code for the arcade library. including various sub-modules
\arcadeexam-
ples

Example code showing how to use Arcade.

\arcadeexper-
imental

Experimental features and more advanced examples

\tests Unit tests. Most unit tests are part of the docstrings.
\doc Arcade documentation. Note that API documentation is in docstrings along with the source.
\doc\tutorials Tutorial pages and code
\doc\images Images used in the documentation.
\doc\build\html After making the documentation, all the HTML code goes here. Look at this in a web browser to

see what the documentation will look like.
\build All built code from the compile script goes here.
\dist Distributable Python wheels go here after the build script has run.

Also see One-time build.

697

Python Arcade Library, Release 3.0.0.dev26

698 Chapter 38. Directory Structure

CHAPTER

THIRTYNINE

HOW TO SUBMIT CHANGES

First, you should open up an issue or enhancement request on the Github Issue List.

Next, create your own fork of the Arcade library. The Arcade library is at:

https://github.com/pythonarcade/arcade

Follow the One-time build on how to build the code.

You can submit changes with a “pull request.” With a pull request you ask that another repository (in this case the
Arcade library) “pull” your changes into the main code base.

If you aren’t familiar with how to do pull requests, the Stack Overflow discussion on pull requests is good.

699

https://github.com/pythonarcade/arcade/issues
http://stackoverflow.com/questions/6286571/are-git-forks-actually-git-clones/6286877#6286877
https://github.com/pythonarcade/arcade
http://stackoverflow.com/questions/14680711/how-to-do-a-github-pull-request

Python Arcade Library, Release 3.0.0.dev26

700 Chapter 39. How to Submit Changes

CHAPTER

FORTY

RELEASE CHECKLIST

1. Check for updated libraries, and if we need to pin a more recent version.

2. Run ruff arcade

3. Run mypy arcade

4. In docs folder, type make clean then make html and confirm no warnings/errors.

5. Run unit tests in tests folder.

6. Run tests/test_examples/run_all_examples.py

7. Make sure arcade/examples/asteroid_smasher.py is playable.

8. Make sure arcade/examples/platform_tutorial/17_views.py is playable.

9. Update version number in arcade/version.py

10. Update Release Notes with release dates and any additional info needed.

11. Make sure last check-in ran clean on github actions, viewable on Discord

12. Merge development branch into maintenance.

13. Add label to release

14. Push code. Check for clean compile on github.

15. Type make clean

16. Type make dist

17. Type make deploy_pypi

18. Confirm release notes appear on website.

19. Announce on Arcade Discord, Python Discord, Reddit Python Arcade, etc.

701

Python Arcade Library, Release 3.0.0.dev26

702 Chapter 40. Release Checklist

CHAPTER

FORTYONE

SOCIAL

• Discord (most active spot)

• Reddit /r/pythonarcade

• Twitter @ArcadeLibrary

• Instagram @PythonArcadeLibrary

• Facebook @ArcadeLibrary

• diversity_statement

703

https://discord.gg/ZjGDqMp
https://www.reddit.com/r/pythonarcade/
https://twitter.com/arcadelibrary?lang=en
https://www.instagram.com/PythonArcadeLibrary/
https://www.facebook.com/ArcadeLibrary/

Python Arcade Library, Release 3.0.0.dev26

704 Chapter 41. Social

CHAPTER

FORTYTWO

LEARNING RESOURCES

• Book - Learn to program with Arcade

• Peer To Peer Gaming With Arcade and Python Banyan

• US PyCon 2022 Talk

• US PyCon 2019 Tutorial

• Aus PyCon 2018 Multiplayer Games

• US PyCon 2018 Talk

705

https://learn.arcade.academy/en/latest/
https://mryslab.github.io/bots-in-pieces/python-banyan/arcade/2020/02/21/p2p-arcade-1.html
https://youtu.be/JP6EnuQT2wA
https://youtu.be/Djtm1DzWSvo
https://youtu.be/2SMkk63k6Ik
https://youtu.be/DAWHMHMPVHU

Python Arcade Library, Release 3.0.0.dev26

706 Chapter 42. Learning Resources

INDEX

Symbols
__bool__() (arcade.Scene method), 435
__contains__() (arcade.Scene method), 435
__contains__() (arcade.SpriteList method), 430
__delattr__() (arcade.ArcadeContext method), 506
__delitem__() (arcade.Scene method), 435
__dir__() (arcade.ArcadeContext method), 506
__eq__() (arcade.ArcadeContext method), 506
__format__() (arcade.ArcadeContext method), 506
__ge__() (arcade.ArcadeContext method), 506
__getitem__() (arcade.Scene method), 435
__getitem__() (arcade.gl.ComputeShader method),

565
__getitem__() (arcade.gl.Program method), 563
__gt__() (arcade.ArcadeContext method), 506
__hash__() (arcade.ArcadeContext method), 506
__iter__() (arcade.SpriteList method), 430
__iter__() (arcade.shape_list.ShapeElementList

method), 410
__le__() (arcade.ArcadeContext method), 506
__len__() (arcade.Scene method), 435
__len__() (arcade.SpriteList method), 430
__len__() (arcade.shape_list.ShapeElementList

method), 410
__lt__() (arcade.ArcadeContext method), 506
__ne__() (arcade.ArcadeContext method), 506
__repr__() (arcade.ArcadeContext method), 506
__repr__() (arcade.gui.Rect method), 581
__repr__() (arcade.types.TiledObject method), 400
__setattr__() (arcade.ArcadeContext method), 506
__setitem__() (arcade.SpriteList method), 430
__setitem__() (arcade.gl.ComputeShader method),

565
__setitem__() (arcade.gl.Program method), 563
__sizeof__() (arcade.ArcadeContext method), 506
__str__() (arcade.ArcadeContext method), 506

A
a (arcade.types.Color attribute), 400
action (arcade.gui.UIOnActionEvent attribute), 593
activate() (arcade.ArcadeContext class method), 507
activate() (arcade.gl.Context class method), 531

activate() (arcade.gl.Framebuffer method), 558
activate() (arcade.gui.Surface method), 566
activate() (arcade.Window method), 483
active (arcade.ArcadeContext attribute), 517
active (arcade.gl.Context attribute), 526
add() (arcade.gui.UIAnchorLayout method), 575
add() (arcade.gui.UIGridLayout method), 577
add() (arcade.gui.UIManager method), 569
add() (arcade.gui.UIWidget method), 586
add() (arcade.SpatialHash method), 428
add() (arcade.TextureAtlas method), 464
add_atlas_ref() (arcade.Texture method), 456
add_button() (arcade.gui.UIButtonRow method), 568
add_collision_handler() (ar-

cade.PymunkPhysicsEngine method), 472
add_section() (arcade.SectionManager method), 496
add_section() (arcade.View method), 479
add_sprite() (arcade.PymunkPhysicsEngine method),

472
add_sprite() (arcade.Scene method), 435
add_sprite_list() (arcade.PymunkPhysicsEngine

method), 473
add_sprite_list() (arcade.Scene method), 436
add_sprite_list_after() (arcade.Scene method),

436
add_sprite_list_before() (arcade.Scene method),

436
adjust_mouse_coordinates() (ar-

cade.gui.UIManager method), 569
align (arcade.Text attribute), 444
align_bottom() (arcade.gui.Rect method), 581
align_center() (arcade.gui.Rect method), 581
align_center_x() (arcade.gui.Rect method), 582
align_center_y() (arcade.gui.Rect method), 582
align_left() (arcade.gui.Rect method), 582
align_right() (arcade.gui.Rect method), 582
align_top() (arcade.gui.Rect method), 582
allocate() (arcade.TextureAtlas method), 464
alpha (arcade.BasicSprite attribute), 424
alpha (arcade.SpriteList attribute), 433
alpha_normalized (arcade.SpriteList attribute), 433
anchor (arcade.Camera attribute), 441

707

Python Arcade Library, Release 3.0.0.dev26

anchor_x (arcade.Text attribute), 445
anchor_y (arcade.Text attribute), 445
angle (arcade.shape_list.ShapeElementList attribute),

410
angle (arcade.Sprite attribute), 421
AnimatedTimeBasedSprite (class in arcade), 418
AnimatedWalkingSprite (class in arcade), 419
AnimationKeyframe (class in arcade), 419
anisotropy (arcade.gl.Texture2D attribute), 546
append() (arcade.shape_list.ShapeElementList method),

410
append() (arcade.SpriteList method), 430
append_buffer_description() (arcade.gl.Geometry

method), 553
append_texture() (arcade.Sprite method), 420
apply_force() (arcade.PymunkPhysicsEngine

method), 473
apply_impulse() (arcade.PymunkPhysicsEngine

method), 473
apply_opposite_running_force() (ar-

cade.PymunkPhysicsEngine method), 473
ArcadeContext (class in arcade), 506
are_lines_intersecting() (in module ar-

cade.geometry), 477
are_polygons_intersecting() (in module ar-

cade.geometry), 478
array_length (arcade.gl.uniform.Uniform attribute),

564
astar_calculate_path() (in module arcade), 503
AStarBarrierList (class in arcade), 502
atlas (arcade.SpriteList attribute), 433
atlas_name (arcade.Texture attribute), 460
atlas_size (arcade.ArcadeContext attribute), 517
attribute_key (arcade.gl.Program attribute), 562
attributes (arcade.gl.BufferDescription attribute), 551
attributes (arcade.gl.Program attribute), 562
auto_resize (arcade.TextureAtlas attribute), 468
axis_color (arcade.PerfGraph attribute), 470

B
b (arcade.types.Color attribute), 400
background_color (arcade.PerfGraph attribute), 470
background_color (arcade.tilemap.TileMap attribute),

451
background_color (arcade.Window attribute), 490
BasicSprite (class in arcade), 422
batch (arcade.Text attribute), 445
bg (arcade.gui.UIFlatButton.UIStyle attribute), 589
bg (arcade.gui.UISliderStyle attribute), 575
bind() (arcade.gui.Property method), 595
bind() (in module arcade.gui), 595
bind_to_image() (arcade.gl.Texture2D method), 547
bind_to_storage_buffer() (arcade.gl.Buffer

method), 550

bind_to_uniform_block() (arcade.gl.Buffer method),
550

bind_window_block() (arcade.ArcadeContext
method), 507

binding (arcade.gl.uniform.UniformBlock attribute),
564

BLEND (arcade.ArcadeContext attribute), 514
BLEND (arcade.gl.Context attribute), 527
BLEND_ADDITIVE (arcade.ArcadeContext attribute), 514
BLEND_ADDITIVE (arcade.gl.Context attribute), 528
BLEND_DEFAULT (arcade.ArcadeContext attribute), 514
BLEND_DEFAULT (arcade.gl.Context attribute), 528
blend_func (arcade.ArcadeContext attribute), 517
blend_func (arcade.gl.Context attribute), 533
blend_func_render (arcade.gui.Surface attribute), 567
blend_func_render_into (arcade.gui.Surface at-

tribute), 567
BLEND_PREMULTIPLIED_ALPHA (arcade.ArcadeContext

attribute), 514
BLEND_PREMULTIPLIED_ALPHA (arcade.gl.Context at-

tribute), 528
bold (arcade.Text attribute), 445
border (arcade.gui.UIFlatButton.UIStyle attribute), 589
border (arcade.gui.UISliderStyle attribute), 575
border (arcade.TextureAtlas attribute), 468
border_width (arcade.gui.UIFlatButton.UIStyle at-

tribute), 590
border_width (arcade.gui.UISliderStyle attribute), 575
border_width (arcade.gui.UITextureButtonStyle at-

tribute), 591
bottom (arcade.BasicSprite attribute), 424
bottom (arcade.gui.NinePatchTexture attribute), 572
bottom (arcade.gui.Rect attribute), 582
bottom (arcade.gui.UIWidget attribute), 588
bottom (arcade.Section attribute), 495
bottom (arcade.Text attribute), 445
boundary_bottom (arcade.AnimatedTimeBasedSprite

attribute), 418
boundary_bottom (arcade.AnimatedWalkingSprite at-

tribute), 419
boundary_bottom (arcade.PerfGraph attribute), 470
boundary_bottom (arcade.Sprite attribute), 422
boundary_bottom (arcade.SpriteCircle attribute), 417
boundary_left (arcade.AnimatedTimeBasedSprite at-

tribute), 418
boundary_left (arcade.AnimatedWalkingSprite at-

tribute), 419
boundary_left (arcade.PerfGraph attribute), 470
boundary_left (arcade.Sprite attribute), 422
boundary_left (arcade.SpriteCircle attribute), 417
boundary_right (arcade.AnimatedTimeBasedSprite at-

tribute), 418
boundary_right (arcade.AnimatedWalkingSprite

attribute), 419

708 Index

Python Arcade Library, Release 3.0.0.dev26

boundary_right (arcade.PerfGraph attribute), 470
boundary_right (arcade.Sprite attribute), 422
boundary_right (arcade.SpriteCircle attribute), 417
boundary_top (arcade.AnimatedTimeBasedSprite

attribute), 418
boundary_top (arcade.AnimatedWalkingSprite at-

tribute), 419
boundary_top (arcade.PerfGraph attribute), 470
boundary_top (arcade.Sprite attribute), 422
boundary_top (arcade.SpriteCircle attribute), 417
buffer (arcade.gl.BufferDescription attribute), 551
buffer (arcade.gl.context.ContextStats attribute), 538
Buffer (class in arcade.gl), 548
buffer() (arcade.ArcadeContext method), 507
buffer() (arcade.gl.Context method), 535
buffer_angles (arcade.SpriteList attribute), 433
buffer_colors (arcade.SpriteList attribute), 433
buffer_indices (arcade.SpriteList attribute), 433
buffer_positions (arcade.SpriteList attribute), 433
buffer_sizes (arcade.SpriteList attribute), 433
buffer_textures (arcade.SpriteList attribute), 433
BufferDescription (class in arcade.gl), 550
build_mipmaps() (arcade.gl.Texture2D method), 547
button (arcade.gui.UIMousePressEvent attribute), 593
button (arcade.gui.UIMouseReleaseEvent attribute),

593
buttons (arcade.gui.UIMouseDragEvent attribute), 592
byte_size (arcade.gl.Texture2D attribute), 544
ByteRangeError (class in arcade.utils), 476

C
cache_name (arcade.Texture attribute), 460
calculate_minimum_size() (arcade.TextureAtlas

class method), 464
camera (arcade.gui.UIManager attribute), 571
Camera (class in arcade), 440
can_jump() (arcade.PhysicsEnginePlatformer method),

474
center (arcade.gui.Rect attribute), 582
center (arcade.gui.UIWidget attribute), 588
center (arcade.SpriteList attribute), 434
center() (arcade.SimpleCamera method), 441
center_on_screen() (arcade.gui.UIWidget method),

586
center_window() (arcade.Window method), 483
center_x (arcade.BasicSprite attribute), 424
center_x (arcade.gui.Rect attribute), 582
center_x (arcade.gui.UIWidget attribute), 588
center_x (arcade.shape_list.ShapeElementList at-

tribute), 410
center_y (arcade.BasicSprite attribute), 425
center_y (arcade.gui.Rect attribute), 582
center_y (arcade.gui.UIWidget attribute), 588

center_y (arcade.shape_list.ShapeElementList at-
tribute), 410

change_angle (arcade.AnimatedTimeBasedSprite
attribute), 418

change_angle (arcade.AnimatedWalkingSprite at-
tribute), 419

change_angle (arcade.PerfGraph attribute), 470
change_angle (arcade.Sprite attribute), 422
change_angle (arcade.SpriteCircle attribute), 417
change_x (arcade.Sprite attribute), 422
change_y (arcade.Sprite attribute), 422
check_for_collision() (in module arcade), 426
check_for_collision_with_list() (in module ar-

cade), 426
check_for_collision_with_lists() (in module ar-

cade), 427
check_grounding() (arcade.PymunkPhysicsEngine

method), 473
children (arcade.gui.UIWidget attribute), 588
clamp() (in module arcade.math), 522
CLAMP_TO_BORDER (arcade.ArcadeContext attribute),

514
CLAMP_TO_BORDER (arcade.gl.Context attribute), 526
CLAMP_TO_EDGE (arcade.ArcadeContext attribute), 514
CLAMP_TO_EDGE (arcade.gl.Context attribute), 526
cleanup_texture_cache() (in module arcade), 453
clear() (arcade.gl.Framebuffer method), 558
clear() (arcade.gui.Surface method), 566
clear() (arcade.gui.UIManager method), 569
clear() (arcade.gui.UIWidget method), 586
clear() (arcade.shape_list.ShapeElementList method),

410
clear() (arcade.SpriteList method), 430
clear() (arcade.TextureAtlas method), 464
clear() (arcade.View method), 480
clear() (arcade.Window method), 483
clear_sections() (arcade.SectionManager method),

496
clear_timings() (in module arcade), 470
close() (arcade.Window method), 483
close_window() (in module arcade), 491
collide_with_point() (arcade.gui.Rect method), 582
collides_with_list() (arcade.BasicSprite method),

423
collides_with_point() (arcade.BasicSprite method),

423
collides_with_sprite() (arcade.BasicSprite

method), 423
color (arcade.BasicSprite attribute), 425
color (arcade.gui.UISpace attribute), 585
color (arcade.SpriteList attribute), 434
color (arcade.Text attribute), 445
Color (class in arcade.types), 397

Index 709

Python Arcade Library, Release 3.0.0.dev26

color_attachments (arcade.gl.Framebuffer attribute),
558

color_normalized (arcade.SpriteList attribute), 434
compare_func (arcade.gl.Texture2D attribute), 546
compile_shader() (arcade.gl.Program static method),

563
component_size (arcade.gl.Texture2D attribute), 544
components (arcade.gl.Texture2D attribute), 544
components (arcade.gl.uniform.Uniform attribute), 564
compute_shader (arcade.gl.context.ContextStats at-

tribute), 539
compute_shader() (arcade.ArcadeContext method),

507
compute_shader() (arcade.gl.Context method), 538
ComputeShader (class in arcade.gl), 565
configure_logging() (in module arcade), 477
content_height (arcade.gui.UIWidget attribute), 588
content_height (arcade.Text attribute), 445
content_rect (arcade.gui.UIWidget attribute), 588
content_size (arcade.gui.UIWidget attribute), 588
content_size (arcade.Text attribute), 445
content_width (arcade.gui.UIWidget attribute), 588
content_width (arcade.Text attribute), 445
Context (class in arcade.gl), 526
ContextStats (class in arcade.gl.context), 538
ControllerManager (class in arcade), 479
copy_framebuffer() (arcade.ArcadeContext method),

508
copy_framebuffer() (arcade.gl.Context method), 534
copy_from_buffer() (arcade.gl.Buffer method), 549
count (arcade.SpatialHash attribute), 429
create_atlas_name() (arcade.Texture class method),

456
create_cache_name() (arcade.Texture class method),

456
create_ellipse() (in module arcade.shape_list), 411
create_ellipse_filled() (in module ar-

cade.shape_list), 411
create_ellipse_filled_with_colors() (in module

arcade.shape_list), 411
create_ellipse_outline() (in module ar-

cade.shape_list), 412
create_empty() (arcade.Texture class method), 456
create_filled() (arcade.Texture class method), 457
create_from_texture_sequence() (ar-

cade.TextureAtlas class method), 465
create_image_cache_name() (arcade.Texture class

method), 457
create_isometric_grid_lines() (in module ar-

cade.isometric), 504
create_line() (in module arcade.shape_list), 412
create_line_generic() (in module ar-

cade.shape_list), 412

create_line_generic_with_colors() (in module
arcade.shape_list), 412

create_line_loop() (in module arcade.shape_list),
413

create_line_strip() (in module arcade.shape_list),
413

create_lines() (in module arcade.shape_list), 413
create_lines_with_colors() (in module ar-

cade.shape_list), 413
create_polygon() (in module arcade.shape_list), 413
create_rectangle() (in module arcade.shape_list),

414
create_rectangle_filled() (in module ar-

cade.shape_list), 414
create_rectangle_filled_with_colors() (in mod-

ule arcade.shape_list), 415
create_rectangle_outline() (in module ar-

cade.shape_list), 415
create_rectangles_filled_with_colors() (in

module arcade.shape_list), 415
create_text_sprite() (in module arcade), 446
create_triangles_filled_with_colors() (in mod-

ule arcade.shape_list), 415
create_triangles_strip_filled_with_colors()

(in module arcade.shape_list), 416
crop() (arcade.Texture method), 457
crop_values (arcade.Texture attribute), 460
ctx (arcade.gl.Buffer attribute), 549
ctx (arcade.gl.Framebuffer attribute), 557
ctx (arcade.gl.Geometry attribute), 552
ctx (arcade.gl.Program attribute), 562
ctx (arcade.gl.Query attribute), 560
ctx (arcade.gl.Texture2D attribute), 543
ctx (arcade.gl.VertexArray attribute), 554
ctx (arcade.gui.NinePatchTexture attribute), 572
ctx (arcade.Window attribute), 490
cube() (in module arcade.gl.geometry), 552
CULL_FACE (arcade.ArcadeContext attribute), 514
cull_face (arcade.ArcadeContext attribute), 518
CULL_FACE (arcade.gl.Context attribute), 527
cull_face (arcade.gl.Context attribute), 533
cur_period (arcade.easing.EasingData attribute), 504
cur_texture_index (ar-

cade.AnimatedTimeBasedSprite attribute),
418

cur_texture_index (arcade.AnimatedWalkingSprite
attribute), 419

cur_texture_index (arcade.PerfGraph attribute), 470
cur_texture_index (arcade.Sprite attribute), 422
cur_texture_index (arcade.SpriteCircle attribute),

417
current_view (arcade.Window attribute), 490

710 Index

Python Arcade Library, Release 3.0.0.dev26

D
damping (arcade.PyMunk attribute), 417
debug() (arcade.gui.UIManager method), 569
decr() (arcade.gl.context.ContextStats method), 539
default_anchor_x (arcade.gui.UIAnchorLayout

attribute), 576
default_anchor_y (arcade.gui.UIAnchorLayout

attribute), 576
default_atlas (arcade.ArcadeContext attribute), 518
default_factory (arcade.gui.DictProperty attribute),

594
default_factory (arcade.gui.ListProperty attribute),

595
default_factory (arcade.gui.Property attribute), 595
DEFAULT_STYLE (arcade.gui.UIFlatButton attribute),

590
DEFAULT_STYLE (arcade.gui.UISlider attribute), 574
DEFAULT_STYLE (arcade.gui.UITextureButton attribute),

591
DefaultFrameBuffer (class in arcade.gl.framebuffer),

559
delete() (arcade.gl.Buffer method), 549
delete() (arcade.gl.ComputeShader method), 565
delete() (arcade.gl.Framebuffer method), 559
delete() (arcade.gl.Program method), 562
delete() (arcade.gl.Query method), 561
delete() (arcade.gl.Texture2D method), 547
delete() (arcade.gl.VertexArray method), 555
delete_glo() (arcade.gl.Buffer static method), 549
delete_glo() (arcade.gl.ComputeShader static

method), 565
delete_glo() (arcade.gl.Framebuffer static method),

559
delete_glo() (arcade.gl.Program static method), 563
delete_glo() (arcade.gl.Query static method), 561
delete_glo() (arcade.gl.Texture2D static method), 547
delete_glo() (arcade.gl.VertexArray static method),

555
depth (arcade.BasicSprite attribute), 425
depth (arcade.gl.Texture2D attribute), 544
depth_attachment (arcade.gl.Framebuffer attribute),

558
depth_mask (arcade.gl.Framebuffer attribute), 558
DEPTH_TEST (arcade.ArcadeContext attribute), 514
DEPTH_TEST (arcade.gl.Context attribute), 527
depth_texture() (arcade.ArcadeContext method), 508
depth_texture() (arcade.gl.Context method), 536
DictProperty (class in arcade.gui), 594
disable() (arcade.ArcadeContext method), 508
disable() (arcade.gl.Context method), 532
disable() (arcade.gui.UIManager method), 569
disable() (arcade.SectionManager method), 496
disable_all_keyboard_events() (ar-

cade.SectionManager method), 496

disable_multi_jump() (ar-
cade.PhysicsEnginePlatformer method),
475

disable_spatial_hashing() (arcade.SpriteList
method), 430

disable_timings() (in module arcade), 470
disabled (arcade.gui.UIInteractiveWidget attribute),

584
disabled (arcade.gui.UISlider attribute), 574
dispatch() (arcade.gui.Property method), 595
dispatch_events() (arcade.Window method), 483
dispatch_keyboard_event() (ar-

cade.SectionManager method), 496
dispatch_mouse_enter_leave_events() (ar-

cade.SectionManager method), 497
dispatch_mouse_event() (arcade.SectionManager

method), 497
dispatch_ui_event() (arcade.gui.UIManager

method), 569
dispatch_ui_event() (arcade.gui.UIWidget method),

586
DIVIDER (arcade.gui.UIDropdown attribute), 578
do_layout() (arcade.gui.UIAnchorLayout method), 576
do_layout() (arcade.gui.UIBoxLayout method), 576
do_layout() (arcade.gui.UIDraggableMixin method),

566
do_layout() (arcade.gui.UIDropdown method), 578
do_layout() (arcade.gui.UIGridLayout method), 577
do_layout() (arcade.gui.UILayout method), 585
do_render() (arcade.gui.UIDummy method), 583
do_render() (arcade.gui.UIFlatButton method), 590
do_render() (arcade.gui.UIImage method), 573
do_render() (arcade.gui.UIInputText method), 579
do_render() (arcade.gui.UILabel method), 580
do_render() (arcade.gui.UISlider method), 573
do_render() (arcade.gui.UISpace method), 585
do_render() (arcade.gui.UISpriteWidget method), 586
do_render() (arcade.gui.UITextArea method), 581
do_render() (arcade.gui.UITextureButton method), 591
do_render() (arcade.gui.UITextureToggle method), 589
do_render() (arcade.gui.UIWidget method), 586
do_render_base() (arcade.gui.UIWidget method), 586
draw() (arcade.gui.Surface method), 567
draw() (arcade.gui.UIManager method), 569
draw() (arcade.Scene method), 437
draw() (arcade.shape_list.Shape method), 410
draw() (arcade.shape_list.ShapeElementList method),

410
draw() (arcade.Sprite method), 420
draw() (arcade.SpriteList method), 430
draw() (arcade.Text method), 444
draw_arc_filled() (in module arcade), 401
draw_arc_outline() (in module arcade), 401
draw_circle_filled() (in module arcade), 401

Index 711

Python Arcade Library, Release 3.0.0.dev26

draw_circle_outline() (in module arcade), 402
draw_debug() (arcade.Text method), 444
draw_ellipse_filled() (in module arcade), 402
draw_ellipse_outline() (in module arcade), 402
draw_hit_box() (arcade.BasicSprite method), 423
draw_hit_boxes() (arcade.Scene method), 437
draw_hit_boxes() (arcade.SpriteList method), 431
draw_line() (in module arcade), 403
draw_line_strip() (in module arcade), 403
draw_lines() (in module arcade), 403
draw_lrbt_rectangle_filled() (in module arcade),

403
draw_lrbt_rectangle_outline() (in module ar-

cade), 404
draw_lrtb_rectangle_filled() (in module arcade),

404
draw_lrtb_rectangle_outline() (in module ar-

cade), 404
draw_lrwh_rectangle_textured() (in module ar-

cade), 405
draw_order (arcade.Section attribute), 495
draw_parabola_filled() (in module arcade), 405
draw_parabola_outline() (in module arcade), 405
draw_point() (in module arcade), 405
draw_points() (in module arcade), 406
draw_polygon_filled() (in module arcade), 406
draw_polygon_outline() (in module arcade), 406
draw_rectangle_filled() (in module arcade), 406
draw_rectangle_outline() (in module arcade), 406
draw_scaled() (arcade.Texture method), 457
draw_scaled_texture_rectangle() (in module ar-

cade), 407
draw_sized() (arcade.gui.NinePatchTexture method),

572
draw_sized() (arcade.Texture method), 457
draw_sprite() (arcade.gui.Surface method), 567
draw_text() (in module arcade), 447
draw_texture() (arcade.gui.Surface method), 567
draw_texture_rectangle() (in module arcade), 407
draw_triangle_filled() (in module arcade), 408
draw_triangle_outline() (in module arcade), 408
draw_xywh_rectangle_filled() (in module arcade),

408
draw_xywh_rectangle_outline() (in module ar-

cade), 408
DST_ALPHA (arcade.ArcadeContext attribute), 514
DST_ALPHA (arcade.gl.Context attribute), 527
DST_COLOR (arcade.ArcadeContext attribute), 514
DST_COLOR (arcade.gl.Context attribute), 527
dt (arcade.gui.UIOnUpdateEvent attribute), 594
dtype (arcade.gl.Texture2D attribute), 543
duration (arcade.AnimationKeyframe attribute), 419
dx (arcade.gui.UIMouseDragEvent attribute), 592
dx (arcade.gui.UIMouseMovementEvent attribute), 593

dy (arcade.gui.UIMouseDragEvent attribute), 592
dy (arcade.gui.UIMouseMovementEvent attribute), 593
DYNAMIC (arcade.PymunkPhysicsEngine attribute), 474

E
earclip() (in module arcade.earclip), 504
ease_angle() (in module arcade.easing), 504
ease_angle_update() (in module arcade.easing), 504
ease_function (arcade.easing.EasingData attribute),

504
ease_in() (in module arcade.easing), 504
ease_in_back() (in module arcade.easing), 505
ease_in_out() (in module arcade.easing), 505
ease_in_out_sin() (in module arcade.easing), 505
ease_in_sin() (in module arcade.easing), 505
ease_out() (in module arcade.easing), 505
ease_out_back() (in module arcade.easing), 505
ease_out_bounce() (in module arcade.easing), 505
ease_out_elastic() (in module arcade.easing), 505
ease_out_sin() (in module arcade.easing), 505
ease_position() (in module arcade.easing), 505
ease_update() (in module arcade.easing), 505
ease_value() (in module arcade.easing), 505
easing() (in module arcade.easing), 505
EasingData (class in arcade.easing), 504
enable() (arcade.ArcadeContext method), 508
enable() (arcade.gl.Context method), 531
enable() (arcade.gui.UIManager method), 569
enable() (arcade.SectionManager method), 497
enable_multi_jump() (ar-

cade.PhysicsEnginePlatformer method),
475

enable_only() (arcade.ArcadeContext method), 508
enable_only() (arcade.gl.Context method), 531
enable_spatial_hashing() (arcade.SpriteList

method), 431
enable_timings() (in module arcade), 471
enabled (arcade.Section attribute), 496
enabled() (arcade.ArcadeContext method), 509
enabled() (arcade.gl.Context method), 531
enabled_only() (arcade.ArcadeContext method), 509
enabled_only() (arcade.gl.Context method), 532
end_period (arcade.easing.EasingData attribute), 504
end_value (arcade.easing.EasingData attribute), 504
error (arcade.ArcadeContext attribute), 518
error (arcade.gl.Context attribute), 531
exit() (in module arcade), 491
extend() (arcade.SpriteList method), 431

F
far (arcade.Camera attribute), 441
fbo (arcade.ArcadeContext attribute), 518
fbo (arcade.gl.Context attribute), 530
fbo (arcade.TextureAtlas attribute), 468

712 Index

Python Arcade Library, Release 3.0.0.dev26

file_path (arcade.Texture attribute), 460
filled_bar (arcade.gui.UISliderStyle attribute), 575
filter (arcade.gl.Texture2D attribute), 545
finish() (arcade.ArcadeContext method), 509
finish() (arcade.gl.Context method), 534
finish_render() (in module arcade), 491
fit_content() (arcade.gui.UIBoxLayout method), 577
fit_content() (arcade.gui.UILabel method), 580
fit_content() (arcade.gui.UITextArea method), 581
flip() (arcade.Window method), 483
flip_diagonally() (arcade.Texture method), 458
flip_horizontally() (arcade.Texture method), 458
flip_left_right() (arcade.Texture method), 458
flip_top_bottom() (arcade.Texture method), 458
flip_vertically() (arcade.Texture method), 458
FlipLeftRightTransform (class in ar-

cade.texture.transforms), 461
FlipTopBottomTransform (class in ar-

cade.texture.transforms), 461
FloatOutsideRangeError (class in arcade.utils), 476
flush() (arcade.ArcadeContext method), 509
flush() (arcade.gl.Context method), 534
flush() (arcade.gl.Geometry method), 554
font_color (arcade.gui.UIFlatButton.UIStyle at-

tribute), 590
font_color (arcade.gui.UITextureButtonStyle at-

tribute), 591
font_color (arcade.PerfGraph attribute), 470
font_name (arcade.gui.UIFlatButton.UIStyle attribute),

590
font_name (arcade.gui.UITextureButtonStyle attribute),

591
font_name (arcade.Text attribute), 445
font_size (arcade.gui.UIFlatButton.UIStyle attribute),

590
font_size (arcade.gui.UITextureButtonStyle attribute),

591
font_size (arcade.PerfGraph attribute), 470
font_size (arcade.Text attribute), 445
force (arcade.AnimatedTimeBasedSprite attribute), 418
force (arcade.AnimatedWalkingSprite attribute), 419
force (arcade.PerfGraph attribute), 470
force (arcade.Sprite attribute), 422
force (arcade.SpriteCircle attribute), 417
formats (arcade.gl.BufferDescription attribute), 551
forward() (arcade.Sprite method), 420
framebuffer (arcade.gl.context.ContextStats attribute),

538
Framebuffer (class in arcade.gl), 556
framebuffer() (arcade.ArcadeContext method), 509
framebuffer() (arcade.gl.Context method), 535
from_gray() (arcade.types.Color class method), 397
from_hex_string() (arcade.types.Color class method),

398

from_iterable() (arcade.types.Color class method),
398

from_normalized() (arcade.types.Color class method),
398

from_tilemap() (arcade.Scene class method), 437
from_uint24() (arcade.types.Color class method), 399
from_uint32() (arcade.types.Color class method), 399
front_face (arcade.ArcadeContext attribute), 518
front_face (arcade.gl.Context attribute), 533
FUNC_ADD (arcade.ArcadeContext attribute), 515
FUNC_ADD (arcade.gl.Context attribute), 528
FUNC_REVERSE_SUBTRACT (arcade.ArcadeContext at-

tribute), 515
FUNC_REVERSE_SUBTRACT (arcade.gl.Context attribute),

528
FUNC_SUBTRACT (arcade.ArcadeContext attribute), 515
FUNC_SUBTRACT (arcade.gl.Context attribute), 528

G
g (arcade.types.Color attribute), 400
gc() (arcade.ArcadeContext method), 509
gc() (arcade.gl.Context method), 530
gc_mode (arcade.ArcadeContext attribute), 519
gc_mode (arcade.gl.Context attribute), 530
generate_uuid_from_kwargs() (in module ar-

cade.utils), 477
geometry (arcade.gl.context.ContextStats attribute), 539
geometry (arcade.SpriteList attribute), 434
Geometry (class in arcade.gl), 552
geometry() (arcade.ArcadeContext method), 509
geometry() (arcade.gl.Context method), 536
geometry_input (arcade.gl.Program attribute), 562
geometry_output (arcade.gl.Program attribute), 562
geometry_vertices (arcade.gl.Program attribute), 562
get() (arcade.gl.context.Limits method), 542
get() (arcade.gui.Property method), 595
get() (arcade.gui.UIStyleBase method), 596
get_angle_degrees() (in module arcade.math), 522
get_angle_radians() (in module arcade.math), 522
get_cartesian() (arcade.tilemap.TileMap method),

451
get_closest_sprite() (in module arcade), 427
get_controllers() (in module arcade), 479
get_current_state() (arcade.gui.UIFlatButton

method), 590
get_current_state() (arcade.gui.UISlider method),

573
get_current_state() (arcade.gui.UIStyledWidget

method), 596
get_current_state() (arcade.gui.UITextureButton

method), 591
get_current_style() (arcade.gui.UIStyledWidget

method), 596
get_default_image() (in module arcade), 453

Index 713

Python Arcade Library, Release 3.0.0.dev26

get_default_texture() (in module arcade), 454
get_display_size() (in module arcade), 491
get_distance() (in module arcade.math), 522
get_distance_between_sprites() (in module ar-

cade), 427
get_first_section() (arcade.SectionManager

method), 497
get_float() (arcade.gl.context.Limits method), 542
get_fps() (in module arcade), 471
get_framebuffer_image() (arcade.ArcadeContext

method), 511
get_game_controllers() (in module arcade), 479
get_handle() (arcade.gl.Texture2D method), 547
get_image() (in module arcade), 409
get_image_id() (arcade.TextureAtlas method), 465
get_image_region_info() (arcade.TextureAtlas

method), 465
get_int_tuple() (arcade.gl.context.Limits method),

542
get_joysticks() (in module arcade), 479
get_length() (arcade.Sound method), 501
get_location() (arcade.Window method), 483
get_map_coordinates() (arcade.SimpleCamera

method), 441
get_orientation() (in module ar-

cade.texture.transforms), 463
get_physics_object() (ar-

cade.PymunkPhysicsEngine method), 473
get_pixel() (in module arcade), 409
get_points_for_thick_line() (in module arcade),

416
get_raspberry_pi_info() (in module arcade.utils),

477
get_rectangle_points() (in module ar-

cade.shape_list), 416
get_screens() (in module arcade), 490
get_section_by_name() (arcade.SectionManager

method), 498
get_sections() (arcade.SectionManager method), 498
get_size() (arcade.Window method), 484
get_sprite_for_shape() (ar-

cade.PymunkPhysicsEngine method), 473
get_sprite_list() (arcade.Scene method), 438
get_sprites_at_exact_point() (in module arcade),

427
get_sprites_at_point() (arcade.Camera method),

440
get_sprites_at_point() (in module arcade), 427
get_sprites_from_arbiter() (ar-

cade.PymunkPhysicsEngine method), 473
get_sprites_in_rect() (in module arcade), 428
get_sprites_near_point() (arcade.SpatialHash

method), 428
get_sprites_near_rect() (arcade.SpatialHash

method), 428
get_sprites_near_sprite() (arcade.SpatialHash

method), 429
get_str() (arcade.gl.context.Limits method), 542
get_stream_position() (arcade.Sound method), 501
get_system_mouse_cursor() (arcade.Window

method), 484
get_texture_id() (arcade.TextureAtlas method), 465
get_texture_image() (arcade.TextureAtlas method),

465
get_texture_region_info() (arcade.TextureAtlas

method), 465
get_tilemap_layer() (arcade.tilemap.TileMap

method), 451
get_timings() (in module arcade), 471
get_triangle_orientation() (in module ar-

cade.geometry), 478
get_viewport() (arcade.Window method), 484
get_volume() (arcade.Sound method), 501
get_widgets_at() (arcade.gui.UIManager method),

570
get_window() (in module arcade), 491
get_xy_screen_relative() (arcade.Section method),

495
get_xy_section_relative() (arcade.Section

method), 495
getter (arcade.gl.uniform.Uniform attribute), 564
getter() (arcade.gl.uniform.UniformBlock method),

564
gl_api (arcade.ArcadeContext attribute), 519
gl_api (arcade.gl.Context attribute), 529
gl_version (arcade.ArcadeContext attribute), 519
gl_version (arcade.gl.Context attribute), 530
glo (arcade.gl.Buffer attribute), 549
glo (arcade.gl.ComputeShader attribute), 565
glo (arcade.gl.Framebuffer attribute), 557
glo (arcade.gl.Program attribute), 562
glo (arcade.gl.Texture2D attribute), 543
glo (arcade.gl.uniform.UniformBlock attribute), 564
glo (arcade.gl.VertexArray attribute), 556
gravity (arcade.PyMunk attribute), 417
grid_color (arcade.PerfGraph attribute), 470
group (arcade.Text attribute), 445
guid (arcade.AnimatedTimeBasedSprite attribute), 418
guid (arcade.AnimatedWalkingSprite attribute), 419
guid (arcade.PerfGraph attribute), 470
guid (arcade.Sprite attribute), 422
guid (arcade.SpriteCircle attribute), 417

H
has_image() (arcade.TextureAtlas method), 465
has_line_of_sight() (in module arcade), 503
has_sections (arcade.SectionManager attribute), 501
has_sections (arcade.View attribute), 482

714 Index

Python Arcade Library, Release 3.0.0.dev26

has_texture() (arcade.TextureAtlas method), 465
hash() (arcade.SpatialHash method), 429
headless (arcade.Window attribute), 490
height (arcade.BasicSprite attribute), 425
height (arcade.gl.Framebuffer attribute), 558
height (arcade.gl.Texture2D attribute), 543
height (arcade.gui.NinePatchTexture attribute), 572
height (arcade.gui.Rect attribute), 582
height (arcade.gui.Surface attribute), 567
height (arcade.gui.UIWidget attribute), 588
height (arcade.Section attribute), 496
height (arcade.Text attribute), 445
height (arcade.Texture attribute), 460
height (arcade.TextureAtlas attribute), 468
height (arcade.tilemap.TileMap attribute), 451
hide_view() (arcade.Window method), 484
hit_box (arcade.BasicSprite attribute), 425
hit_box (arcade.Sprite attribute), 422
hit_box_algorithm (arcade.Texture attribute), 460
hit_box_points (arcade.Texture attribute), 460
hovered (arcade.gui.UIInteractiveWidget attribute), 584
hovered (arcade.gui.UISlider attribute), 574

I
ibo (arcade.gl.VertexArray attribute), 555
image (arcade.Texture attribute), 460
image_data (arcade.Texture attribute), 461
image_uv_texture (arcade.TextureAtlas attribute), 468
images (arcade.TextureAtlas attribute), 468
immutable (arcade.gl.Texture2D attribute), 544
incr() (arcade.gl.context.ContextStats method), 539
increment_jump_counter() (ar-

cade.PhysicsEnginePlatformer method),
475

index (arcade.gl.uniform.UniformBlock attribute), 564
index() (arcade.SpriteList method), 431
index_buffer (arcade.gl.Geometry attribute), 552
info (arcade.ArcadeContext attribute), 519
info (arcade.gl.Context attribute), 529
initialize() (arcade.SpriteList method), 431
insert() (arcade.SpriteList method), 431
instance() (arcade.gl.Geometry method), 553
instanced (arcade.gl.BufferDescription attribute), 551
IntOutsideRangeError (class in arcade.utils), 476
is_complete() (arcade.Sound method), 501
is_current_view (arcade.SectionManager attribute),

501
is_default (arcade.gl.Framebuffer attribute), 557
is_default (arcade.gl.framebuffer.DefaultFrameBuffer

attribute), 559
is_enabled() (arcade.ArcadeContext method), 511
is_enabled() (arcade.gl.Context method), 532
is_on_ground() (arcade.PymunkPhysicsEngine

method), 473

is_on_ladder() (arcade.PhysicsEnginePlatformer
method), 475

is_playing() (arcade.Sound method), 501
is_point_in_box() (in module arcade.geometry), 478
is_point_in_polygon() (in module arcade.geometry),

478
is_raspberry_pi() (in module arcade.utils), 477
isometric_grid_to_screen() (in module ar-

cade.isometric), 504
italic (arcade.Text attribute), 445

J
jump() (arcade.PhysicsEnginePlatformer method), 475

K
kill() (arcade.BasicSprite method), 423
KINEMATIC (arcade.PymunkPhysicsEngine attribute),

474

L
label (arcade.gui.UITextWidget attribute), 581
LAYOUT_OFFSET (arcade.gui.UIInputText attribute), 579
left (arcade.BasicSprite attribute), 425
left (arcade.gui.NinePatchTexture attribute), 572
left (arcade.gui.Rect attribute), 582
left (arcade.gui.UIWidget attribute), 588
left (arcade.Section attribute), 496
left (arcade.Text attribute), 445
lerp() (in module arcade.math), 522
lerp_angle() (in module arcade.math), 522
lerp_vec() (in module arcade.math), 523
limit() (arcade.gui.Surface method), 567
limits (arcade.ArcadeContext attribute), 519
limits (arcade.gl.Context attribute), 529
Limits (class in arcade.gl.context), 539
LINE_LOOP (arcade.ArcadeContext attribute), 515
LINE_LOOP (arcade.gl.Context attribute), 528
LINE_STRIP (arcade.ArcadeContext attribute), 515
LINE_STRIP (arcade.gl.Context attribute), 528
LINE_STRIP_ADJACENCY (arcade.ArcadeContext at-

tribute), 515
LINE_STRIP_ADJACENCY (arcade.gl.Context attribute),

529
LINEAR (arcade.ArcadeContext attribute), 515
LINEAR (arcade.gl.Context attribute), 526
linear() (in module arcade.easing), 505
LINEAR_MIPMAP_LINEAR (arcade.ArcadeContext at-

tribute), 515
LINEAR_MIPMAP_LINEAR (arcade.gl.Context attribute),

526
LINEAR_MIPMAP_NEAREST (arcade.ArcadeContext at-

tribute), 515
LINEAR_MIPMAP_NEAREST (arcade.gl.Context attribute),

526

Index 715

Python Arcade Library, Release 3.0.0.dev26

LINES (arcade.ArcadeContext attribute), 515
LINES (arcade.gl.Context attribute), 528
LINES_ADJACENCY (arcade.ArcadeContext attribute),

515
LINES_ADJACENCY (arcade.gl.Context attribute), 529
link() (arcade.gl.Program static method), 563
ListProperty (class in arcade.gui), 594
load_animated_gif() (in module arcade), 426
load_atlas() (in module arcade), 469
load_compute_shader() (arcade.ArcadeContext

method), 511
load_font() (in module arcade), 449
load_program() (arcade.ArcadeContext method), 511
load_sound() (in module arcade), 502
load_spritesheet() (in module arcade), 454
load_texture() (arcade.ArcadeContext method), 512
load_texture() (in module arcade), 454
load_texture_pair() (in module arcade), 455
load_textures() (in module arcade), 455
load_tilemap() (in module arcade.tilemap), 452
location (arcade.gl.uniform.Uniform attribute), 564
LOWER_LEFT (arcade.texture.transforms.VertexOrder at-

tribute), 463
LOWER_RIGHT (arcade.texture.transforms.VertexOrder

attribute), 463

M
MAJOR_VERSION (arcade.gl.context.Limits attribute), 539
make_circle_texture() (in module arcade), 453
make_soft_circle_texture() (in module arcade),

453
make_soft_square_texture() (in module arcade),

453
MAX (arcade.ArcadeContext attribute), 515
MAX (arcade.gl.Context attribute), 528
MAX_3D_TEXTURE_SIZE (arcade.gl.context.Limits

attribute), 540
MAX_ARRAY_TEXTURE_LAYERS (arcade.gl.context.Limits

attribute), 539
MAX_COLOR_ATTACHMENTS (arcade.gl.context.Limits at-

tribute), 540
MAX_COLOR_TEXTURE_SAMPLES (ar-

cade.gl.context.Limits attribute), 540
MAX_COMBINED_FRAGMENT_UNIFORM_COMPONENTS (ar-

cade.gl.context.Limits attribute), 540
MAX_COMBINED_GEOMETRY_UNIFORM_COMPONENTS (ar-

cade.gl.context.Limits attribute), 540
MAX_COMBINED_TEXTURE_IMAGE_UNITS (ar-

cade.gl.context.Limits attribute), 540
MAX_COMBINED_UNIFORM_BLOCKS (ar-

cade.gl.context.Limits attribute), 540
MAX_COMBINED_VERTEX_UNIFORM_COMPONENTS (ar-

cade.gl.context.Limits attribute), 540

MAX_CUBE_MAP_TEXTURE_SIZE (ar-
cade.gl.context.Limits attribute), 540

MAX_DEPTH_TEXTURE_SAMPLES (ar-
cade.gl.context.Limits attribute), 540

MAX_DRAW_BUFFERS (arcade.gl.context.Limits attribute),
540

MAX_ELEMENTS_INDICES (arcade.gl.context.Limits at-
tribute), 540

MAX_ELEMENTS_VERTICES (arcade.gl.context.Limits at-
tribute), 540

MAX_FRAGMENT_INPUT_COMPONENTS (ar-
cade.gl.context.Limits attribute), 540

MAX_FRAGMENT_UNIFORM_BLOCKS (ar-
cade.gl.context.Limits attribute), 540

MAX_FRAGMENT_UNIFORM_COMPONENTS (ar-
cade.gl.context.Limits attribute), 540

MAX_FRAGMENT_UNIFORM_VECTORS (ar-
cade.gl.context.Limits attribute), 540

MAX_GEOMETRY_INPUT_COMPONENTS (ar-
cade.gl.context.Limits attribute), 540

MAX_GEOMETRY_OUTPUT_COMPONENTS (ar-
cade.gl.context.Limits attribute), 540

MAX_GEOMETRY_TEXTURE_IMAGE_UNITS (ar-
cade.gl.context.Limits attribute), 541

MAX_GEOMETRY_UNIFORM_BLOCKS (ar-
cade.gl.context.Limits attribute), 541

MAX_GEOMETRY_UNIFORM_COMPONENTS (ar-
cade.gl.context.Limits attribute), 541

max_height (arcade.TextureAtlas attribute), 468
max_horizontal_velocity (arcade.PyMunk at-

tribute), 417
MAX_INTEGER_SAMPLES (arcade.gl.context.Limits

attribute), 541
MAX_RENDERBUFFER_SIZE (arcade.gl.context.Limits at-

tribute), 541
MAX_SAMPLE_MASK_WORDS (arcade.gl.context.Limits at-

tribute), 541
MAX_SAMPLES (arcade.gl.context.Limits attribute), 541
max_size (arcade.TextureAtlas attribute), 468
max_size() (arcade.gui.Rect method), 582
MAX_TEXTURE_MAX_ANISOTROPY (ar-

cade.gl.context.Limits attribute), 541
MAX_TEXTURE_SIZE (arcade.gl.context.Limits attribute),

541
MAX_TRANSFORM_FEEDBACK_SEPARATE_ATTRIBS

(arcade.gl.context.Limits attribute), 542
MAX_UNIFORM_BLOCK_SIZE (arcade.gl.context.Limits at-

tribute), 541
MAX_UNIFORM_BUFFER_BINDINGS (ar-

cade.gl.context.Limits attribute), 541
MAX_VARYING_VECTORS (arcade.gl.context.Limits

attribute), 541
max_velocity (arcade.PyMunk attribute), 417
MAX_VERTEX_ATTRIBS (arcade.gl.context.Limits at-

716 Index

Python Arcade Library, Release 3.0.0.dev26

tribute), 541
MAX_VERTEX_OUTPUT_COMPONENTS (ar-

cade.gl.context.Limits attribute), 541
MAX_VERTEX_TEXTURE_IMAGE_UNITS (ar-

cade.gl.context.Limits attribute), 541
MAX_VERTEX_UNIFORM_BLOCKS (ar-

cade.gl.context.Limits attribute), 541
MAX_VERTEX_UNIFORM_COMPONENTS (ar-

cade.gl.context.Limits attribute), 541
MAX_VERTEX_UNIFORM_VECTORS (ar-

cade.gl.context.Limits attribute), 541
max_vertical_velocity (arcade.PyMunk attribute),

417
MAX_VIEWPORT_DIMS (arcade.gl.context.Limits at-

tribute), 541
max_width (arcade.TextureAtlas attribute), 468
maximize() (arcade.Window method), 484
MIN (arcade.ArcadeContext attribute), 515
MIN (arcade.gl.Context attribute), 528
min_size() (arcade.gui.Rect method), 582
minimize() (arcade.Window method), 484
MINOR_VERSION (arcade.gl.context.Limits attribute), 539
MIRRORED_REPEAT (arcade.ArcadeContext attribute),

516
MIRRORED_REPEAT (arcade.gl.Context attribute), 527
modal (arcade.Section attribute), 496
modifiers (arcade.gui.UIKeyEvent attribute), 592
modifiers (arcade.gui.UIKeyPressEvent attribute), 592
modifiers (arcade.gui.UIKeyReleaseEvent attribute),

592
modifiers (arcade.gui.UIMouseDragEvent attribute),

592
modifiers (arcade.gui.UIMousePressEvent attribute),

593
modifiers (arcade.gui.UIMouseReleaseEvent at-

tribute), 593
MOMENT_INF (arcade.PymunkPhysicsEngine attribute),

474
motion (arcade.gui.UITextMotionEvent attribute), 594
mouse_is_on_top() (arcade.Section method), 495
move() (arcade.gui.Rect method), 582
move() (arcade.gui.UIWidget method), 586
move() (arcade.shape_list.ShapeElementList method),

410
move() (arcade.SimpleCamera method), 441
move() (arcade.SpatialHash method), 429
move() (arcade.SpriteList method), 431
move_sprite_list_after() (arcade.Scene method),

438
move_sprite_list_before() (arcade.Scene method),

438
move_to() (arcade.SimpleCamera method), 442
multiline (arcade.gui.UITextWidget attribute), 581
multiline (arcade.Text attribute), 445

N
name (arcade.gl.uniform.Uniform attribute), 564
name (arcade.gl.uniform.UniformBlock attribute), 564
name (arcade.gui.DictProperty attribute), 594
name (arcade.gui.ListProperty attribute), 595
name (arcade.gui.Property attribute), 595
name (arcade.types.TiledObject attribute), 400
near (arcade.Camera attribute), 441
NEAREST (arcade.ArcadeContext attribute), 516
NEAREST (arcade.gl.Context attribute), 526
NEAREST_MIPMAP_LINEAR (arcade.ArcadeContext at-

tribute), 516
NEAREST_MIPMAP_LINEAR (arcade.gl.Context attribute),

526
NEAREST_MIPMAP_NEAREST (arcade.ArcadeContext at-

tribute), 516
NEAREST_MIPMAP_NEAREST (arcade.gl.Context at-

tribute), 526
new_value (arcade.gui.UIOnChangeEvent attribute),

593
NinePatchTexture (class in arcade.gui), 571
NoOpenGLException (class in arcade), 479
norm_value (arcade.gui.UISlider attribute), 574
normalized (arcade.gl.BufferDescription attribute), 551
normalized (arcade.types.Color attribute), 400
NormalizedRangeError (class in arcade.utils), 476
num_vertices (arcade.gl.BufferDescription attribute),

551
num_vertices (arcade.gl.Geometry attribute), 552
num_vertices (arcade.gl.VertexArray attribute), 555

O
object_lists (arcade.tilemap.TileMap attribute), 451
objects (arcade.ArcadeContext attribute), 520
objects (arcade.gl.Context attribute), 529
obs (arcade.gui.DictProperty attribute), 594
obs (arcade.gui.ListProperty attribute), 595
obs (arcade.gui.Property attribute), 595
offset (arcade.tilemap.TileMap attribute), 451
old_value (arcade.gui.UIOnChangeEvent attribute),

593
on_action() (arcade.gui.UIButtonRow method), 568
on_action() (arcade.gui.UIMessageBox method), 568
on_change() (arcade.gui.UIDropdown method), 578
on_change() (arcade.gui.UISlider method), 574
on_change() (arcade.gui.UITextureToggle method), 589
on_click() (arcade.gui.UIDummy method), 583
on_click() (arcade.gui.UIInteractiveWidget method),

584
on_click() (arcade.gui.UITextureToggle method), 589
on_draw() (arcade.Section method), 495
on_draw() (arcade.SectionManager method), 498
on_draw() (arcade.View method), 480
on_draw() (arcade.Window method), 484

Index 717

Python Arcade Library, Release 3.0.0.dev26

on_event() (arcade.gui.UIDraggableMixin method),
566

on_event() (arcade.gui.UIInputText method), 579
on_event() (arcade.gui.UIInteractiveWidget method),

584
on_event() (arcade.gui.UIManager method), 570
on_event() (arcade.gui.UIMouseFilterMixin method),

566
on_event() (arcade.gui.UISlider method), 574
on_event() (arcade.gui.UITextArea method), 581
on_event() (arcade.gui.UIWidget method), 587
on_hide_section() (arcade.Section method), 495
on_hide_view() (arcade.SectionManager method), 498
on_hide_view() (arcade.View method), 480
on_key_press() (arcade.gui.UIManager method), 570
on_key_press() (arcade.Section method), 495
on_key_press() (arcade.SectionManager method), 498
on_key_press() (arcade.View method), 480
on_key_press() (arcade.Window method), 484
on_key_release() (arcade.gui.UIManager method),

570
on_key_release() (arcade.Section method), 495
on_key_release() (arcade.SectionManager method),

498
on_key_release() (arcade.View method), 480
on_key_release() (arcade.Window method), 484
on_mouse_drag() (arcade.gui.UIManager method),

570
on_mouse_drag() (arcade.Section method), 495
on_mouse_drag() (arcade.SectionManager method),

498
on_mouse_drag() (arcade.View method), 480
on_mouse_drag() (arcade.Window method), 485
on_mouse_enter() (arcade.Section method), 495
on_mouse_enter() (arcade.SectionManager method),

499
on_mouse_enter() (arcade.View method), 480
on_mouse_enter() (arcade.Window method), 485
on_mouse_leave() (arcade.Section method), 495
on_mouse_leave() (arcade.SectionManager method),

499
on_mouse_leave() (arcade.View method), 481
on_mouse_leave() (arcade.Window method), 485
on_mouse_motion() (arcade.gui.UIManager method),

570
on_mouse_motion() (arcade.Section method), 495
on_mouse_motion() (arcade.SectionManager method),

499
on_mouse_motion() (arcade.View method), 481
on_mouse_motion() (arcade.Window method), 485
on_mouse_press() (arcade.gui.UIManager method),

570
on_mouse_press() (arcade.Section method), 495

on_mouse_press() (arcade.SectionManager method),
499

on_mouse_press() (arcade.View method), 481
on_mouse_press() (arcade.Window method), 485
on_mouse_release() (arcade.gui.UIManager method),

570
on_mouse_release() (arcade.Section method), 495
on_mouse_release() (arcade.SectionManager

method), 500
on_mouse_release() (arcade.View method), 481
on_mouse_release() (arcade.Window method), 486
on_mouse_scroll() (arcade.gui.UIManager method),

570
on_mouse_scroll() (arcade.Section method), 495
on_mouse_scroll() (arcade.SectionManager method),

500
on_mouse_scroll() (arcade.View method), 481
on_mouse_scroll() (arcade.Window method), 486
on_resize() (arcade.gui.UIManager method), 570
on_resize() (arcade.Section method), 495
on_resize() (arcade.SectionManager method), 500
on_resize() (arcade.View method), 482
on_resize() (arcade.Window method), 487
on_show() (arcade.View method), 482
on_show_section() (arcade.Section method), 495
on_show_view() (arcade.SectionManager method), 500
on_show_view() (arcade.View method), 482
on_text() (arcade.gui.UIManager method), 570
on_text_motion() (arcade.gui.UIManager method),

570
on_text_motion_select() (arcade.gui.UIManager

method), 570
on_update() (arcade.BasicSprite method), 423
on_update() (arcade.gui.UIDummy method), 583
on_update() (arcade.gui.UIInputText method), 579
on_update() (arcade.gui.UIManager method), 570
on_update() (arcade.gui.UISpriteWidget method), 586
on_update() (arcade.gui.UIWidget method), 587
on_update() (arcade.Scene method), 438
on_update() (arcade.Section method), 495
on_update() (arcade.SectionManager method), 500
on_update() (arcade.SpriteList method), 431
on_update() (arcade.View method), 482
on_update() (arcade.Window method), 487
ONE (arcade.ArcadeContext attribute), 516
ONE (arcade.gl.Context attribute), 527
ONE_MINUS_DST_ALPHA (arcade.ArcadeContext at-

tribute), 516
ONE_MINUS_DST_ALPHA (arcade.gl.Context attribute),

527
ONE_MINUS_DST_COLOR (arcade.ArcadeContext at-

tribute), 516
ONE_MINUS_DST_COLOR (arcade.gl.Context attribute),

528

718 Index

Python Arcade Library, Release 3.0.0.dev26

ONE_MINUS_SRC_ALPHA (arcade.ArcadeContext at-
tribute), 516

ONE_MINUS_SRC_ALPHA (arcade.gl.Context attribute),
527

ONE_MINUS_SRC_COLOR (arcade.ArcadeContext at-
tribute), 516

ONE_MINUS_SRC_COLOR (arcade.gl.Context attribute),
527

open_window() (in module arcade), 490
order (arcade.texture.transforms.FlipLeftRightTransform

attribute), 461
order (arcade.texture.transforms.FlipTopBottomTransform

attribute), 461
order (arcade.texture.transforms.Rotate180Transform

attribute), 462
order (arcade.texture.transforms.Rotate270Transform

attribute), 462
order (arcade.texture.transforms.Rotate90Transform at-

tribute), 462
order (arcade.texture.transforms.Transform attribute),

463
order (arcade.texture.transforms.TransposeTransform

attribute), 463
order (arcade.texture.transforms.TransverseTransform

attribute), 463
orphan() (arcade.gl.Buffer method), 549
out_attributes (arcade.gl.Program attribute), 562
OutsideRangeError (class in arcade.utils), 476
overlaps_with() (arcade.Section method), 495
OVERLAY_LAYER (arcade.gui.UIManager attribute), 571

P
padding (arcade.gui.UIWidget attribute), 588
parent (arcade.gui.UIFlatButton attribute), 590
parent (arcade.gui.UISlider attribute), 574
parent (arcade.gui.UITextWidget attribute), 581
patch_vertices (arcade.ArcadeContext attribute), 520
patch_vertices (arcade.gl.Context attribute), 534
PATCHES (arcade.ArcadeContext attribute), 516
PATCHES (arcade.gl.Context attribute), 529
pause() (in module arcade), 491
PerfGraph (class in arcade), 469
PerformanceWarning (class in arcade.utils), 477
physics_engines (arcade.AnimatedTimeBasedSprite

attribute), 418
physics_engines (arcade.AnimatedWalkingSprite at-

tribute), 419
physics_engines (arcade.PerfGraph attribute), 470
physics_engines (arcade.Sprite attribute), 422
physics_engines (arcade.SpriteCircle attribute), 417
PhysicsEnginePlatformer (class in arcade), 474
PhysicsEngineSimple (class in arcade), 475
pixel_ratio (arcade.gui.Surface attribute), 567
place_text() (arcade.gui.UITextWidget method), 581

play() (arcade.Sound method), 501
play_sound() (in module arcade), 502
point_size (arcade.ArcadeContext attribute), 520
point_size (arcade.gl.Context attribute), 534
POINT_SIZE_RANGE (arcade.gl.context.Limits attribute),

542
POINTS (arcade.ArcadeContext attribute), 516
POINTS (arcade.gl.Context attribute), 528
pop() (arcade.SpriteList method), 431
pos (arcade.gui.UIMouseEvent attribute), 592
position (arcade.BasicSprite attribute), 425
position (arcade.gui.Rect attribute), 582
position (arcade.gui.Surface attribute), 567
position (arcade.gui.UIWidget attribute), 588
position (arcade.shape_list.ShapeElementList at-

tribute), 411
position (arcade.Text attribute), 445
preload_textures() (arcade.SpriteList method), 431
prepare_render() (arcade.gui.UIWidget method), 587
pressed (arcade.gui.UIInteractiveWidget attribute), 584
pressed (arcade.gui.UISlider attribute), 574
primitive_restart_index (arcade.ArcadeContext at-

tribute), 520
primitive_restart_index (arcade.gl.Context at-

tribute), 534
primitives_generated (arcade.gl.Query attribute),

561
print_contents() (arcade.TextureAtlas method), 465
print_timings() (in module arcade), 471
program (arcade.gl.context.ContextStats attribute), 539
program (arcade.gl.VertexArray attribute), 555
program (arcade.gui.NinePatchTexture attribute), 572
Program (class in arcade.gl), 561
program() (arcade.ArcadeContext method), 512
program() (arcade.gl.Context method), 537
PROGRAM_POINT_SIZE (arcade.ArcadeContext at-

tribute), 516
PROGRAM_POINT_SIZE (arcade.gl.Context attribute), 527
projection (arcade.SimpleCamera attribute), 442
projection_2d (arcade.ArcadeContext attribute), 520
projection_2d_matrix (arcade.ArcadeContext at-

tribute), 520
projection_to_viewport_height_ratio (ar-

cade.SimpleCamera attribute), 442
projection_to_viewport_width_ratio (ar-

cade.SimpleCamera attribute), 442
properties (arcade.Sprite attribute), 422
properties (arcade.Texture attribute), 461
properties (arcade.types.TiledObject attribute), 400
Property (class in arcade.gui), 595
pyglet_rendering() (arcade.ArcadeContext method),

513
PyMunk (class in arcade), 417
pymunk_moved() (arcade.PymunkMixin method), 417

Index 719

Python Arcade Library, Release 3.0.0.dev26

PymunkException (class in arcade), 472
PymunkMixin (class in arcade), 417
PymunkPhysicsEngine (class in arcade), 472
PymunkPhysicsObject (class in arcade), 474

Q
quad_2d() (in module arcade.gl.geometry), 551
quad_2d_fs() (in module arcade.gl.geometry), 551
query (arcade.gl.context.ContextStats attribute), 539
Query (class in arcade.gl), 560
query() (arcade.ArcadeContext method), 513
query() (arcade.gl.Context method), 538

R
r (arcade.types.Color attribute), 400
radians (arcade.Sprite attribute), 422
rand_angle_360_deg() (in module arcade.math), 523
rand_angle_spread_deg() (in module arcade.math),

523
rand_in_circle() (in module arcade.math), 523
rand_in_rect() (in module arcade.math), 523
rand_on_circle() (in module arcade.math), 523
rand_on_line() (in module arcade.math), 524
rand_vec_magnitude() (in module arcade.math), 524
rand_vec_spread_deg() (in module arcade.math), 524
random() (arcade.types.Color class method), 399
read() (arcade.gl.Buffer method), 549
read() (arcade.gl.Framebuffer method), 559
read() (arcade.gl.Texture2D method), 546
read_tmx() (in module arcade.tilemap), 452
rebuild() (arcade.TextureAtlas method), 466
recalculate() (arcade.AStarBarrierList method), 503
rect (arcade.gui.UIManager attribute), 571
rect (arcade.gui.UIWidget attribute), 588
Rect (class in arcade.gui), 581
register_physics_engine() (arcade.Sprite method),

421
register_sprite_list() (arcade.BasicSprite

method), 423
remove() (arcade.gui.UIManager method), 570
remove() (arcade.gui.UIWidget method), 587
remove() (arcade.shape_list.ShapeElementList method),

410
remove() (arcade.SpatialHash method), 429
remove() (arcade.SpriteList method), 432
remove() (arcade.TextureAtlas method), 466
remove_atlas_ref() (arcade.Texture method), 458
remove_from_atlases() (arcade.Texture method), 458
remove_from_cache() (arcade.Texture method), 459
remove_from_sprite_lists() (arcade.BasicSprite

method), 423
remove_from_sprite_lists() (arcade.PerfGraph

method), 470

remove_from_sprite_lists() (arcade.Sprite
method), 421

remove_section() (arcade.SectionManager method),
500

remove_sprite() (arcade.PymunkPhysicsEngine
method), 473

remove_sprite_list_by_index() (arcade.Scene
method), 438

remove_sprite_list_by_name() (arcade.Scene
method), 439

remove_sprite_list_by_object() (arcade.Scene
method), 439

render() (arcade.gl.Geometry method), 553
render() (arcade.gl.VertexArray method), 555
render_indirect() (arcade.gl.Geometry method), 553
render_indirect() (arcade.gl.VertexArray method),

555
render_into() (arcade.TextureAtlas method), 466
RENDERER (arcade.gl.context.Limits attribute), 539
REPEAT (arcade.ArcadeContext attribute), 516
REPEAT (arcade.gl.Context attribute), 526
ReplacementWarning (class in arcade.utils), 477
rescale() (arcade.SpriteList method), 432
rescale_relative_to_point() (arcade.BasicSprite

method), 423
rescale_xy_relative_to_point() (ar-

cade.BasicSprite method), 424
reset() (arcade.ArcadeContext method), 513
reset() (arcade.easing.EasingData method), 504
reset() (arcade.SpatialHash method), 429
resize() (arcade.gl.Framebuffer method), 559
resize() (arcade.gl.Texture2D method), 543
resize() (arcade.gui.Rect method), 582
resize() (arcade.gui.Surface method), 567
resize() (arcade.gui.UIWidget method), 587
resize() (arcade.SimpleCamera method), 442
resize() (arcade.TextureAtlas method), 466
resync_sprites() (arcade.PymunkPhysicsEngine

method), 473
reverse() (arcade.Sprite method), 421
reverse() (arcade.SpriteList method), 432
right (arcade.BasicSprite attribute), 425
right (arcade.gui.NinePatchTexture attribute), 572
right (arcade.gui.Rect attribute), 582
right (arcade.gui.UIWidget attribute), 588
right (arcade.Section attribute), 496
right (arcade.Text attribute), 445
Rotate180Transform (class in ar-

cade.texture.transforms), 461
Rotate270Transform (class in ar-

cade.texture.transforms), 462
Rotate90Transform (class in ar-

cade.texture.transforms), 462
rotate_180() (arcade.Texture method), 459

720 Index

Python Arcade Library, Release 3.0.0.dev26

rotate_270() (arcade.Texture method), 459
rotate_90() (arcade.Texture method), 459
rotate_point() (in module arcade.math), 524
rotation (arcade.Camera attribute), 441
rotation (arcade.Text attribute), 446
round_fast() (in module arcade.math), 525
run() (arcade.gl.ComputeShader method), 565
run() (arcade.Window method), 487
run() (in module arcade), 492

S
SAMPLE_BUFFERS (arcade.gl.context.Limits attribute),

539
samples (arcade.gl.Framebuffer attribute), 558
samples (arcade.gl.Texture2D attribute), 543
samples_passed (arcade.gl.Query attribute), 560
save() (arcade.TextureAtlas method), 466
save_atlas() (in module arcade), 469
scale (arcade.BasicSprite attribute), 425
scale (arcade.Camera attribute), 441
scale() (arcade.gui.Rect method), 582
scale() (arcade.gui.UIWidget method), 587
scale_xy (arcade.BasicSprite attribute), 425
scaling (arcade.tilemap.TileMap attribute), 451
Scene (class in arcade), 435
SceneKeyError (class in arcade), 439
schedule() (in module arcade), 492
schedule_once() (in module arcade), 492
scissor (arcade.ArcadeContext attribute), 520
scissor (arcade.gl.Context attribute), 532
scissor (arcade.gl.Framebuffer attribute), 557
scissor (arcade.gl.framebuffer.DefaultFrameBuffer at-

tribute), 560
screen (arcade.ArcadeContext attribute), 521
screen (arcade.gl.Context attribute), 530
screen_rectangle() (in module arcade.gl.geometry),

551
screen_to_isometric_grid() (in module ar-

cade.isometric), 504
scroll_x (arcade.gui.UIMouseScrollEvent attribute),

593
scroll_y (arcade.gui.UIMouseScrollEvent attribute),

593
Section (class in arcade), 494
section_manager (arcade.Section attribute), 496
section_manager (arcade.View attribute), 482
SectionManager (class in arcade), 496
sections (arcade.SectionManager attribute), 501
selection (arcade.gui.UITextMotionSelectEvent at-

tribute), 594
set() (arcade.gui.DictProperty method), 594
set() (arcade.gui.ListProperty method), 594
set() (arcade.gui.Property method), 595
set_background_color() (in module arcade), 492

set_caption() (arcade.Window method), 487
set_draw_rate() (arcade.Window method), 487
set_exclusive_keyboard() (arcade.Window

method), 487
set_exclusive_mouse() (arcade.Window method),

487
set_friction() (arcade.PymunkPhysicsEngine

method), 473
set_fullscreen() (arcade.Window method), 487
set_horizontal_velocity() (ar-

cade.PymunkPhysicsEngine method), 473
set_location() (arcade.Window method), 488
set_max_size() (arcade.Window method), 488
set_maximum_size() (arcade.Window method), 488
set_min_size() (arcade.Window method), 488
set_minimum_size() (arcade.Window method), 488
set_mouse_platform_visible() (arcade.Window

method), 488
set_mouse_visible() (arcade.Window method), 488
set_position() (arcade.PymunkPhysicsEngine

method), 473
set_rotation() (arcade.PymunkPhysicsEngine

method), 473
set_size() (arcade.Window method), 489
set_texture() (arcade.Sprite method), 421
set_uniform_array_safe() (arcade.gl.Program

method), 563
set_uniform_safe() (arcade.gl.Program method), 563
set_update_rate() (arcade.Window method), 489
set_velocity() (arcade.PymunkPhysicsEngine

method), 473
set_viewport() (arcade.Camera method), 440
set_viewport() (arcade.SimpleCamera method), 442
set_viewport() (arcade.Window method), 489
set_viewport() (in module arcade), 493
set_visible() (arcade.Window method), 489
set_volume() (arcade.Sound method), 502
set_vsync() (arcade.Window method), 489
set_window() (in module arcade), 494
setter (arcade.gl.uniform.Uniform attribute), 564
setter() (arcade.gl.uniform.UniformBlock method),

564
shader_inc() (arcade.ArcadeContext method), 513
ShaderException (class in arcade.gl), 566
shake() (arcade.Camera method), 440
shape (arcade.types.TiledObject attribute), 400
Shape (class in arcade.shape_list), 409
ShapeElementList (class in arcade.shape_list), 410
should_receive_mouse_event() (arcade.Section

method), 495
show() (arcade.TextureAtlas method), 467
show_view() (arcade.Window method), 489
shuffle() (arcade.SpriteList method), 432
SimpleCamera (class in arcade), 441

Index 721

Python Arcade Library, Release 3.0.0.dev26

size (arcade.gl.Buffer attribute), 548
size (arcade.gl.Framebuffer attribute), 558
size (arcade.gl.Texture2D attribute), 543
size (arcade.gl.uniform.UniformBlock attribute), 564
size (arcade.gui.NinePatchTexture attribute), 572
size (arcade.gui.Rect attribute), 582
size (arcade.gui.Surface attribute), 567
size (arcade.gui.UIWidget attribute), 588
size (arcade.Text attribute), 446
size (arcade.Texture attribute), 461
size (arcade.TextureAtlas attribute), 468
size_scaled (arcade.gui.Surface attribute), 567
smoothstep() (in module arcade.easing), 505
sort() (arcade.SpriteList method), 432
sort_section_event_order() (ar-

cade.SectionManager method), 500
sort_sections_draw_order() (ar-

cade.SectionManager method), 500
Sound (class in arcade), 501
source (arcade.gui.UIEvent attribute), 592
source (arcade.gui.UIKeyPressEvent attribute), 592
source (arcade.gui.UIKeyReleaseEvent attribute), 592
source (arcade.gui.UIOnClickEvent attribute), 594
SpatialHash (class in arcade), 428
Sprite (class in arcade), 419
sprite_lists (arcade.BasicSprite attribute), 426
sprite_lists (arcade.tilemap.TileMap attribute), 451
SpriteCircle (class in arcade), 417
SpriteList (class in arcade), 429
SpriteSolidColor (class in arcade), 418
SRC_ALPHA (arcade.ArcadeContext attribute), 517
SRC_ALPHA (arcade.gl.Context attribute), 527
SRC_COLOR (arcade.ArcadeContext attribute), 517
SRC_COLOR (arcade.gl.Context attribute), 527
start_period (arcade.easing.EasingData attribute),

504
start_render() (in module arcade), 494
start_value (arcade.easing.EasingData attribute), 504
start_z (arcade.Text attribute), 446
STATIC (arcade.PymunkPhysicsEngine attribute), 474
stats (arcade.ArcadeContext attribute), 521
stats (arcade.gl.Context attribute), 530
step() (arcade.PymunkPhysicsEngine method), 473
stop() (arcade.Sound method), 502
stop() (arcade.Sprite method), 421
stop_sound() (in module arcade), 502
strafe() (arcade.Sprite method), 421
stride (arcade.gl.BufferDescription attribute), 551
style (arcade.gui.UIStyledWidget attribute), 596
SUBPIXEL_BITS (arcade.gl.context.Limits attribute), 539
Surface (class in arcade.gui), 566
swap() (arcade.SpriteList method), 432
switch_to() (arcade.Window method), 489
swizzle (arcade.gl.Texture2D attribute), 544

symbol (arcade.gui.UIKeyEvent attribute), 592
symbol (arcade.gui.UIKeyPressEvent attribute), 592
symbol (arcade.gui.UIKeyReleaseEvent attribute), 592
sync_texture_image() (arcade.TextureAtlas method),

467

T
test() (arcade.Window method), 489
text (arcade.gui.UIInputText attribute), 579
text (arcade.gui.UILabel attribute), 580
text (arcade.gui.UITextArea attribute), 581
text (arcade.gui.UITextEvent attribute), 594
text (arcade.gui.UITextWidget attribute), 581
text (arcade.Text attribute), 446
Text (class in arcade), 443
texture (arcade.AnimationKeyframe attribute), 419
texture (arcade.BasicSprite attribute), 426
texture (arcade.gl.context.ContextStats attribute), 538
texture (arcade.gui.NinePatchTexture attribute), 572
texture (arcade.gui.UIImage attribute), 573
texture (arcade.gui.UITextureButton attribute), 591
texture (arcade.Sprite attribute), 422
texture (arcade.TextureAtlas attribute), 468
Texture (class in arcade), 455
texture() (arcade.ArcadeContext method), 513
texture() (arcade.gl.Context method), 535
Texture2D (class in arcade.gl), 542
texture_hovered (arcade.gui.UITextureButton at-

tribute), 591
texture_pressed (arcade.gui.UITextureButton at-

tribute), 591
texture_uv_texture (arcade.TextureAtlas attribute),

468
TextureAtlas (class in arcade), 463
textures (arcade.AnimatedTimeBasedSprite attribute),

419
textures (arcade.AnimatedWalkingSprite attribute),

419
textures (arcade.PerfGraph attribute), 470
textures (arcade.Sprite attribute), 422
textures (arcade.SpriteCircle attribute), 417
textures (arcade.TextureAtlas attribute), 468
tile_height (arcade.tilemap.TileMap attribute), 452
tile_id (arcade.AnimationKeyframe attribute), 419
tile_width (arcade.tilemap.TileMap attribute), 452
tiled_map (arcade.tilemap.TileMap attribute), 452
TiledObject (class in arcade.types), 400
TileMap (class in arcade.tilemap), 450
time_elapsed (arcade.gl.Query attribute), 560
timings_enabled() (in module arcade), 471
to_image() (arcade.TextureAtlas method), 467
top (arcade.BasicSprite attribute), 426
top (arcade.gui.NinePatchTexture attribute), 572
top (arcade.gui.Rect attribute), 582

722 Index

Python Arcade Library, Release 3.0.0.dev26

top (arcade.gui.UIWidget attribute), 588
top (arcade.Section attribute), 496
top (arcade.Text attribute), 446
Transform (class in arcade.texture.transforms), 462
transform() (arcade.gl.Geometry method), 554
transform() (arcade.Texture method), 459
transform_hit_box_points() (ar-

cade.texture.transforms.FlipLeftRightTransform
static method), 461

transform_hit_box_points() (ar-
cade.texture.transforms.FlipTopBottomTransform
static method), 461

transform_hit_box_points() (ar-
cade.texture.transforms.Rotate180Transform
static method), 462

transform_hit_box_points() (ar-
cade.texture.transforms.Rotate270Transform
static method), 462

transform_hit_box_points() (ar-
cade.texture.transforms.Rotate90Transform
static method), 462

transform_hit_box_points() (ar-
cade.texture.transforms.Transform static
method), 462

transform_hit_box_points() (ar-
cade.texture.transforms.TransposeTransform
static method), 463

transform_hit_box_points() (ar-
cade.texture.transforms.TransverseTransform
static method), 463

transform_interleaved() (arcade.gl.VertexArray
method), 555

transform_separate() (arcade.gl.VertexArray
method), 556

transform_texture_coordinates_order() (ar-
cade.texture.transforms.Transform class
method), 462

transform_vertex_order() (ar-
cade.texture.transforms.Transform class
method), 462

transpose() (arcade.Texture method), 459
TransposeTransform (class in ar-

cade.texture.transforms), 463
transverse() (arcade.Texture method), 459
TransverseTransform (class in ar-

cade.texture.transforms), 463
TRIANGLE_FAN (arcade.ArcadeContext attribute), 517
TRIANGLE_FAN (arcade.gl.Context attribute), 529
TRIANGLE_STRIP (arcade.ArcadeContext attribute), 517
TRIANGLE_STRIP (arcade.gl.Context attribute), 529
TRIANGLE_STRIP_ADJACENCY (arcade.ArcadeContext

attribute), 517
TRIANGLE_STRIP_ADJACENCY (arcade.gl.Context

attribute), 529

TRIANGLES (arcade.ArcadeContext attribute), 517
TRIANGLES (arcade.gl.Context attribute), 529
TRIANGLES_ADJACENCY (arcade.ArcadeContext at-

tribute), 517
TRIANGLES_ADJACENCY (arcade.gl.Context attribute),

529
trigger_full_render() (arcade.gui.UIWidget

method), 587
trigger_render() (arcade.gui.UIManager method),

570
trigger_render() (arcade.gui.UIWidget method), 587
turn_left() (arcade.Sprite method), 421
turn_right() (arcade.Sprite method), 421
type (arcade.types.TiledObject attribute), 400

U
ui_label (arcade.gui.UITextWidget attribute), 581
UIAnchorLayout (class in arcade.gui), 575
UIBoxLayout (class in arcade.gui), 576
UIButtonRow (class in arcade.gui), 567
UIDraggableMixin (class in arcade.gui), 566
UIDropdown (class in arcade.gui), 578
UIDummy (class in arcade.gui), 583
UIEvent (class in arcade.gui), 592
UIFlatButton (class in arcade.gui), 589
UIFlatButton.UIStyle (class in arcade.gui), 589
UIGridLayout (class in arcade.gui), 577
UIImage (class in arcade.gui), 573
UIInputText (class in arcade.gui), 578
UIInteractiveWidget (class in arcade.gui), 583
UIKeyEvent (class in arcade.gui), 592
UIKeyPressEvent (class in arcade.gui), 592
UIKeyReleaseEvent (class in arcade.gui), 592
UILabel (class in arcade.gui), 579
UILayout (class in arcade.gui), 584
UIManager (class in arcade.gui), 568
UIMessageBox (class in arcade.gui), 568
UIMouseDragEvent (class in arcade.gui), 592
UIMouseEvent (class in arcade.gui), 592
UIMouseFilterMixin (class in arcade.gui), 566
UIMouseMovementEvent (class in arcade.gui), 593
UIMousePressEvent (class in arcade.gui), 593
UIMouseReleaseEvent (class in arcade.gui), 593
UIMouseScrollEvent (class in arcade.gui), 593
UIOnActionEvent (class in arcade.gui), 593
UIOnChangeEvent (class in arcade.gui), 593
UIOnClickEvent (class in arcade.gui), 593
UIOnUpdateEvent (class in arcade.gui), 594
UISlider (class in arcade.gui), 573
UISliderStyle (class in arcade.gui), 575
UISpace (class in arcade.gui), 585
UISpriteWidget (class in arcade.gui), 585
UIStyle (arcade.gui.UISlider attribute), 573
UIStyle (arcade.gui.UITextureButton attribute), 591

Index 723

Python Arcade Library, Release 3.0.0.dev26

UIStyleBase (class in arcade.gui), 596
UIStyledWidget (class in arcade.gui), 596
UITextArea (class in arcade.gui), 580
UITextEvent (class in arcade.gui), 594
UITextMotionEvent (class in arcade.gui), 594
UITextMotionSelectEvent (class in arcade.gui), 594
UITextureButton (class in arcade.gui), 590
UITextureButtonStyle (class in arcade.gui), 591
UITextureToggle (class in arcade.gui), 589
UITextWidget (class in arcade.gui), 581
UIWidget (class in arcade.gui), 586
UIWindowLikeMixin (class in arcade.gui), 566
unfilled_bar (arcade.gui.UISliderStyle attribute), 575
Uniform (class in arcade.gl.uniform), 563
UNIFORM_BUFFER_OFFSET_ALIGNMENT (ar-

cade.gl.context.Limits attribute), 539
UniformBlock (class in arcade.gl.uniform), 564
union() (arcade.gui.Rect method), 582
unschedule() (in module arcade), 494
update() (arcade.BasicSprite method), 424
update() (arcade.Camera method), 440
update() (arcade.PhysicsEnginePlatformer method),

475
update() (arcade.PhysicsEngineSimple method), 475
update() (arcade.Scene method), 439
update() (arcade.shape_list.ShapeElementList method),

410
update() (arcade.SimpleCamera method), 442
update() (arcade.Sprite method), 421
update() (arcade.SpriteList method), 432
update_animation() (ar-

cade.AnimatedTimeBasedSprite method),
418

update_animation() (arcade.AnimatedWalkingSprite
method), 419

update_animation() (arcade.BasicSprite method), 424
update_animation() (arcade.Scene method), 439
update_animation() (arcade.SpriteList method), 432
update_graph() (arcade.PerfGraph method), 470
update_spatial_hash() (arcade.BasicSprite method),

424
update_spatial_hash() (arcade.Sprite method), 421
update_texture_image() (arcade.TextureAtlas

method), 467
UPPER_LEFT (arcade.texture.transforms.VertexOrder at-

tribute), 463
UPPER_RIGHT (arcade.texture.transforms.VertexOrder

attribute), 463
use() (arcade.Camera method), 441
use() (arcade.gl.ComputeShader method), 565
use() (arcade.gl.Framebuffer method), 558
use() (arcade.gl.Program method), 563
use() (arcade.gl.Texture2D method), 547
use() (arcade.SimpleCamera method), 442

use() (arcade.Window method), 490
use_uv_texture() (arcade.TextureAtlas method), 468

V
validate_crop() (arcade.Texture static method), 460
value (arcade.gui.UIDropdown attribute), 578
value (arcade.gui.UISlider attribute), 574
value (arcade.gui.UITextureToggle attribute), 589
value (arcade.Text attribute), 446
value_x (arcade.gui.UISlider attribute), 575
varyings (arcade.gl.Program attribute), 562
varyings_capture_mode (arcade.gl.Program at-

tribute), 562
velocity (arcade.Sprite attribute), 422
VENDOR (arcade.gl.context.Limits attribute), 539
vertex_array (arcade.gl.context.ContextStats at-

tribute), 539
VertexArray (class in arcade.gl), 554
VertexOrder (class in arcade.texture.transforms), 463
view (arcade.Section attribute), 496
View (class in arcade), 479
view_matrix_2d (arcade.ArcadeContext attribute), 521
viewport (arcade.ArcadeContext attribute), 521
viewport (arcade.gl.Context attribute), 532
viewport (arcade.gl.Framebuffer attribute), 557
viewport (arcade.gl.framebuffer.DefaultFrameBuffer at-

tribute), 560
viewport (arcade.SimpleCamera attribute), 442
viewport_height (arcade.SimpleCamera attribute),

442
viewport_to_projection_height_ratio (ar-

cade.SimpleCamera attribute), 442
viewport_to_projection_width_ratio (ar-

cade.SimpleCamera attribute), 442
viewport_width (arcade.SimpleCamera attribute), 442
visible (arcade.BasicSprite attribute), 426
visible (arcade.gui.UIWidget attribute), 588
visible (arcade.SpriteList attribute), 434

W
walk_widgets() (arcade.gui.UIManager method), 570
warning() (in module arcade.utils), 477
width (arcade.BasicSprite attribute), 426
width (arcade.gl.Framebuffer attribute), 557
width (arcade.gl.Texture2D attribute), 543
width (arcade.gui.NinePatchTexture attribute), 573
width (arcade.gui.Rect attribute), 583
width (arcade.gui.Surface attribute), 567
width (arcade.gui.UIWidget attribute), 588
width (arcade.Section attribute), 496
width (arcade.Text attribute), 446
width (arcade.Texture attribute), 461
width (arcade.TextureAtlas attribute), 469
width (arcade.tilemap.TileMap attribute), 452

724 Index

Python Arcade Library, Release 3.0.0.dev26

window (arcade.ArcadeContext attribute), 521
window (arcade.gl.Context attribute), 530
window (arcade.Section attribute), 496
Window (class in arcade), 482
wireframe (arcade.ArcadeContext attribute), 522
wireframe (arcade.gl.Context attribute), 534
with_background() (arcade.gui.UIWidget method),

587
with_border() (arcade.gui.UIWidget method), 587
with_padding() (arcade.gui.UIWidget method), 587
wrap_x (arcade.gl.Texture2D attribute), 545
wrap_y (arcade.gl.Texture2D attribute), 545
write() (arcade.gl.Buffer method), 549
write() (arcade.gl.Texture2D method), 546
write_image() (arcade.TextureAtlas method), 468
write_sprite_buffers_to_gpu() (arcade.SpriteList

method), 432

X
x (arcade.gui.Rect attribute), 583
x (arcade.gui.UIMouseEvent attribute), 593
x (arcade.gui.UIOnClickEvent attribute), 594
x (arcade.gui.UIWidget attribute), 588
x (arcade.Text attribute), 446

Y
y (arcade.gui.Rect attribute), 583
y (arcade.gui.UIMouseEvent attribute), 593
y (arcade.gui.UIOnClickEvent attribute), 594
y (arcade.gui.UIWidget attribute), 588
y (arcade.Text attribute), 446

Z
ZERO (arcade.ArcadeContext attribute), 517
ZERO (arcade.gl.Context attribute), 527
zoom (arcade.Camera attribute), 441

Index 725

	What is Arcade?
	Start Here
	Installation
	Getting Help
	Tutorials
	Arcade Skill Tree

	Installation
	Installation on Windows
	Step 1: Install Python
	Step 2: Install The Arcade Library
	Install Arcade with PyCharm and a Virtual Environment
	Install Arcade using the command line interface

	Installation on Mac
	Sound Support

	Installation on Linux
	Raspberry Pi Instructions

	Installation From Source
	Setting Up a Virtual Environment In PyCharm
	Installation for Obsolete Python Versions

	How to Get Help
	Sharing & Formatting Your Code
	Formatting for Discord & Github Issues
	Step 1 : Find your Backtick Key
	Step 2: Format & Paste
	Formatting Code
	Formatting Terminal Output

	Step 3: Post it!

	Code Hosting

	Arcade Version & Basic Environment Info

	How-To Example Code
	Starting Templates
	Drawing
	Drawing Primitives
	Animating Drawing Primitives
	Faster Drawing with ShapeElementLists

	Sprites
	Player Movement
	Non-Player Movement
	Easing
	Calculating a Path
	Sprite Properties
	Games with Levels
	Shooting with Sprites

	Audio
	Sound Effects
	Music

	Display Management
	Resizable Windows
	Backgrounds
	Cameras

	View Management
	Instruction and Game Over Screens
	Sectioning a View

	Platformers
	Basic Platformers
	Tiled Map Editor
	Procedural Generation

	Graphical User Interface
	Grid-Based Games
	Advanced
	Using PyMunk for Physics
	Frame Buffers
	OpenGL

	Concept Games
	Odds and Ends
	Particle System

	Tutorials
	Stress Tests

	Python Discord GameJam 2020
	Games Made With Arcade
	Temporum
	SOL Defender
	Binary Defense
	Space Invaders
	Ready or Not?
	Age of Divisiveness
	Fishy-Game
	Adventure
	Transcience Animation
	Stellar Arena Demo
	Battle Bros
	Rabbit Herder
	The Great Skeleton War
	Python Knife Hit
	Kayzee
	lixingqiu Games
	Space Typer
	FlapPy Bird
	PyOverheadGame
	Dungeon
	Two Worlds
	Simpson College Spring 2017 CMSC 150 Course

	Simple Platformer
	Step 1 - Install and Open a Window
	Installation
	Open a Window
	Run This Chapter

	Step 2 - Textures and Sprites
	Textures
	Sprites
	Source Code
	Run This Chapter

	Step 3 - Many Sprites with SpriteList
	SpriteList
	Source Code
	Run This Chapter

	Step 4 - Add User Control
	Source Code
	Run This Chapter

	Step 5 - Add Gravity
	Source Code
	Run This Chapter

	Step 6 - Resetting
	Source Code
	Run This Chapter

	Step 7 - Adding a Camera
	Source Code
	Run This Chapter

	Step 8 - Collecting Coins
	Source Code
	Run This Chapter

	Step 9 - Adding Sound
	Source Code
	Run This Chapter

	Step 10 - Adding a Score
	Source Code
	Run This Chapter

	Step 11 - Using a Scene
	Source Code
	Run This Chapter

	Step 12 - Loading a Map From a Map Editor
	Source Code

	Step 13 - More Types of Layers
	Source Code

	Step 14 - Multiple Levels
	Source Code

	Pymunk Platformer
	Common Issues
	Open a Window
	Create Constants
	Create Instance Variables
	Load and Display Map
	Add Physics Engine
	Add Player Movement
	Add Player Jumping
	Add Player Animation
	Shoot Bullets
	Destroy Bullets and Items
	Destroy Bullet If It Goes Off-Screen
	Handle Collisions

	Add Moving Platforms
	Add Ladders

	Using Views for Start/End Screens
	Change Main Program to Use a View
	Add Instruction Screen
	Game Over Screen

	Solitaire
	Open a Window
	Create Card Sprites
	Constants
	Card Class
	Creating Cards
	Drawing Cards

	Implement Drag and Drop
	Track the Cards
	Pull Card to Top of Draw Order
	Mouse Button Pressed
	Mouse Moved
	Mouse Released
	Test the Program

	Draw Pile Mats
	Create Constants
	Create Mat Sprites
	Draw Mat Sprites
	Test the Program

	Snap Cards to Piles
	Shuffle the Cards
	Track Card Piles
	Add New Constants
	Create the Pile Lists
	Card Pile Management Methods
	Dropping the Card
	Test

	Pick Up Card Stacks
	Deal Out Cards
	Face Down Cards
	New Constants
	Updates to Card Class
	Flip Up Cards On Middle Seven Piles
	Flip Up Cards When Clicked
	Test

	Restart Game
	Flip Three From Draw Pile
	Test

	Conclusion

	Lights
	Bundling a Game with PyInstaller
	Bundling a Simple Arcade Script
	Handling Data Files
	One Data File
	One Data Directory
	Multiple Data Files and Directories
	One Directory for Everything

	Troubleshooting
	Use a One-Folder Bundle for Troubleshooting
	PyInstaller Not Bundling a Needed Module

	Extra Details
	PyInstaller Documentation

	Compiling a Game with Nuitka
	Compiling a Simple Arcade Script
	But What About Data Files And Folders?
	Removing The Console Window
	What About A Custom Taskbar Icon?
	Additional Information

	Shaders
	Ray-casting Shadows
	Starting Program
	Step 1: Add-In the Shadertoy
	Step 2: Simple Shader Experiment
	Step 3: Creating a Light
	Step 4: Make the Walls Shadowed
	Step 5: Cast the Shadows
	Step 6: Soft Shadows and Wall Drawing
	Step 7 - Support window resizing
	Step 8 - Support scrolling
	Bibliography

	CRT Filter
	Full Example Code

	Shader Toy - Glow
	PyCon 2022 Slides
	Step 1: Open a window
	Step 2: Load a shader
	Step 3: Write a shader
	Step 4: Move origin to center of screen, adjust for aspect
	Step 5: Add a fade effect
	Step 6: Adjust how fast we fade
	Step 7: Tone mapping
	Step 8: Positioning the glow
	Other examples
	Additional learning

	Shader Toy - Particles
	Load the shader
	Initial shader with particles
	Add particle movement
	Fade-out
	Glowing Particles
	Twinkling Particles

	Compute Shader
	Buffers
	Generating Aligned Data
	Allocating the Buffers

	Visualization Shaders
	Vertex Shader
	Geometry Shader
	Fragment Shader

	Compute Shader
	The Finished Python Program

	GPU Particle Burst
	Step 1: Open a Blank Window
	Step 2: Create One Particle For Each Click
	Imports
	Burst Dataclass
	Init method
	OpenGL Shaders
	Mouse Pressed
	Drawing
	Program Listings

	Step 3: Multiple Moving Particles
	Imports
	Constants
	Burst Dataclass
	Update Burst Creation
	Set Time in on_draw
	Update Vertex Shader
	Program Listings

	Step 4: Random Angle and Speed
	Update Imports
	Update Burst Creation
	Program Listings

	Step 5: Gaussian Distribution
	Program Listings

	Step 6: Add Color
	Program Listings

	Step 7: Fade Out
	Constants
	Update Init
	Add Fade Rate to Buffer
	Update Shader
	Remove Faded Bursts
	Program Listings

	Step 8: Add Gravity
	Program Listings

	Working With Shaders
	Basic Arcade Program
	Basic Shader Program
	Passing Data To The Shader
	Accessing Textures From The Shader
	Drawing To Texture From The Shader

	Making a Menu with Arcade’s GUI
	Step 1: Open a Window
	Step 2: Switching to Menu View
	Imports
	Modify the MainView
	Initialise the Menu View
	Program Listings

	Step 3: Setting Up the Menu View
	Initialising the Buttons
	Displaying the Buttons in a Grid
	Program Listings

	Step 4: Configuring the Menu Buttons
	Adding on_click Callback for Resume, Start New Game and Exit
	Adding on_click Callback for Volume and Options
	Program Listings

	Step 5: Finalising the Fake Window aka the Sub Menu
	Editing the Parameters for the Sub Menu

	Adding a Title label
	Adding a Input Field
	Adding a Toggle Button
	Adding a Dropdown
	Adding a Slider
	Finishing touches
	Program Listings

	Working With FrameBuffer Objects
	Drawing & Using Sprites
	Contents
	What’s a Sprite?
	Why SpriteLists?
	They’re How Hardware Works
	They Help Develop Games Faster

	Drawing with Sprites and SpriteLists
	Using Images with Sprites
	Viewports, Cameras, and Screens

	Advanced SpriteList Techniques
	Draw Order & Sorting
	First, Consider Alternatives
	Sorting SpriteLists

	Custom Texture Atlases
	Lazy SpriteLists
	Parallelized Loading

	I’m Impatient!

	Keyboard
	Events
	What is a keyboard event?
	How do I handle keyboard events?

	Modifiers
	What is a modifier?
	What does active mean?
	How do I use modifiers?
	How do I tell left & right modifers apart?

	Sound
	Why Is Sound Important?
	Sound Basics
	Loading Sounds
	Playing Sounds
	arcade.Sound vs pyglet’s Player

	Stopping Sounds

	Streaming or Static Loading?
	Static Sounds are for Speed
	When to Use Static Sounds

	Streaming Saves Memory
	When to Stream
	Streaming Can Cause Freezes

	Advanced Playback Control
	Stopping via the Player Object
	Pausing
	Stopping Permanently

	Changing Aspects of Playback
	Change Ongoing Playbacks via Player Objects
	Configure New Playbacks via Keyword Arguments

	Cross-Platform Compatibility
	The Most Reliable Formats & Features
	Why 16-bit PCM Wave for Effects?
	Why MP3 For Music and Ambiance?
	Converting Audio Formats

	Loading In-Depth
	Everyday Usage

	Backends Determine Playback Features
	Choosing the Audio Backend

	Other Sound Libraries
	Using Pyglet
	Notes on Positional Audio

	External Libraries

	Textures
	Introduction
	Texture Uniqueness
	Texture Cache
	Custom Textures

	Sections
	A simple example
	How to work with Sections
	Sections configuration and logic with an example
	Section Unique Events
	The Section Manager

	GUI
	GUI Concepts
	UIWidget
	Rendering

	UILayout
	Algorithm
	Size hint support

	UIMixin
	Constructs
	Available Elements
	Buttons
	Flat button
	Image/texture button

	Text widgets
	Label
	Text input field
	Text area

	User-interface events
	Widget-specific events

	Different event systems
	Pyglet window events
	Pyglet event dispatcher - UIWidget
	User-interface events
	Property

	GUI Style
	Basic Usage
	Quickstart
	Default style
	Style attributes
	Wellknown states

	Advanced
	Your own stylable widget

	Troubleshooting & Hints
	UILabel does not show the text after it was updated

	Texture Atlas
	Introduction
	Size Restriction
	Resize
	Default Texture Atlas
	Custom Atlas
	Border
	Updating Texture
	Removing Texture
	Rendering Into Atlas
	Debugging

	Edge Artifacts
	Why Edge Artifacts Appear
	Edge Mis-Alignment
	Scaling
	Rotating
	Improper Viewport

	Solutions
	Aligning to the Nearest Pixel
	Double-Check Viewport Code

	Logging
	Turn on logging
	Custom Log Configurations

	Getting OpenGL Stats Using Query Objects

	OpenGL
	Initialization
	Garbage Collection & Threads
	Threads & vsync
	SpriteList & Threads
	Writing Raw Bytes to GL Buffers & Textures

	Performance
	Collision detection performance
	Spatial Hashing
	Compute Shader

	Drawing primitive performance
	Sprite drawing performance
	Text drawing performance

	Headless Arcade
	Enabling headless mode
	How is this affecting my code?
	Examples
	Simple headless mode
	Headless mode while extending the Arcade Window

	Advanced
	Issues?

	Vertical Synchronization
	What is vertical sync?
	Vertical sync disabled as a default
	Advantages of vertical sync

	Pygame Comparison
	Library Information
	Feature Comparison
	Performance Comparison
	Sprite Drawing
	Collision Processing
	Shapes

	API Index
	The arcade module

	API Reference
	Types
	Drawing - Primitives
	Shape Lists
	Drawing - Utility
	Sprites
	Sprite Lists
	Sprite Scenes
	Camera
	Text
	Tiled Map Reader
	Texture Management
	Texture Transforms
	Texture Atlas
	Performance Information
	Physics Engines
	Misc Utility Functions
	Geometry Support
	Game Controller Support
	Joystick Support
	Window and View
	Sound
	Pathfinding
	Isometric Map Support (incomplete)
	Earclip
	Easing
	OpenGL Context
	Math
	OpenGL
	Context
	Context
	ContextStats
	Limits

	Texture
	Buffer
	BufferDescription
	Geometry
	Geometry Methods
	Geometry
	VertexArray

	Framebuffer
	FrameBuffer
	DefaultFrameBuffer

	Query
	Program
	Program
	Program Members
	Uniform
	UniformBlock

	Compute Shader
	Exceptions

	GUI
	GUI Widgets
	GUI Events
	GUI Properties
	GUI Style
	arcade.key package
	arcade.csscolor package
	arcade.color package

	Built-In Resources
	Release Notes
	Version 3.0.0
	Breaking Changes
	Featured Updates
	Changes

	Version 2.6.16
	Version 2.6.15
	Version 2.6.14
	Version 2.6.13
	Version 2.6.12
	Version 2.6.11
	Version 2.6.10
	Version 2.6.9
	Version 2.6.8
	Version 2.6.7
	Version 2.6.6
	Version 2.6.5
	Version 2.6.4
	Version 2.6.3
	Version 2.6.2
	Version 2.6.1
	Fixes

	Version 2.6.0
	Version 2.5.7
	Fixes
	New Features

	Version 2.5.6
	Version 2.5.5
	Version 2.5.4
	Version 2.5.3
	Version 2.5.2
	Version 2.5.1
	Version 2.5
	Version 2.4.3
	Version 2.4.2
	Version 2.4
	Version 2.4 Major Features
	Version 2.4 Minor Features
	Version 2.4 Under-the-hood improvements
	Version 2.4 New Documentation
	Version 2.4 ‘Experimental’
	Special Thanks

	Version 2.3.15
	Version 2.3.14
	Version 2.3.13
	Version 2.3.12
	Version 2.3.11
	Version 2.3.10
	Version 2.3.9
	Version 2.3.8
	Version 2.3.7
	Version 2.3.6
	Version 2.3.5
	Version 2.3.4
	Version 2.3.3
	Version 2.3.2
	Version 2.3.1
	Version 2.3.0
	Version 2.2.9
	Version 2.2.8
	Version 2.2.7
	Version 2.2.6
	Version 2.2.5
	Version 2.2.4
	Version 2.2.3
	Version 2.2.2
	Version 2.2.1
	Version 2.2.0
	Version 2.1.7
	Version 2.1.6
	Version 2.1.5
	Version 2.1.4
	Version 2.1.3
	Version 2.1.2
	Version 2.1.1
	Version 2.1.0
	Version 2.0.9
	Version 2.0.8
	Version 2.0.7
	Version 2.0.6
	Version 2.0.5
	Version 2.0.4
	Version 2.0.3
	Version 2.0.2
	Version 2.0.1
	Version 2.0.0
	Version 1.3.7
	Version 1.3.6
	Version 1.3.5
	Version 1.3.4
	New Features
	Bug Fixes
	Documentation

	Version 1.3.3
	New Features
	Updated Examples

	Version 1.3.2
	New Features
	Updated Documentation
	Updated Examples

	Version 1.3.1
	New Features
	Updated Documentation
	Updated Examples

	Version 1.3.0
	Enhancements

	Version 1.2.5
	Bug Fixes
	Enhancements

	Version 1.2.4
	Bug Fixes

	Version 1.2.3
	Bug Fixes
	Enhancements

	Version 1.2.2
	Bug Fixes
	Enhancements

	Ways to Contribute
	How to contribute without coding
	How to contribute code

	Contributing to Arcade
	Before Making Changes
	After Making Changes
	Requirements
	Installing Arcade in Editable Mode
	Testing
	Testing Code Changes
	Building & Testing Documentation
	Automatic Rebuild with Live Reload
	One-time build

	Optional: Improve Ergonomics on Mac and Linux
	make.py shorthand
	Enable Shell Completions

	Directory Structure
	How to Submit Changes
	Release Checklist
	Social
	Learning Resources
	Index

