Creating a Recursive Maze

Screen shot of a maze created by recursion
maze_recursive.py
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
"""
Create a maze using a recursive division method.

For more information on the algorithm, see "Recursive Division Method"
at https://en.wikipedia.org/wiki/Maze_generation_algorithm

Artwork from https://kenney.nl

If Python and Arcade are installed, this example can be run from the command line with:
python -m arcade.examples.maze_recursive
"""
import random
import arcade
import timeit
import os

NATIVE_SPRITE_SIZE = 128
SPRITE_SCALING = 0.25
SPRITE_SIZE = int(NATIVE_SPRITE_SIZE * SPRITE_SCALING)

SCREEN_WIDTH = 1000
SCREEN_HEIGHT = 700
SCREEN_TITLE = "Maze Recursive Example"

MOVEMENT_SPEED = 8

TILE_EMPTY = 0
TILE_CRATE = 1

# Maze must have an ODD number of rows and columns.
# Walls go on EVEN rows/columns.
# Openings go on ODD rows/columns
MAZE_HEIGHT = 51
MAZE_WIDTH = 51


# How many pixels to keep as a minimum margin between the character
# and the edge of the screen.
VIEWPORT_MARGIN = 200

MERGE_SPRITES = True


def create_empty_grid(width, height, default_value=TILE_EMPTY):
    """ Create an empty grid. """
    grid = []
    for row in range(height):
        grid.append([])
        for column in range(width):
            grid[row].append(default_value)
    return grid


def create_outside_walls(maze):
    """ Create outside border walls."""

    # Create left and right walls
    for row in range(len(maze)):
        maze[row][0] = TILE_CRATE
        maze[row][len(maze[row])-1] = TILE_CRATE

    # Create top and bottom walls
    for column in range(1, len(maze[0]) - 1):
        maze[0][column] = TILE_CRATE
        maze[len(maze) - 1][column] = TILE_CRATE


def make_maze_recursive_call(maze, top, bottom, left, right):
    """
    Recursive function to divide up the maze in four sections
    and create three gaps.
    Walls can only go on even numbered rows/columns.
    Gaps can only go on odd numbered rows/columns.
    Maze must have an ODD number of rows and columns.
    """

    # Figure out where to divide horizontally
    start_range = bottom + 2
    end_range = top - 1
    y = random.randrange(start_range, end_range, 2)

    # Do the division
    for column in range(left + 1, right):
        maze[y][column] = TILE_CRATE

    # Figure out where to divide vertically
    start_range = left + 2
    end_range = right - 1
    x = random.randrange(start_range, end_range, 2)

    # Do the division
    for row in range(bottom + 1, top):
        maze[row][x] = TILE_CRATE

    # Now we'll make a gap on 3 of the 4 walls.
    # Figure out which wall does NOT get a gap.
    wall = random.randrange(4)
    if wall != 0:
        gap = random.randrange(left + 1, x, 2)
        maze[y][gap] = TILE_EMPTY

    if wall != 1:
        gap = random.randrange(x + 1, right, 2)
        maze[y][gap] = TILE_EMPTY

    if wall != 2:
        gap = random.randrange(bottom + 1, y, 2)
        maze[gap][x] = TILE_EMPTY

    if wall != 3:
        gap = random.randrange(y + 1, top, 2)
        maze[gap][x] = TILE_EMPTY

    # If there's enough space, to a recursive call.
    if top > y + 3 and x > left + 3:
        make_maze_recursive_call(maze, top, y, left, x)

    if top > y + 3 and x + 3 < right:
        make_maze_recursive_call(maze, top, y, x, right)

    if bottom + 3 < y and x + 3 < right:
        make_maze_recursive_call(maze, y, bottom, x, right)

    if bottom + 3 < y and x > left + 3:
        make_maze_recursive_call(maze, y, bottom, left, x)


def make_maze_recursion(maze_width, maze_height):
    """ Make the maze by recursively splitting it into four rooms. """
    maze = create_empty_grid(maze_width, maze_height)
    # Fill in the outside walls
    create_outside_walls(maze)

    # Start the recursive process
    make_maze_recursive_call(maze, maze_height - 1, 0, 0, maze_width - 1)
    return maze


class MyGame(arcade.Window):
    """ Main application class. """

    def __init__(self, width, height, title):
        """
        Initializer
        """
        super().__init__(width, height, title)

        # Set the working directory (where we expect to find files) to the same
        # directory this .py file is in. You can leave this out of your own
        # code, but it is needed to easily run the examples using "python -m"
        # as mentioned at the top of this program.
        file_path = os.path.dirname(os.path.abspath(__file__))
        os.chdir(file_path)

        # Sprite lists
        self.player_list = None
        self.wall_list = None

        # Player info
        self.score = 0
        self.player_sprite = None

        # Physics engine
        self.physics_engine = None

        # Used to scroll
        self.view_bottom = 0
        self.view_left = 0

        # Time to process
        self.processing_time = 0
        self.draw_time = 0

    def setup(self):
        """ Set up the game and initialize the variables. """

        # Sprite lists
        self.player_list = arcade.SpriteList()
        self.wall_list = arcade.SpriteList()

        # Set up the player
        self.score = 0

        maze = make_maze_recursion(MAZE_WIDTH, MAZE_HEIGHT)

        # Create sprites based on 2D grid
        if not MERGE_SPRITES:
            # This is the simple-to-understand method. Each grid location
            # is a sprite.
            for row in range(MAZE_HEIGHT):
                for column in range(MAZE_WIDTH):
                    if maze[row][column] == 1:
                        wall = arcade.Sprite(":resources:images/tiles/grassCenter.png", SPRITE_SCALING)
                        wall.center_x = column * SPRITE_SIZE + SPRITE_SIZE / 2
                        wall.center_y = row * SPRITE_SIZE + SPRITE_SIZE / 2
                        self.wall_list.append(wall)
        else:
            # This uses new Arcade 1.3.1 features, that allow me to create a
            # larger sprite with a repeating texture. So if there are multiple
            # cells in a row with a wall, we merge them into one sprite, with a
            # repeating texture for each cell. This reduces our sprite count.
            for row in range(MAZE_HEIGHT):
                column = 0
                while column < len(maze):
                    while column < len(maze) and maze[row][column] == 0:
                        column += 1
                    start_column = column
                    while column < len(maze) and maze[row][column] == 1:
                        column += 1
                    end_column = column - 1

                    column_count = end_column - start_column + 1
                    column_mid = (start_column + end_column) / 2

                    wall = arcade.Sprite(":resources:images/tiles/grassCenter.png", SPRITE_SCALING,
                                         repeat_count_x=column_count)
                    wall.center_x = column_mid * SPRITE_SIZE + SPRITE_SIZE / 2
                    wall.center_y = row * SPRITE_SIZE + SPRITE_SIZE / 2
                    wall.width = SPRITE_SIZE * column_count
                    self.wall_list.append(wall)

        # Set up the player
        self.player_sprite = arcade.Sprite(":resources:images/animated_characters/female_person/femalePerson_idle.png",
                                           SPRITE_SCALING)
        self.player_list.append(self.player_sprite)

        # Randomly place the player. If we are in a wall, repeat until we aren't.
        placed = False
        while not placed:

            # Randomly position
            self.player_sprite.center_x = random.randrange(MAZE_WIDTH * SPRITE_SIZE)
            self.player_sprite.center_y = random.randrange(MAZE_HEIGHT * SPRITE_SIZE)

            # Are we in a wall?
            walls_hit = arcade.check_for_collision_with_list(self.player_sprite, self.wall_list)
            if len(walls_hit) == 0:
                # Not in a wall! Success!
                placed = True

        self.physics_engine = arcade.PhysicsEngineSimple(self.player_sprite, self.wall_list)

        # Set the background color
        arcade.set_background_color(arcade.color.AMAZON)

        # Set the viewport boundaries
        # These numbers set where we have 'scrolled' to.
        self.view_left = 0
        self.view_bottom = 0
        print(f"Total wall blocks: {len(self.wall_list)}")

    def on_draw(self):
        """
        Render the screen.
        """

        # This command has to happen before we start drawing
        arcade.start_render()

        # Start timing how long this takes
        draw_start_time = timeit.default_timer()

        # Draw all the sprites.
        self.wall_list.draw()
        self.player_list.draw()

        # Draw info on the screen
        sprite_count = len(self.wall_list)

        output = f"Sprite Count: {sprite_count}"
        arcade.draw_text(output,
                         self.view_left + 20,
                         SCREEN_HEIGHT - 20 + self.view_bottom,
                         arcade.color.WHITE, 16)

        output = f"Drawing time: {self.draw_time:.3f}"
        arcade.draw_text(output,
                         self.view_left + 20,
                         SCREEN_HEIGHT - 40 + self.view_bottom,
                         arcade.color.WHITE, 16)

        output = f"Processing time: {self.processing_time:.3f}"
        arcade.draw_text(output,
                         self.view_left + 20,
                         SCREEN_HEIGHT - 60 + self.view_bottom,
                         arcade.color.WHITE, 16)

        self.draw_time = timeit.default_timer() - draw_start_time

    def on_key_press(self, key, modifiers):
        """Called whenever a key is pressed. """

        if key == arcade.key.UP:
            self.player_sprite.change_y = MOVEMENT_SPEED
        elif key == arcade.key.DOWN:
            self.player_sprite.change_y = -MOVEMENT_SPEED
        elif key == arcade.key.LEFT:
            self.player_sprite.change_x = -MOVEMENT_SPEED
        elif key == arcade.key.RIGHT:
            self.player_sprite.change_x = MOVEMENT_SPEED

    def on_key_release(self, key, modifiers):
        """Called when the user releases a key. """

        if key == arcade.key.UP or key == arcade.key.DOWN:
            self.player_sprite.change_y = 0
        elif key == arcade.key.LEFT or key == arcade.key.RIGHT:
            self.player_sprite.change_x = 0

    def on_update(self, delta_time):
        """ Movement and game logic """

        start_time = timeit.default_timer()

        # Call update on all sprites (The sprites don't do much in this
        # example though.)
        self.physics_engine.update()

        # --- Manage Scrolling ---

        # Track if we need to change the viewport

        changed = False

        # Scroll left
        left_bndry = self.view_left + VIEWPORT_MARGIN
        if self.player_sprite.left < left_bndry:
            self.view_left -= left_bndry - self.player_sprite.left
            changed = True

        # Scroll right
        right_bndry = self.view_left + SCREEN_WIDTH - VIEWPORT_MARGIN
        if self.player_sprite.right > right_bndry:
            self.view_left += self.player_sprite.right - right_bndry
            changed = True

        # Scroll up
        top_bndry = self.view_bottom + SCREEN_HEIGHT - VIEWPORT_MARGIN
        if self.player_sprite.top > top_bndry:
            self.view_bottom += self.player_sprite.top - top_bndry
            changed = True

        # Scroll down
        bottom_bndry = self.view_bottom + VIEWPORT_MARGIN
        if self.player_sprite.bottom < bottom_bndry:
            self.view_bottom -= bottom_bndry - self.player_sprite.bottom
            changed = True

        if changed:
            arcade.set_viewport(self.view_left,
                                SCREEN_WIDTH + self.view_left,
                                self.view_bottom,
                                SCREEN_HEIGHT + self.view_bottom)

        # Save the time it took to do this.
        self.processing_time = timeit.default_timer() - start_time


def main():
    """ Main method """
    window = MyGame(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)
    window.setup()
    arcade.run()


if __name__ == "__main__":
    main()