Conway’s Game of Life#

This version of Conway’s Game of Life speeds everything up by using controlling a cell’s visibility through its alpha value, and handing the drawing logic off to the graphics card.

Grid-based games can take a while to render the program uses classic raster-based graphics. Every cell has to be re-drawn every single frame. If the cells are complex at all, that adds to the rendering time.

In this program, we create all cells in the grid to begin with. (This does causes the program to pause a while at start-up.)

After the sprites are created, we turn the cells on and off by their alpha value. We can update the entire grid by simply sending a list of alpha values to the graphics card. This significantly improves drawing time.

conway_alpha.py#
  1"""
  2Conway's Game of Life
  3
  4This code shows how to set up sprites in a grid, and then use their
  5'alpha' value to quickly turn them on and off.
  6
  7After installing the "arcade" package version 2.4.4+, this program can be run by
  8typing:
  9python -m arcade.examples.conway_alpha
 10"""
 11import arcade
 12import random
 13
 14# Set how many rows and columns we will have
 15ROW_COUNT = 70
 16COLUMN_COUNT = 128
 17
 18# This sets the WIDTH and HEIGHT of each grid location
 19CELL_WIDTH = 15
 20CELL_HEIGHT = 15
 21
 22# This sets the margin between each cell
 23# and on the edges of the screen.
 24CELL_MARGIN = 0
 25
 26# Do the math to figure out our screen dimensions
 27SCREEN_WIDTH = (CELL_WIDTH + CELL_MARGIN) * COLUMN_COUNT + CELL_MARGIN
 28SCREEN_HEIGHT = (CELL_HEIGHT + CELL_MARGIN) * ROW_COUNT + CELL_MARGIN
 29SCREEN_TITLE = "Conway's Game of Life"
 30
 31# Colors and alpha values
 32ALIVE_COLOR = arcade.color.BISTRE
 33BACKGROUND_COLOR = arcade.color.ANTIQUE_WHITE
 34ALPHA_ON = 255
 35ALPHA_OFF = 0
 36
 37
 38def create_grids():
 39    """
 40    Create a 2D and 1D grid of sprites. We use the 1D SpriteList for drawing,
 41    and the 2D list for accessing via grid. Both lists point to the same set of
 42    sprites.
 43    """
 44    # One dimensional list of all sprites in the two-dimensional sprite list
 45    grid_sprites_one_dim = arcade.SpriteList()
 46
 47    # This will be a two-dimensional grid of sprites to mirror the two
 48    # dimensional grid of numbers. This points to the SAME sprites that are
 49    # in grid_sprite_list, just in a 2d manner.
 50    grid_sprites_two_dim = []
 51
 52    # Create a list of sprites to represent each grid location
 53    for row in range(ROW_COUNT):
 54        grid_sprites_two_dim.append([])
 55
 56        for column in range(COLUMN_COUNT):
 57
 58            # Make the sprite as a soft circle
 59            sprite = arcade.SpriteCircle(CELL_WIDTH // 2, ALIVE_COLOR, soft=True)
 60
 61            # Position the sprite
 62            x = column * (CELL_WIDTH + CELL_MARGIN) + (CELL_WIDTH / 2 + CELL_MARGIN)
 63            y = row * (CELL_HEIGHT + CELL_MARGIN) + (CELL_HEIGHT / 2 + CELL_MARGIN)
 64            sprite.center_x = x
 65            sprite.center_y = y
 66
 67            # Add the sprite to both lists
 68            grid_sprites_one_dim.append(sprite)
 69            grid_sprites_two_dim[row].append(sprite)
 70
 71    return grid_sprites_one_dim, grid_sprites_two_dim
 72
 73
 74def randomize_grid(grid: arcade.SpriteList):
 75    """ Randomize the grid to alive/dead """
 76    for cell in grid:
 77        pick = random.randrange(2)
 78        if pick:
 79            cell.alpha = ALPHA_ON
 80        else:
 81            cell.alpha = ALPHA_OFF
 82
 83
 84class MyGame(arcade.Window):
 85    """
 86    Main application class.
 87    """
 88
 89    def __init__(self, width: int, height: int, title: str):
 90        """
 91        Set up the application.
 92        """
 93        super().__init__(width, height, title)
 94
 95        self.background_color = BACKGROUND_COLOR
 96
 97        # We need two layers. One holds the current state of our grid, the other
 98        # holds the next frame's state. We flip back and forth between the two.
 99        grid_sprites_one_dim1, grid_sprites_two_dim1 = create_grids()
100        grid_sprites_one_dim2, grid_sprites_two_dim2 = create_grids()
101
102        self.layers_grid_sprites_one_dim = [grid_sprites_one_dim1, grid_sprites_one_dim2]
103        self.layers_grid_sprites_two_dim = [grid_sprites_two_dim1, grid_sprites_two_dim2]
104
105        self.cur_layer = 0
106        randomize_grid(self.layers_grid_sprites_one_dim[0])
107
108    def on_draw(self):
109        """ Render the screen. """
110        # Clear all pixels in the window
111        self.clear()
112        self.layers_grid_sprites_one_dim[0].draw()
113
114    def on_update(self, delta_time: float):
115        """ Update the grid """
116
117        # Flip layers
118        if self.cur_layer == 0:
119            layer1 = self.layers_grid_sprites_two_dim[0]
120            layer2 = self.layers_grid_sprites_two_dim[1]
121            self.cur_layer = 1
122        else:
123            layer1 = self.layers_grid_sprites_two_dim[1]
124            layer2 = self.layers_grid_sprites_two_dim[0]
125            self.cur_layer = 0
126
127        # Count the neighbors that are alive
128        for row in range(ROW_COUNT):
129            for column in range(COLUMN_COUNT):
130                live_neighbors = 0
131                # -1 -1
132                if row > 0 and column > 0 \
133                        and layer1[row - 1][column - 1].alpha == ALPHA_ON:
134                    live_neighbors += 1
135                # -1  0
136                if row > 0 and layer1[row - 1][column].alpha == ALPHA_ON:
137                    live_neighbors += 1
138                # -1 +1
139                if row > 0 and column < COLUMN_COUNT - 1\
140                        and layer1[row - 1][column + 1].alpha == ALPHA_ON:
141                    live_neighbors += 1
142                #  0 +1
143                if column < COLUMN_COUNT - 1 \
144                        and layer1[row][column + 1].alpha == ALPHA_ON:
145                    live_neighbors += 1
146                # +1 +1
147                if row < ROW_COUNT - 1 \
148                        and column < COLUMN_COUNT - 1 \
149                        and layer1[row + 1][column + 1].alpha == ALPHA_ON:
150                    live_neighbors += 1
151                # +1  0
152                if row < ROW_COUNT - 1 and layer1[row + 1][column].alpha == ALPHA_ON:
153                    live_neighbors += 1
154                # +1 -1
155                if row < ROW_COUNT - 1 and column > 0 \
156                        and layer1[row + 1][column - 1].alpha == ALPHA_ON:
157                    live_neighbors += 1
158                #  0 -1
159                if column > 0 and layer1[row][column - 1].alpha == ALPHA_ON:
160                    live_neighbors += 1
161
162                """
163                Implement Conway's game of life rules
164
165                Any live cell with two or three live neighbours survives.
166                Any dead cell with three live neighbours becomes a live cell.
167                All other live cells die in the next generation. Similarly, all other dead cells stay dead.
168                """
169                if layer1[row][column].alpha == ALPHA_ON and (live_neighbors == 2 or live_neighbors == 3):
170                    if layer2[row][column].alpha == ALPHA_OFF:
171                        layer2[row][column].alpha = ALPHA_ON
172                elif layer1[row][column].alpha == ALPHA_OFF and live_neighbors == 3:
173                    if layer2[row][column].alpha == ALPHA_OFF:
174                        layer2[row][column].alpha = ALPHA_ON
175                else:
176                    if layer2[row][column].alpha == ALPHA_ON:
177                        layer2[row][column].alpha = ALPHA_OFF
178
179
180def main():
181    """ Main function - starting point to the program """
182    window = MyGame(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)
183    window.center_window()
184    arcade.run()
185
186
187if __name__ == "__main__":
188    main()