Tetris#

tetris.py#
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 | """
Tetris
Tetris clone, with some ideas from silvasur's code:
https://gist.github.com/silvasur/565419/d9de6a84e7da000797ac681976442073045c74a4
If Python and Arcade are installed, this example can be run from the command line with:
python -m arcade.examples.tetris
"""
# flake8: noqa: E241
import arcade
import random
import PIL
# Set how many rows and columns we will have
ROW_COUNT = 24
COLUMN_COUNT = 10
# This sets the WIDTH and HEIGHT of each grid location
WIDTH = 30
HEIGHT = 30
# This sets the margin between each cell
# and on the edges of the screen.
MARGIN = 5
# Do the math to figure out our screen dimensions
SCREEN_WIDTH = (WIDTH + MARGIN) * COLUMN_COUNT + MARGIN
SCREEN_HEIGHT = (HEIGHT + MARGIN) * ROW_COUNT + MARGIN
SCREEN_TITLE = "Tetris"
colors = [
(0, 0, 0, 255),
(255, 0, 0, 255),
(0, 150, 0, 255),
(0, 0, 255, 255),
(255, 120, 0, 255),
(255, 255, 0, 255),
(180, 0, 255, 255),
(0, 220, 220, 255)
]
# Define the shapes of the single parts
tetris_shapes = [
[[1, 1, 1],
[0, 1, 0]],
[[0, 2, 2],
[2, 2, 0]],
[[3, 3, 0],
[0, 3, 3]],
[[4, 0, 0],
[4, 4, 4]],
[[0, 0, 5],
[5, 5, 5]],
[[6, 6, 6, 6]],
[[7, 7],
[7, 7]]
]
def create_textures():
""" Create a list of images for sprites based on the global colors. """
new_textures = []
for color in colors:
# noinspection PyUnresolvedReferences
image = PIL.Image.new('RGBA', (WIDTH, HEIGHT), color)
new_textures.append(arcade.Texture(str(color), image=image))
return new_textures
texture_list = create_textures()
def rotate_counterclockwise(shape):
""" Rotates a matrix clockwise """
return [[shape[y][x] for y in range(len(shape))]
for x in range(len(shape[0]) - 1, -1, -1)]
def check_collision(board, shape, offset):
"""
See if the matrix stored in the shape will intersect anything
on the board based on the offset. Offset is an (x, y) coordinate.
"""
off_x, off_y = offset
for cy, row in enumerate(shape):
for cx, cell in enumerate(row):
if cell and board[cy + off_y][cx + off_x]:
return True
return False
def remove_row(board, row):
""" Remove a row from the board, add a blank row on top. """
del board[row]
return [[0 for _ in range(COLUMN_COUNT)]] + board
def join_matrixes(matrix_1, matrix_2, matrix_2_offset):
""" Copy matrix 2 onto matrix 1 based on the passed in x, y offset coordinate """
offset_x, offset_y = matrix_2_offset
for cy, row in enumerate(matrix_2):
for cx, val in enumerate(row):
matrix_1[cy + offset_y - 1][cx + offset_x] += val
return matrix_1
def new_board():
""" Create a grid of 0's. Add 1's to the bottom for easier collision detection. """
# Create the main board of 0's
board = [[0 for _x in range(COLUMN_COUNT)] for _y in range(ROW_COUNT)]
# Add a bottom border of 1's
board += [[1 for _x in range(COLUMN_COUNT)]]
return board
class MyGame(arcade.Window):
""" Main application class. """
def __init__(self, width, height, title):
""" Set up the application. """
super().__init__(width, height, title)
arcade.set_background_color(arcade.color.WHITE)
self.board = None
self.frame_count = 0
self.game_over = False
self.paused = False
self.board_sprite_list = None
self.stone = None
self.stone_x = 0
self.stone_y = 0
def new_stone(self):
"""
Randomly grab a new stone and set the stone location to the top.
If we immediately collide, then game-over.
"""
self.stone = random.choice(tetris_shapes)
self.stone_x = int(COLUMN_COUNT / 2 - len(self.stone[0]) / 2)
self.stone_y = 0
if check_collision(self.board, self.stone, (self.stone_x, self.stone_y)):
self.game_over = True
def setup(self):
self.board = new_board()
self.board_sprite_list = arcade.SpriteList()
for row in range(len(self.board)):
for column in range(len(self.board[0])):
sprite = arcade.Sprite()
for texture in texture_list:
sprite.append_texture(texture)
sprite.set_texture(0)
sprite.center_x = (MARGIN + WIDTH) * column + MARGIN + WIDTH // 2
sprite.center_y = SCREEN_HEIGHT - (MARGIN + HEIGHT) * row + MARGIN + HEIGHT // 2
self.board_sprite_list.append(sprite)
self.new_stone()
self.update_board()
def drop(self):
"""
Drop the stone down one place.
Check for collision.
If collided, then
join matrixes
Check for rows we can remove
Update sprite list with stones
Create a new stone
"""
if not self.game_over and not self.paused:
self.stone_y += 1
if check_collision(self.board, self.stone, (self.stone_x, self.stone_y)):
self.board = join_matrixes(self.board, self.stone, (self.stone_x, self.stone_y))
while True:
for i, row in enumerate(self.board[:-1]):
if 0 not in row:
self.board = remove_row(self.board, i)
break
else:
break
self.update_board()
self.new_stone()
def rotate_stone(self):
""" Rotate the stone, check collision. """
if not self.game_over and not self.paused:
new_stone = rotate_counterclockwise(self.stone)
if self.stone_x + len(new_stone[0]) >= COLUMN_COUNT:
self.stone_x = COLUMN_COUNT - len(new_stone[0])
if not check_collision(self.board, new_stone, (self.stone_x, self.stone_y)):
self.stone = new_stone
def on_update(self, dt):
""" Update, drop stone if warrented """
self.frame_count += 1
if self.frame_count % 10 == 0:
self.drop()
def move(self, delta_x):
""" Move the stone back and forth based on delta x. """
if not self.game_over and not self.paused:
new_x = self.stone_x + delta_x
if new_x < 0:
new_x = 0
if new_x > COLUMN_COUNT - len(self.stone[0]):
new_x = COLUMN_COUNT - len(self.stone[0])
if not check_collision(self.board, self.stone, (new_x, self.stone_y)):
self.stone_x = new_x
def on_key_press(self, key, modifiers):
"""
Handle user key presses
User goes left, move -1
User goes right, move 1
Rotate stone,
or drop down
"""
if key == arcade.key.LEFT:
self.move(-1)
elif key == arcade.key.RIGHT:
self.move(1)
elif key == arcade.key.UP:
self.rotate_stone()
elif key == arcade.key.DOWN:
self.drop()
# noinspection PyMethodMayBeStatic
def draw_grid(self, grid, offset_x, offset_y):
"""
Draw the grid. Used to draw the falling stones. The board is drawn
by the sprite list.
"""
# Draw the grid
for row in range(len(grid)):
for column in range(len(grid[0])):
# Figure out what color to draw the box
if grid[row][column]:
color = colors[grid[row][column]]
# Do the math to figure out where the box is
x = (MARGIN + WIDTH) * (column + offset_x) + MARGIN + WIDTH // 2
y = SCREEN_HEIGHT - (MARGIN + HEIGHT) * (row + offset_y) + MARGIN + HEIGHT // 2
# Draw the box
arcade.draw_rectangle_filled(x, y, WIDTH, HEIGHT, color)
def update_board(self):
"""
Update the sprite list to reflect the contents of the 2d grid
"""
for row in range(len(self.board)):
for column in range(len(self.board[0])):
v = self.board[row][column]
i = row * COLUMN_COUNT + column
self.board_sprite_list[i].set_texture(v)
def on_draw(self):
""" Render the screen. """
# This command has to happen before we start drawing
self.clear()
self.board_sprite_list.draw()
self.draw_grid(self.stone, self.stone_x, self.stone_y)
def main():
""" Create the game window, setup, run """
my_game = MyGame(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)
my_game.setup()
arcade.run()
if __name__ == "__main__":
main()
|