Procedural Caves - Cellular Automata#

Screen shot of cellular automata to generate caves
procedural_caves_cellular.py#
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
"""
This example procedurally develops a random cave based on cellular automata.

For more information, see:
https://gamedevelopment.tutsplus.com/tutorials/generate-random-cave-levels-using-cellular-automata--gamedev-9664

If Python and Arcade are installed, this example can be run from the command line with:
python -m arcade.examples.procedural_caves_cellular
"""

import random
import arcade
import timeit
from pyglet.math import Vec2

# Sprite scaling. Make this larger, like 0.5 to zoom in and add
# 'mystery' to what you can see. Make it smaller, like 0.1 to see
# more of the map.
SPRITE_SCALING = 0.25
SPRITE_SIZE = 128 * SPRITE_SCALING

# How big the grid is
GRID_WIDTH = 450
GRID_HEIGHT = 400

# Parameters for cellular automata
CHANCE_TO_START_ALIVE = 0.4
DEATH_LIMIT = 3
BIRTH_LIMIT = 4
NUMBER_OF_STEPS = 4

# How fast the player moves
MOVEMENT_SPEED = 5

# How close the player can get to the edge before we scroll.
VIEWPORT_MARGIN = 300

# How big the window is
WINDOW_WIDTH = 800
WINDOW_HEIGHT = 600
WINDOW_TITLE = "Procedural Caves Cellular Automata Example"

# How fast the camera pans to the player. 1.0 is instant.
CAMERA_SPEED = 0.1


def create_grid(width, height):
    """ Create a two-dimensional grid of specified size. """
    return [[0 for _x in range(width)] for _y in range(height)]


def initialize_grid(grid):
    """ Randomly set grid locations to on/off based on chance. """
    height = len(grid)
    width = len(grid[0])
    for row in range(height):
        for column in range(width):
            if random.random() <= CHANCE_TO_START_ALIVE:
                grid[row][column] = 1


def count_alive_neighbors(grid, x, y):
    """ Count neighbors that are alive. """
    height = len(grid)
    width = len(grid[0])
    alive_count = 0
    for i in range(-1, 2):
        for j in range(-1, 2):
            neighbor_x = x + i
            neighbor_y = y + j
            if i == 0 and j == 0:
                continue
            elif neighbor_x < 0 or neighbor_y < 0 or neighbor_y >= height or neighbor_x >= width:
                # Edges are considered alive. Makes map more likely to appear naturally closed.
                alive_count += 1
            elif grid[neighbor_y][neighbor_x] == 1:
                alive_count += 1
    return alive_count


def do_simulation_step(old_grid):
    """ Run a step of the cellular automaton. """
    height = len(old_grid)
    width = len(old_grid[0])
    new_grid = create_grid(width, height)
    for x in range(width):
        for y in range(height):
            alive_neighbors = count_alive_neighbors(old_grid, x, y)
            if old_grid[y][x] == 1:
                if alive_neighbors < DEATH_LIMIT:
                    new_grid[y][x] = 0
                else:
                    new_grid[y][x] = 1
            else:
                if alive_neighbors > BIRTH_LIMIT:
                    new_grid[y][x] = 1
                else:
                    new_grid[y][x] = 0
    return new_grid


class InstructionView(arcade.View):
    """ View to show instructions """

    def __init__(self):
        super().__init__()
        self.frame_count = 0

    def on_show_view(self):
        """ This is run once when we switch to this view """
        arcade.set_background_color(arcade.csscolor.DARK_SLATE_BLUE)

        # Reset the viewport, necessary if we have a scrolling game and we need
        # to reset the viewport back to the start so we can see what we draw.
        arcade.set_viewport(0, self.window.width, 0, self.window.height)

    def on_draw(self):
        """ Draw this view """
        self.clear()
        arcade.draw_text("Loading...", self.window.width / 2, self.window.height / 2,
                         arcade.color.BLACK, font_size=50, anchor_x="center")

    def on_update(self, dt):
        if self.frame_count == 0:
            self.frame_count += 1
            return

        """ If the user presses the mouse button, start the game. """
        game_view = GameView()
        game_view.setup()
        self.window.show_view(game_view)


class GameView(arcade.View):
    """
    Main application class.
    """

    def __init__(self):
        super().__init__()

        self.grid = None
        self.wall_list = None
        self.player_list = None
        self.player_sprite = None
        self.draw_time = 0
        self.processing_time = 0
        self.physics_engine = None

        # Track the current state of what key is pressed
        self.left_pressed = False
        self.right_pressed = False
        self.up_pressed = False
        self.down_pressed = False

        # Create the cameras. One for the GUI, one for the sprites.
        # We scroll the 'sprite world' but not the GUI.
        self.camera_sprites = arcade.Camera(self.window.width, self.window.height)
        self.camera_gui = arcade.Camera(self.window.width, self.window.height)

        arcade.set_background_color(arcade.color.BLACK)

        self.sprite_count_text = None
        self.draw_time_text = None
        self.processing_time_text = None

    def setup(self):
        self.wall_list = arcade.SpriteList(use_spatial_hash=True)
        self.player_list = arcade.SpriteList()

        # Create cave system using a 2D grid
        self.grid = create_grid(GRID_WIDTH, GRID_HEIGHT)
        initialize_grid(self.grid)
        for step in range(NUMBER_OF_STEPS):
            self.grid = do_simulation_step(self.grid)

        # Create sprites based on 2D grid
        # Each grid location is a sprite.
        for row in range(GRID_HEIGHT):
            for column in range(GRID_WIDTH):
                if self.grid[row][column] == 1:
                    wall = arcade.Sprite(":resources:images/tiles/grassCenter.png", SPRITE_SCALING)
                    wall.center_x = column * SPRITE_SIZE + SPRITE_SIZE / 2
                    wall.center_y = row * SPRITE_SIZE + SPRITE_SIZE / 2
                    self.wall_list.append(wall)

        # Set up the player
        self.player_sprite = arcade.Sprite(":resources:images/animated_characters/female_person/"
                                           "femalePerson_idle.png",
                                           SPRITE_SCALING)
        self.player_list.append(self.player_sprite)

        # Randomly place the player. If we are in a wall, repeat until we aren't.
        placed = False
        while not placed:

            # Randomly position
            max_x = int(GRID_WIDTH * SPRITE_SIZE)
            max_y = int(GRID_HEIGHT * SPRITE_SIZE)
            self.player_sprite.center_x = random.randrange(max_x)
            self.player_sprite.center_y = random.randrange(max_y)

            # Are we in a wall?
            walls_hit = arcade.check_for_collision_with_list(self.player_sprite, self.wall_list)
            if len(walls_hit) == 0:
                # Not in a wall! Success!
                placed = True

        self.scroll_to_player(1.0)

        self.physics_engine = arcade.PhysicsEngineSimple(self.player_sprite,
                                                         self.wall_list)

        # Draw info on the screen
        sprite_count = len(self.wall_list)
        output = f"Sprite Count: {sprite_count:,}"
        self.sprite_count_text = arcade.Text(output,
                                             20,
                                             self.window.height - 20,
                                             arcade.color.WHITE, 16)

        output = "Drawing time:"
        self.draw_time_text = arcade.Text(output,
                                          20,
                                          self.window.height - 40,
                                          arcade.color.WHITE, 16)

        output = "Processing time:"
        self.processing_time_text = arcade.Text(output,
                                                20,
                                                self.window.height - 60,
                                                arcade.color.WHITE, 16)

    def on_draw(self):
        """ Render the screen. """

        # Start timing how long this takes
        draw_start_time = timeit.default_timer()

        # This command should happen before we start drawing. It will clear
        # the screen to the background color, and erase what we drew last frame.
        self.clear()

        # Select the camera we'll use to draw all our sprites
        self.camera_sprites.use()

        # Draw the sprites
        self.wall_list.draw()
        self.player_list.draw()

        # Select the (unscrolled) camera for our GUI
        self.camera_gui.use()

        self.sprite_count_text.draw()
        output = f"Drawing time: {self.draw_time:.3f}"
        self.draw_time_text.text = output
        self.draw_time_text.draw()

        output = f"Processing time: {self.processing_time:.3f}"
        self.processing_time_text.text = output
        self.processing_time_text.draw()

        self.draw_time = timeit.default_timer() - draw_start_time

    def update_player_speed(self):

        # Calculate speed based on the keys pressed
        self.player_sprite.change_x = 0
        self.player_sprite.change_y = 0

        if self.up_pressed and not self.down_pressed:
            self.player_sprite.change_y = MOVEMENT_SPEED
        elif self.down_pressed and not self.up_pressed:
            self.player_sprite.change_y = -MOVEMENT_SPEED
        if self.left_pressed and not self.right_pressed:
            self.player_sprite.change_x = -MOVEMENT_SPEED
        elif self.right_pressed and not self.left_pressed:
            self.player_sprite.change_x = MOVEMENT_SPEED

    def on_key_press(self, key, modifiers):
        """Called whenever a key is pressed. """

        if key == arcade.key.UP:
            self.up_pressed = True
        elif key == arcade.key.DOWN:
            self.down_pressed = True
        elif key == arcade.key.LEFT:
            self.left_pressed = True
        elif key == arcade.key.RIGHT:
            self.right_pressed = True

    def on_key_release(self, key, modifiers):
        """Called when the user releases a key. """

        if key == arcade.key.UP:
            self.up_pressed = False
        elif key == arcade.key.DOWN:
            self.down_pressed = False
        elif key == arcade.key.LEFT:
            self.left_pressed = False
        elif key == arcade.key.RIGHT:
            self.right_pressed = False

    def scroll_to_player(self, speed=CAMERA_SPEED):
        """
        Scroll the window to the player.

        if CAMERA_SPEED is 1, the camera will immediately move to the desired position.
        Anything between 0 and 1 will have the camera move to the location with a smoother
        pan.
        """

        position = Vec2(self.player_sprite.center_x - self.window.width / 2,
                        self.player_sprite.center_y - self.window.height / 2)
        self.camera_sprites.move_to(position, speed)
        self.camera_sprites.update()

    def on_resize(self, width, height):
        """
        Resize window
        Handle the user grabbing the edge and resizing the window.
        """
        self.camera_sprites.resize(int(width), int(height))
        self.camera_gui.resize(int(width), int(height))

    def on_update(self, delta_time):
        """ Movement and game logic """

        start_time = timeit.default_timer()

        # Call update on all sprites (The sprites don't do much in this
        # example though.)
        self.update_player_speed()
        self.physics_engine.update()

        # Scroll the screen to the player
        self.scroll_to_player()

        # Save the time it took to do this.
        self.processing_time = timeit.default_timer() - start_time


def main():
    window = arcade.Window(WINDOW_WIDTH, WINDOW_HEIGHT, WINDOW_TITLE, resizable=True)
    start_view = InstructionView()
    window.show_view(start_view)
    arcade.run()


if __name__ == "__main__":
    main()